Shear Zones – a Review MARK ⁎ Haakon Fossena,B, , Geane Carolina G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Alpstein in Three Dimensions: Fold-And-Thrust Belt Visualization in the Helvetic Zone, Eastern Switzerland
Swiss J Geosci (2014) 107:177–195 DOI 10.1007/s00015-014-0168-6 The Alpstein in three dimensions: fold-and-thrust belt visualization in the Helvetic zone, eastern Switzerland Paola Sala • O. Adrian Pfiffner • Marcel Frehner Received: 14 August 2013 / Accepted: 9 September 2014 / Published online: 11 December 2014 Ó Swiss Geological Society 2014 Abstract To investigate the geometrical relationships determined from line-length balancing. The model also between folding and thrust faulting, we built a 3D geo- clearly shows the lateral extension, the trend, and the logical model of the Helvetic fold-and-thrust belt in eastern variation in displacement along the principal faults. The Switzerland from several existing and two newly drawn reconstruction of horizons in 3D allows the investigation of cross-sections in the Sa¨ntis area. We partly redrew existing cross-sections in any given direction. The 3D model is cross-sections and validated them by checking for line useful for developing and understanding how the internal length balance; to fill areas with no data we drew additional nappe structures, namely folds and thrust faults, change cross-sections. The model was built based on surface along strike due to palaeogeographic and stratigraphic interpolation of the formation interfaces and thrusts variations. Lateral stratigraphy variations correlate with between the cross-sections, which allowed generating eight different deformation responses of the nappe. Changes can main surfaces. In addition, we used cave data to validate occur either abruptly across transverse faults or in a more the final model in depth. The main structural elements in gradual manner. the Sa¨ntis area, the Sa¨ntis Thrust and the Sax-Schwende Fault, are also implemented in the model. -
Chapter 8 Large Strains
Chapter 8 Large Strains Introduction Most geological deformation, whether distorted fossils or fold and thrust belt shortening, accrues over a long period of time and can no longer be analyzed with the assumptions of infinitesimal strain. Fortunately, these large, or finite strains have the same starting point that infinitesimal strain does: the deformation and dis- placement gradient tensors. However, we must clearly distinguish between gradi- ents in position or displacement with respect to the initial (material) or to the final (spatial) state and several assumptions from the last Chapter — small angles, addi- tion of successive phases or steps in the deformation — no longer hold. Finite strain can get complicated very quickly with many different tensors to worry about. Most of our emphasis here will be on the practical measurement of finite strain rather than the details of the theory but we do have to review a few basic concepts first, so that we can appreciate the differences between finite and infinitesimal strain. Some of these differences have a profound impact on how we analyze de- formation. CHAPTER 8 FINITE STRAIN Comparison to Infinitesimal Strain A Plethora of Finite Strain Tensors There are lots of finite strain tensors and they come in pairs: one referenced to the initial state and the other referenced to the final state. The derivation of these tensors is usually based on Figure 7.3 and is tedious but straightforward; we will skip the derivation here but you can see it in Allmendinger et al. (2012) or any good continuum mechanics text. The first tensor is the Lagrangian strain tensor: 1 ⎡ ∂ui ∂u j ∂uk ∂uk ⎤ 1 " Lij = ⎢ + + ⎥ = ⎣⎡Eij + E ji + EkiEkj ⎦⎤ (8.1) 2 ⎣∂ X j ∂ Xi ∂ Xi ∂ X j ⎦ 2 where Eij is the displacement gradient tensor from the last Chapter. -
Gy403 Structural Geology Kinematic Analysis Kinematics
GY403 STRUCTURAL GEOLOGY KINEMATIC ANALYSIS KINEMATICS • Translation- described by a vector quantity • Rotation- described by: • Axis of rotation point • Magnitude of rotation (degrees) • Sense of rotation (reference frame; clockwise or anticlockwise) • Dilation- volume change • Loss of volume = negative dilation • Increase of volume = positive dilation • Distortion- change in original shape RIGID VS. NON-RIGID BODY DEFORMATION • Rigid Body Deformation • Translation: fault slip • Rotation: rotational fault • Non-rigid Body Deformation • Dilation: burial of sediment/rock • Distortion: ductile deformation (permanent shape change) TRANSLATION EXAMPLES • Slip along a planar fault • 360 meters left lateral slip • 50 meters normal dip slip • Classification: normal left-lateral slip fault 30 Net Slip Vector X(S) 40 70 N 50m dip slip X(N) 360m strike slip 30 40 0 100m ROTATIONAL FAULT • Fault slip is described by an axis of rotation • Rotation is anticlockwise as viewed from the south fault block • Amount of rotation is 50 degrees Axis W E 50 FAULT SEPARATION VS. SLIP • Fault separation: the apparent slip as viewed on a planar outcrop. • Fault slip: must be measured with net slip vector using a linear feature offset by the fault. 70 40 150m D U 40 STRAIN ELLIPSOID X • A three-dimensional ellipsoid that describes the magnitude of dilational and distortional strain. • Assume a perfect sphere before deformation. • Three mutually perpendicular axes X, Y, and Z. • X is maximum stretch (S ) and Z is minimum stretch (S ). X Z Y Z • There are unique directions -
Fluid Flow and Rock Alteration Along the Glarus Thrust
1661-8726/08/020251-18 Swiss J. Geosci. 101 (2008) 251–268 DOI 10.1007/s00015-008-1265-1 Birkhäuser Verlag, Basel, 2008 Fluid flow and rock alteration along the Glarus thrust JEAN-PIERRE HÜRZELER 1 & RAINER ABART 2 Key words: Glarus thrust, rock alteration, strain localization, Lochseiten calc tectonite ABSTRACT Chemical alteration of rocks along the Glarus overthrust reflects different the footwall units. In the northern sections of the thrust, the Lochseiten calc- stages of fluid rock interaction associated with thrusting. At the base of the tectonite has a distinct chemical and stable isotope signature, which suggests Verrucano in the hanging wall of the thrust, sodium was largely removed dur- that it is largely derived from Infrahelvetic slices, i.e. decapitated fragments of ing an early stage of fluid-rock interaction, which is ascribed to thrust-paral- the footwall limestone from the southern sections of the thrust, which were lel fluid flow in a damage zone immediately above the thrust. This alteration tectonically emplaced along the thrust further north. Only at the Lochseiten leads to the formation of white mica at the expense of albite-rich plagioclase type locality the original chemical and stable isotope signatures of the calc- and potassium feldspar. This probably enhanced mechanical weakening of the tectonite were completely obliterated during intense reworking by dissolution Verrucano base allowing for progressive strain localization. At a later stage and re-precipitation. of thrusting, fluid-mediated chemical exchange between the footwall and the hanging wall lithologies produced a second generation of alteration phenom- ena. Reduction of ferric iron oxides at the base of the Verrucano indicates DEDICATION fluid supply from the underlying flysch units in the northern section of the thrust. -
Ductile Deformation - Concepts of Finite Strain
327 Ductile deformation - Concepts of finite strain Deformation includes any process that results in a change in shape, size or location of a body. A solid body subjected to external forces tends to move or change its displacement. These displacements can involve four distinct component patterns: - 1) A body is forced to change its position; it undergoes translation. - 2) A body is forced to change its orientation; it undergoes rotation. - 3) A body is forced to change size; it undergoes dilation. - 4) A body is forced to change shape; it undergoes distortion. These movement components are often described in terms of slip or flow. The distinction is scale- dependent, slip describing movement on a discrete plane, whereas flow is a penetrative movement that involves the whole of the rock. The four basic movements may be combined. - During rigid body deformation, rocks are translated and/or rotated but the original size and shape are preserved. - If instead of moving, the body absorbs some or all the forces, it becomes stressed. The forces then cause particle displacement within the body so that the body changes its shape and/or size; it becomes deformed. Deformation describes the complete transformation from the initial to the final geometry and location of a body. Deformation produces discontinuities in brittle rocks. In ductile rocks, deformation is macroscopically continuous, distributed within the mass of the rock. Instead, brittle deformation essentially involves relative movements between undeformed (but displaced) blocks. Finite strain jpb, 2019 328 Strain describes the non-rigid body deformation, i.e. the amount of movement caused by stresses between parts of a body. -
Actually Consists of 2 Cleavages
Types of foliations • Crenulation Cleavage- – Actually consists of 2 cleavages – The first may be a slaty cleavage or schistosity that becomes microfolded – Fold axial planes typically form at high angle to the σ1 of the second compressional phase 1 Progressive development (a → c) of a crenulation cleavage for both asymmetric (top) and symmetric (bottom) situations. From Spry (1969) Metamorphic Textures. Pergamon. Oxford. 2 Figure 23.24a. Symmetrical crenulation cleavages in amphibole-quartz-rich schist. Note concentration of quartz in hinge areas. From Borradaile et al. (1982) Atlas of Deformational and Metamorphic Rock Fabrics. Springer-Verlag. 3 Figure 23.24b. Asymmetric crenulation cleavages in mica-quartz-rich schist. Note horizontal compositional layering (relict bedding) and preferential dissolution of quartz from one limb of the folds. From Borradaile et al. (1982) Atlas of Deformational and Metamorphic Rock Fabrics. Springer-Verlag. 4 Figure 23.25. Stages in the development of crenulation cleavage as a function of temperature and intensity of the second deformation. From Passchier and Trouw (1996) Microtectonics. Springer-Verlag. Development of S2 micas depends upon T and the intensity of the second deformation 5 Types of lineations a. Preferred orientation of elongated mineral aggregates b. Preferred orientation of elongate minerals c. Lineation defined by platy minerals d. Fold axes (especially of crenulations) e. Intersecting planar elements. Figure 23.26. Types of fabric elements that define a lineation. From Turner and Weiss (1963) Structural 6 Analysis of Metamorphic Tectonites. McGraw Hill. Analysis of Deformed Rocks • If two or more geometric elements are present, we can add a numeric subscript to denote the chronological sequence in which they were developed and superimposed- • Deformational events: D1 D2 D3 … • Metamorphic events: M1 M2 M3 … • Foliations: So S1 S2 S3 … • Lineations: Lo L1 L2 L3 … • Plot on a metamorphism-deformation-time plot showing the crystallization of each mineral 7 Deformation vs. -
The Glarus Thrust: Excursion Guide and Report of a Field Trip of the Swiss Tectonic Studies Group (Swiss Geological Society, 14.–16
1661-8726/08/020323-18 Swiss J. Geosci. 101 (2008) 323–340 DOI 10.1007/s00015-008-1259-z Birkhäuser Verlag, Basel, 2008 The Glarus thrust: excursion guide and report of a field trip of the Swiss Tectonic Studies Group (Swiss Geological Society, 14.–16. 09. 2006) MARCO HERWEGH 1, *, JEAN-PIERRE HÜRZELER 2, O. ADRIAN PFIFFNER 1, STEFAN M. SCHMID 2, RAINER ABART 3 & ANDREAS EBERT 1 Key words: Helvetics, Glarus thrust, deformation mechanism, mylonite, brittle deformation, geochemical alteration, fluid pathway PARTICIPANTS Ansorge Jörg (ETHZ) Nyffenegger Franziska (Fachhochschule Burgdorf, University of Bern) den Brok Bas (EAWAG-EMPA) Pfiffner Adrian (University of Bern) Dèzes Pierre (SANW) Schreurs Guido (University of Bern) Gonzalez Laura (University of Bern) Schmalholz Stefan (ETHZ) Herwegh Marco (University of Bern) Schmid Stefan (University of Basel) Hürzeler Jean-Pierre (University of Basel) Wiederkehr Michael (University of Basel) Imper David (GeoPark) Wilson Christopher (Melbourne University) Mancktelow Neil (ETHZ) Wilson Lilian (Melbourne University) Mullis Josef (University of Basel) ABSTRACT This excursion guide results form a field trip to the Glarus nappe complex or- and fluid flow, and (iii) the link between large-scale structures, microstruc- ganized by the Swiss Tectonic Studies Group in 2006. The aim of the excursion tures, and geochemical aspects. Despite 150 years of research in the Glarus was to discuss old and recent concepts related to the evolution of the Glarus nappe complex and the new results discussed during the excursion, -
Geometry and Kinematics of Bivergent Extension in the Southern Cycladic Archipelago: Constraining an Extensional Hinge Zone on S
RESEARCH ARTICLE Geometry and Kinematics of Bivergent Extension in 10.1029/2020TC006641 the Southern Cycladic Archipelago: Constraining an Key Points: Extensional Hinge Zone on Sikinos Island, Aegean Sea, • New and novel (re)interpretation of extension-related structures in Greece Cycladic Blueschist Unit • Extensional structures resulted from Uwe Ring1 and Johannes Glodny2 high degree of pure-shear flattening during general-shear deformation 1Department of Geological Sciences, Stockholm University, Stockholm, Sweden, 2GFZ German Research Centre for • Structures are interpreted to reflect Geosciences, Potsdam, Germany an extensional hinge zone in southern Cyclades Abstract We report the results of a field study on Sikinos Island in the Aegean extensional province Supporting Information: of Greece and propose a hinge zone controlling incipient bivergent extension in the southern Cyclades. Supporting Information may be found A first deformation event led to top-S thrusting of the Cycladic Blueschist Unit (CBU) onto the Cycladic in the online version of this article. basement in the Oligocene. The mean kinematic vorticity number (Wm) during this event is between 0.56 and 0.63 in the CBU, and 0.72 to 0.84 in the basement, indicating general-shear deformation with about Correspondence to: equal components of pure and simple shear. The strain geometry was close to plane strain. Subsequent U. Ring, [email protected] lower-greenschist-facies extensional shearing was also by general-shear deformation; however, the pure- shear component was distinctly greater (Wm = 0.3–0.41). The degree of subvertical pure-shear flattening Citation: increases structurally upward and explains alternating top-N and top-S shear senses over large parts of Ring, U., & Glodny, J. -
2 Review of Stress, Linear Strain and Elastic Stress- Strain Relations
2 Review of Stress, Linear Strain and Elastic Stress- Strain Relations 2.1 Introduction In metal forming and machining processes, the work piece is subjected to external forces in order to achieve a certain desired shape. Under the action of these forces, the work piece undergoes displacements and deformation and develops internal forces. A measure of deformation is defined as strain. The intensity of internal forces is called as stress. The displacements, strains and stresses in a deformable body are interlinked. Additionally, they all depend on the geometry and material of the work piece, external forces and supports. Therefore, to estimate the external forces required for achieving the desired shape, one needs to determine the displacements, strains and stresses in the work piece. This involves solving the following set of governing equations : (i) strain-displacement relations, (ii) stress- strain relations and (iii) equations of motion. In this chapter, we develop the governing equations for the case of small deformation of linearly elastic materials. While developing these equations, we disregard the molecular structure of the material and assume the body to be a continuum. This enables us to define the displacements, strains and stresses at every point of the body. We begin our discussion on governing equations with the concept of stress at a point. Then, we carry out the analysis of stress at a point to develop the ideas of stress invariants, principal stresses, maximum shear stress, octahedral stresses and the hydrostatic and deviatoric parts of stress. These ideas will be used in the next chapter to develop the theory of plasticity. -
Faults (Shear Zones) in the Earth's Mantle
Tectonophysics 558-559 (2012) 1–27 Contents lists available at SciVerse ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Review Article Faults (shear zones) in the Earth's mantle Alain Vauchez ⁎, Andréa Tommasi, David Mainprice Geosciences Montpellier, CNRS & Univ. Montpellier 2, Univ. Montpellier 2, cc. 60, Pl. E. Bataillon, F-34095 Montpellier cedex5, France article info abstract Article history: Geodetic data support a short-term continental deformation localized in faults bounding lithospheric blocks. Received 23 April 2011 Whether major “faults” observed at the surface affect the lithospheric mantle and, if so, how strain is distrib- Received in revised form 3 May 2012 uted are major issues for understanding the mechanical behavior of lithospheric plates. A variety of evidence, Accepted 3 June 2012 from direct observations of deformed peridotites in orogenic massifs, ophiolites, and mantle xenoliths to seis- Available online 15 June 2012 mic reflectors and seismic anisotropy beneath major fault zones, consistently supports prolongation of major faults into the lithospheric mantle. This review highlights that many aspects of the lithospheric mantle defor- Keywords: Faults/shear-zones mation remain however poorly understood. Coupling between deformation in frictional faults in the upper- Lithospheric mantle most crust and localized shearing in the ductile crust and mantle is required to explain the post-seismic Field observations deformation, but mantle viscosities deduced from geodetic data and extrapolated from laboratory experi- Seismic reflection and anisotropy ments are only reconciled if temperatures in the shallow lithospheric mantle are high (>800 °C at the Rheology Moho). Seismic anisotropy, especially shear wave splitting, provides strong evidence for coherent deforma- Strain localization tion over domains several tens of km wide in the lithospheric mantle beneath major transcurrent faults. -
Download Download
e-ISSN 2580 - 0752 BULLETIN OF GEOLOGY Fakultas Ilmu dan Teknologi Kebumian (FITB) Institut Teknologi Bandung (ITB) STRUCTURAL CONTROL RELATED WITH MEDIUM-TO-VERY HIGH Au GRADE AT PIT B EAST AND B WEST, TUJUH BUKIT MINE, EAST JAVA ILHAM AJI DERMAWAN1, ANDRI SLAMET SUBANDRIO1, ALFEND RUDYAWAN1, ARYA DWI SANJAYA2, RAMA MAHARIEF2, KRISMA ANDITYA2, RIZFAN HASNUR2, M. SATYA MUTTAQIEN2, CICIH LARASATI WIDYA FITRI2, ANDI PAHLEVI2, DEDY DAULAY2, AGUS PURWANTO2, ADI ADRIANSYAH SJOEKRI2 1. Program Studi Teknik Geologi, Fakultas Ilmu dan Teknologi Kebumian, Institut Teknologi Bandung (ITB), Jl. Ganesha No.10, Bandung, Jawa Barat, Indonesia. Email: [email protected] 2. PT Bumi Suksesindo, Desa Sumberagung, Kecamatan Pesanggaran, Kabupaten Banyuwangi, Provinsi Jawa Timur, Indonesia. Sari – Tujuh Bukit secara umum disusun oleh batuan vulkanik dan vulkaniklastik Formasi Batuampar berumur Oligosen Akhir sampai Miosen Tengah. Setelah terjadi aktivitas tektonomagmatisme pada Pliosen, satuan tersebut teralterasi dan menjadi host rock bagi mineralisasi ekonomis yang juga terbentuk pada Pliosen. Daerah penelitian berada di tambang terbuka Pit B East dan B West. Kavling yang mencakup kedua pit tersebut memiliki luas ± 700 x 500 m2, terletak pada koordinat ± 9045100 – 9045600 mU dan ± 174400 – 175100 mT sistem proyeksi koordinat UTM WGS 1984 zona 50S. Penelitian ini membahas tentang kontrol struktur yang berperan dalam pembentukan karakteristik alterasi dan mineralisasi Au sistem epitermal sulfidasi tinggi yang berkembang di Pit B East dan B West, tambang Tujuh Bukit. Struktur geologi yang dominan berkembang berupa sistem sesar mendatar berumur Pliosen, berarah relatif NW-SE dan N-S, dengan arah tegasan utama NNW-SSE mengikuti model pure shear. Terdapat pula sesar normal berarah relatif NW-SE dan sesar naik berarah relatif ENE-WSW. -
Kinematic and Vorticity Analyses of the Western Idaho Shear Zone, USA
THEMED ISSUE: EarthScope IDOR project (Deformation and Magmatic Modification of a Steep Continental Margin, Western Idaho–Eastern Oregon) Kinematic and vorticity analyses of the western Idaho shear zone, USA Scott Giorgis1,*, Zach Michels2, Laura Dair1, Nicole Braudy2, and Basil Tikoff2 1DEPARTMENT OF GEOLOGICAL SCIENCES, STATE UNIVERSITY OF NEW YORK AT GENESEO, 1 COLLEGE CIRCLE, GENESEO, NEW YORK 14454, USA 2DEPARTMENT OF GEOSCIENCE, UNIVERSITY OF WISCONSIN–MADISON, 1215 W DAYTON STREET, MADISON, WISCONSIN 53706, USA ABSTRACT The western Idaho shear zone (WISZ) is a Late Cretaceous, mid-crustal exposure of intense shear localized in the Cordillera of western North America. This shear zone is characterized by transpressional fabrics, i.e., downdip stretching lineations and vertical foliations. Folded and boudinaged late-stage dikes indicate a dextral sense of shear. The vorticity-normal section is identified by examining the three-dimensional shape preferred orientation of feldspar populations and the intragranular lattice rotation in quartz grains in deformed quartzites. The short axes of the shape preferred orientation ellipsoid gather on a plane perpendicular to the vorticity vector. In western Idaho this plane dips gently to the west, suggesting a vertical vorticity vector. Similarly, sample-scale crystallographic vorticity axis analysis of quartzite tectonites provides an independent assessment of vorticity and also indicates a subvertical vorticity vector. Constraints on the magnitude of vorticity are provided by field fabrics and porphyroclasts with strain shadows. Together these data indicate that the McCall segment of the WISZ dis- plays dextral transpression with a vertical vorticity vector and an angle of oblique convergence ≥60°. North and south of McCall, movement is coeval on the Owyhee segment of the WISZ and the Ahsahka shear zone.