“How Many Unemployed Are There?” —When Fuzzy Logic Met Linguistics and Semantics

Total Page:16

File Type:pdf, Size:1020Kb

“How Many Unemployed Are There?” —When Fuzzy Logic Met Linguistics and Semantics “How Many Unemployed Are There?” —When Fuzzy Logic met Linguistics and Semantics Rudolf Seising Fundamentals of Soft Computing European Centre for Soft Computing Mieres (Asturias), Spain [email protected] Abstract —This paper illuminates the first 10 years of Fuzzy Sets in section III we refer to some other papers that he had recited, and Systems (FSS) where nobody could know that this theory written, published or supervised in the decade between 1965 would be a big success in the applied sciences and technology. and 1975 and which show his intention The paper concludes Starting with the content of an (perhaps) unpublished text of with some remarks on the actuality of this question until today. Lotfi A. Zadeh, we show that, the founder of FSS expected in the period of the years 1965-1972, before Fuzzy control appeared, that this new theory would play an important role in humanities II. A (P ERHAPS ) UNPUBLISHED TEXT and social sciences. Moreover he tried to link his theory to the The paper “How Many Unemployed Are There?” starts fields of linguistics and semantics. with a version of the Sorites paradox (see fig. 1) that is asking, “How many bald man are there?” Zadeh claims: “In both cases, Keywords-Fuzzy Set Theory; historyof science, linguistics, the answer is not unique because the class of the unemployed, semantic, computer science like the class of the bald, does not have a sharply defined natural boundary which separates those who are members of I. INTRODUCTION the class from those who are not.” “How many Unemployed Are There?” is the title of a script that I found in the last year in the private archive of Lotfi A. Zadeh. Perhaps this two-pages-paper that was written at “July 5, 1971” was never published [1]. The text is of historical interest because it consolidates my view that in this time Zadeh was intended to establish FSS in humanities, arts and social sciences, notably in linguistics and semantics. [2, 3]. Already in 1969 Zadeh had notified that he did not expect the incorporation of FSS into the fields of sciences and engineering: “What we still lack, and lack rather acutely, are methods for dealing with systems which are too complex or too ill-defined to admit of precise analysis. Such systems pervade Figure 1. First page (excerpt) of Zadeh’s script [1] life sciences, social sciences, philosophy, economics, psychology and many other “soft” fields.” [4] Much later, in an The Sorites that can be traced back to the old Greek word interview that he gave in 1994, he mentioned his surprise on σορως (sorós for “heap”) used by Eubulid of Alexandria (4th the fact that Fuzzy Logic (FL) was “embraced by engineers” century BC). Already when the mathematician and philoso- and “used in industrial process controls and in ‘smart’ pher Bertrand Russell (1872-1970) quoted the Sorites he consumer products such as hand-held camcorders that cancel discussed the “bald men” (Greek: falakros, English: fallacy, out jittering and microwaves that cook your food perfectly at false conclusion) and he discussed colours: “Let us consider the touch of a single button.” ([5], see also [1, 6]) the various ways in which common words are vague, and let In that interview he also said that he had “expected people us begin with such a word as ‘red’. It is perfectly obvious, in the social sciences-economics, psychology, philosophy, since colours form a continuum, that there are shades of colour linguistics, politics, sociology, religion and numerous other concerning which we shall be in doubt whether to call them areas to pick up on it [FL]. It's been somewhat of a mystery to red or not, not because we are ignorant of the meaning of the me, why even to this day, so few social scientists have word ‘red’, but because it is a word the extent of whose discovered how useful it could be.” ([5] but see [7]) application is essentially doubtful. This, of course, is the answer to the old puzzle about the man who went bald. It is In July 1971, when Zadeh wrote “How Many Unemployed supposed that at first he was not bald, that he lost his hairs one Are There?” [1], he was intended to open the field of the new by one, and that in the end he was bald; therefore, it is argued, theory’s applications to humanities and social sciences. In there must have been one hair the loss of which converted him section II we go through Zadeh’s claims in this manuscript and into a bald man. This, of course, is absurd. Baldness is a vague conception; some men are certainly bald, some are certainly However, in these 1960s the requirement of big amounts of not bald, while between them there are men of whom it is not data could be difficult but Zadeh wrote that it would have been true to say they must either be bald or not bald.” ([8], p. 85). “not a very big problem” to require the “lot of data” “to Russell showed in this article from 1923 that concepts are compute the grades of membership”. Therefore he concluded vague even though there have been and continue to be many that “the approach sketched above has the potential of attempts to define them precisely: “The metre, for example, is providing a much truer measure of unemployment that is defined as the distance between two marks on a certain rod in possible with the conventional dichotomizing techniques which Paris, when that rod is at a certain temperature. Now, the divide the population into two complementary classes – the employed and the unemployed – with no provision for in- marks are not points, but patches of a finite size, so that the between categories. Needless to say, there is bound to be some distance between them is not a precise conception. Moreover, arbitrariness in the formula for computing the grades of temperature cannot be measured with more than a certain membership in the fuzzy class of the unemployed, but it should degree of accuracy, and the temperature of a rod is never quite not be difficult to devise one which would represent a broad uniform. For all these reasons the conception of a metre is consensus.” [1] Zadeh also emphasized that the cardinality of lacking in precision.” ([8], p. 86) the fuzzy class of unemployed “corresponds to the number of In [1] Zadeh linked the problems of the Sorites and “How »full-time equivalent unemployed« in the group, and as such many unemployed are there?” with his then five years old has an intuitively appealing and simple interpretation. theory of Fuzzy Sets (see fig. 2). This short manuscript shows Zadeh’s intention in the early years of his new mathematical theory FSS to present it is a proper tool in social sciences and humanities. Already in these late 1960s it is obvious that FSS depends on the used language and beyond that on the meanings of its words. In the next sections we will show these dependencies in more details. III. FUZZY LOGIC , -LANGUAGES, -SYNTAX , -SEMANTICS A. Joseph Goguen and “A Logic of Inexact Concepts” When Zadeh looked for applying FSS in different academic disciplines he kept interdisciplinary company with colleagues on the campus of Berkeley: Joseph Goguen (1941-2006) – who was a Ph. D. student of the mathematician Hans-Joachim Bremermann (1926-1996), the psychologist Eleanor Rosch Figure 2. First page (excerpt) of Zadeh’s script [1] (Heider) (born 1938) and the linguist George Lakoff (born 1941). Zadeh and Bremermann served as first and second He wrote that we can identify “the class of the reviewers for Goguens’s Ph.D. thesis “Categories of Fuzzy unemployed” with a fuzzy set (or a “fuzzy class”) and therefore Sets” [9] where Goguen generalized fuzzy sets to so-called “ L- the number of the unemployed equals the cardinality of that sets” [10]. An L-set is a function that maps the fuzzy set carrier fuzzy set. – But how can we compute this cardinality? – Zadeh X into a partially ordered set L: A: X → L. The partially ordered wrote that to this end “a two-stage process” is required: set L Goguen called the “truth set” of A. The elements of L can • First, a formula must be devised under which each thus be interpreted as “truth values”; in this respect, Goguen individual in a group is assigned a grade of then also referred to a “Logic of Inexact Concepts” [11] membership in the class of the unemployed within that group. For example, someone who has lost a job and is B. From System Theory to Computer Science actively looking for one would be assigned the grade In 1959 Zadeh became professor of electrical engineering at of membership 1. A housewife who takes a half-time Berkeley and he also was a well-known protagonist of System job to supplement her family’s income would be Theory, but then, Zadeh recalled in one of my interviews, assigned the grade of membership 0. On the other “System Theory came grown up but then computers and hand, someone who is working half-time but would computers then took over. In other words: the center of work full-time if he could get a full-time job would be attention shifted. [...] So, before that, there were some assigned the grade of membership 0.5. And so forth. universities that started departments of system sciences, The formula could be quite complex to take into departments of system engineering, something like that, but consideration a variety of factors, or it could be quite simple, as in the above example.
Recommended publications
  • PDF (Dissertation.Pdf)
    Kind Theory Thesis by Joseph R. Kiniry In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2002 (Defended 10 May 2002) ii © 2002 Joseph R. Kiniry All Rights Reserved iii Preface This thesis describes a theory for representing, manipulating, and reasoning about structured pieces of knowledge in open collaborative systems. The theory's design is motivated by both its general model as well as its target user commu- nity. Its model is structured information, with emphasis on classification, relative structure, equivalence, and interpretation. Its user community is meant to be non-mathematicians and non-computer scientists that might use the theory via computational tool support once inte- grated with modern design and development tools. This thesis discusses a new logic called kind theory that meets these challenges. The core of the work is based in logic, type theory, and universal algebras. The theory is shown to be efficiently implementable, and several parts of a full realization have already been constructed and are reviewed. Additionally, several software engineering concepts, tools, and technologies have been con- structed that take advantage of this theoretical framework. These constructs are discussed as well, from the perspectives of general software engineering and applied formal methods. iv Acknowledgements I am grateful to my initial primary adviser, Prof. K. Mani Chandy, for bringing me to Caltech and his willingness to let me explore many unfamiliar research fields of my own choosing. I am also appreciative of my second adviser, Prof. Jason Hickey, for his support, encouragement, feedback, and patience through the later years of my work.
    [Show full text]
  • Philosophia Scientiæ, 18-3 | 2014, « Logic and Philosophy of Science in Nancy (I) » [Online], Online Since 01 October 2014, Connection on 05 November 2020
    Philosophia Scientiæ Travaux d'histoire et de philosophie des sciences 18-3 | 2014 Logic and Philosophy of Science in Nancy (I) Selected Contributed Papers from the 14th International Congress of Logic, Methodology and Philosophy of Science Pierre Édouard Bour, Gerhard Heinzmann, Wilfrid Hodges and Peter Schroeder-Heister (dir.) Electronic version URL: http://journals.openedition.org/philosophiascientiae/957 DOI: 10.4000/philosophiascientiae.957 ISSN: 1775-4283 Publisher Éditions Kimé Printed version Date of publication: 1 October 2014 ISBN: 978-2-84174-689-7 ISSN: 1281-2463 Electronic reference Pierre Édouard Bour, Gerhard Heinzmann, Wilfrid Hodges and Peter Schroeder-Heister (dir.), Philosophia Scientiæ, 18-3 | 2014, « Logic and Philosophy of Science in Nancy (I) » [Online], Online since 01 October 2014, connection on 05 November 2020. URL : http://journals.openedition.org/ philosophiascientiae/957 ; DOI : https://doi.org/10.4000/philosophiascientiae.957 This text was automatically generated on 5 November 2020. Tous droits réservés 1 This issue collects a selection of contributed papers presented at the 14th International Congress of Logic, Methodology and Philosophy of Science in Nancy, July 2011. These papers were originally presented within three of the main sections of the Congress. They deal with logic, philosophy of mathematics and cognitive science, and philosophy of technology. A second volume of contributed papers, dedicated to general philosophy of science, and other topics in the philosophy of particular sciences, will appear in the next issue of Philosophia Scientiæ (19-1), 2015. Philosophia Scientiæ, 18-3 | 2014 2 TABLE OF CONTENTS Logic and Philosophy of Science in Nancy (I) Preface Pierre Edouard Bour, Gerhard Heinzmann, Wilfrid Hodges and Peter Schroeder-Heister Copies of Classical Logic in Intuitionistic Logic Jaime Gaspar A Critical Remark on the BHK Interpretation of Implication Wagner de Campos Sanz and Thomas Piecha Gödel’s Incompleteness Phenomenon—Computationally Saeed Salehi Meinong and Husserl on Existence.
    [Show full text]
  • Cognitive Systems Research
    Cognitive Systems Research A Uniform Model of Computational Conceptual Blending --Manuscript Draft-- Manuscript Number: COGSYS-D-20-00015 Article Type: Research Paper Keywords: conceptual blending; computational creativity; amalgams; category theory; Case- based reasoning Abstract: We present a mathematical model for the cognitive operation of conceptual blending that aims at being uniform across different representation formalisms, while capturing the relevant structure of this operation. The model takes its inspiration from amalgams as applied in case-base reasoning, but lifts them into the theory of categories so as to follow Joseph Goguen's intuition for a mathematically precise characterisation of conceptual blending at a representation-independent level of abstraction. We prove that our amalgam-based category-theoretical model of conceptual blending is essentially equivalent to the pushout model in the ordered category of partial maps as put forward by Joseph Goguen. But unlike Goguen's approach, our model is more suitable for a computational realisation of conceptual blending, and we exemplify this by concretising our model to computational conceptual blends for various representation formalisms and application domains. Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation Manuscript File A Uniform Model of Computational Conceptual Blending Marco Schorlemmer and Enric Plaza Artificial Intelligence Reserach Institute, IIIA-CSIC Bellaterra (Barcelona), Catalonia, Spain Abstract We present a mathematical model for the cognitive operation of conceptual blending that aims at being uniform across di↵erent representation formalisms, while capturing the relevant structure of this operation. The model takes its in- spiration from amalgams as applied in case-based reasoning, but lifts them into the theory of categories so as to follow Joseph Goguen’s intuition for a math- ematically precise characterisation of conceptual blending at a representation- independent level of abstraction.
    [Show full text]
  • Information Integration in Institutions
    Information Integration in Institutions Joseph Goguen University of California at San Diego, Dept. Computer Science & Engineering 9500 Gilman Drive, La Jolla CA 92093{0114 USA Abstract. This paper unifies and/or generalizes several approaches to information, including the information flow of Barwise and Seligman, the formal conceptual analysis of Wille, the lattice of theories of Sowa, the categorical general systems theory of Goguen, and the cognitive semantic theories of Fauconnier, Turner, G¨ardenfors, and others. Its rigorous ap- proach uses category theory to achieve independence from any particular choice of representation, and institutions to achieve independence from any particular choice of logic. Corelations and colimits provide a general formalization of information integration, and Grothendieck constructions extend this to several kinds of heterogeneity. Applications include mod- ular programming, Curry-Howard isomorphism, database semantics, on- tology alignment, cognitive semantics, and more. 1 Introduction The world wide web has made unprecedented volumes of information available, and despite the fact that this volume continues to grow, im- provements in browser technology are gradually making it easier to find what you want. On the other hand, the problem of finding several collec- tions of relevant data and integrating them1 has received relatively little attention, except within the well-behaved realm of conventional database systems. Ontologies have been suggested as an approach to such problems, but there are many difficulties, including the connection of ontologies to data, the creation and maintenance of ontologies, existence of multiple ontologies for single domains, the use of multiple languages to express ontologies, and of multiple logics on which those languages are based, as well as some deep philosophical problems [32].
    [Show full text]
  • Kan Extensions of Institutions
    Journal of Universal Computer Science, vol. 5, no. 8 (1999), 482-492 submitted: 7/8/99, accepted: 14/8/99, appeared: 28/8/99 Springer Pub. Co. Kan Extensions of Institutions 1 Grigore Rosu Department of Computer Science & Engineering, University of California at San Diego [email protected] Abstract: Institutions were intro duced by Goguen and Burstall [GB84 , GB85 , GB86 , GB92 ] to formally capture the notion of logical system. Interpreting institutions as func- tors, and morphisms and representations of institutions as natural transformations, we give elegant pro ofs for the completeness of the categories of institutions with morphisms and representations, resp ectively, show that the dualitybetween morphisms and rep- resentations of institutions comes from an adjointness b etween categories of functors, and prove the co completeness of the categories of institutions over small signatures with morphisms and representations, resp ectively. Category: F.3, F.4 1 Intro duction There are di erent logical systems successfully used in theoretical computer sci- ence, such as rst and higher order logic, equational logic, Horn clause logic, tem- p oral logics, mo dal logics, in nitary logics, and many others. As a consequence of the fact that many general results of these logics are not dep endent on the partic- ular ingredients of their underlying logic, abstracting Tarski's classic semantic de nition of truth [Tar44], Goguen and Burstall [GB84, GB85, GB86, GB92] develop ed the notion of institution to formalize the informal notion of \logical system". The main requirement is the existence of a satisfaction relation b etween mo dels and sentences which is consistent under change of notation.
    [Show full text]
  • Optimal Structures for Multimedia Instruction. Annual Technical Report. INSTITUTION SRI International, Menlo Park, Calif
    DOCUMENT RESUME ED 243 463 IR 011 087 AUTHOR Goguen, Joseph; Linde, Charlotte TITLE Optimal Structures for Multimedia Instruction. Annual Technical Report. INSTITUTION SRI International, Menlo Park, Calif. SPONS AGENCY Office of Naval Research, Arlington, Va. Personnel and Training Research Programs Office. REPORT NO SRI-ONR-TR-1-(4778) PUB DATE Jan 84 CONTRACT N00014-82-K-0711 NOTE 79p. PUB TYPE Reports - Research/Technical (143) EDRS PRICE MF01/PC04 Plus Postage. DESCRIPTORS Communication Research; *Discourse Analysis; Educational Media; Educational Research; *Instructional Design; Learning Strategies; Learning Theories; *Multimedia Instruction; *Semiotics; *Structural Grammar; *Structural Linguistics; Two Year Colleges ABSTRACT A 2-year study of optimal structures for multimedia instruction 'is being conducted to provide experimentally validated guidelines for the design of computer-based instruction generation systems and for human instruction in a multimedia setting. In order to obtain for analysis a significant range of the possible discourse structures that occur in instruction, the project's first phase elicited explanations of a demonstration device from experienced community college engineering instructors. The outcome of this phase was a set of variables and a set of hypotheses about relationships among variables that lead to effective instruction. The project's second phase will test these hypotheses on groups of students. Four major results were achieved in the first phase: (1) the development of a framework for discussing optimal discourse structures and/or visual presentations in multimedia instruction, based on the notion of a mapping betweer semiotic systems; (2) the discovery that the command and control speech act chain is used in "hands-on" instruction;-(3) the development of a rich set of experimental hypotheses; and (4) a demonstration of the viability of a methodology combining linguistic analysis with experimental research.
    [Show full text]
  • Semantics of Non-Terminating Rewrite Systems Using Minimal Coverings
    SEMANTICS OF NON-TERMINATING REWRITE SYSTEMS USING MINIMAL COVERINGS by Jose Barros Joseph Goguen Technical Monograph PRG-118 Programming Research Group, Oxford University, Wolfson Building, Parks Road, Oxford OXl 3QD, U.K [nternet: {Jose.Barros,Joseph.Goguen}[email protected] Telephone: + 44 1865 283504, Fax: + 44 1865 273839 Oxford University Computing Laboratory Programming Research Group Wolfson Building, Parks Road Oxford OX! 3QD England Copyright ©1995 Jose Barros 1 Joseph Goguen Oxford University Computing Laboratory Programming Research Group Wolfson Building, Parks Road Oxford OXl 3QD England Semantics of Non-terminating Rewrite Systems using Minimal Coverings Jose Barros· Joseph Goguen t Programming Research Group, Oxford University, Wolfson Building, Parks Road, Oxford OXl 3QD, t:.K Internet: {Jose.Barros,Joseph.Goguen }@comlab.ox.ac.uk Telephone' + 44 1865 283504, FIDe + 44 1865 273839 Abstract We propose a new semantics for rewrite systems ba.~ed on interpreting rewrite rules as in­ equatioIlB between terms in an ordered algebra. In part.icular, we show thai the algebra. of normal forms in a terminating system is a uniqnely minimal covering of the term algebra. In the non-terminating ca..~e, the existence of this minimal covering is established in the comple­ tion of an ordered algebra formed by rewrit.ing sequences. We thus generalize the properties of normal forms far: non-terminating systelil~ to this minimal covering. ThesE' include the exi~tence of normal forms for arbitrary rewrite ~ystems, and their uniqueness for conBue-nt ~ystems, in which Ca<le the algebra of normal forms i~ isomorphic to the canonical quotient. algebra associated with the rule~ when seen as eqnations.
    [Show full text]
  • A Categorical Manifesto
    A CATEGORICAL MANIFESTO by Joseph A. Goguen Technical Monograph PRG·12 lSBN 0-902928-54-6 MlU"Ch 1989 Oxford University Computing Laboratory Programming R.esearcb Group 8-11 Keble Road Oxford OXl 3QD England OxfOij unIVersitY Cnrm:.HH;i!O '~~~boratory Prog',amr;>;ng Research Group-Ubrary 8-11 l<eble Road Oxf,,'d OX1 3QD Oxford (0865\ 54141 /:IjOcr~o (l t:l eo ... 0 1;1. 0IIl 0 _"ej 0 ~. f Sa.",g.1~ a. • Q. 5:" o ell .... ""3 - . @ ><g'OQ ;g ~ :: !. ::tl ~. - '"0> ..0 D II '" ~ ':! " ~ ~ '" • :;'3 Ii• •D "og '".. ~ o ~. ... ",•• •0 .. ... 0 0 ~ .." il. ~ • 0 • il. ! ..'"" '"> .:i"'" A Categorical Manifesto" Joseph A. Goguen Summary Thill informal paper tries to motivate the use of category tbeory in computing science by giving heuristic guidelines for applying five basic categorical concepts: category, functor, natural tranllformation, adjoint, and colimit. Several examples and !lOme general discussion are given for each concept, and a number of references are cited, although no attempt has been made for completeness. Some additional categori_ cal concepts s.nd suggestions for further research are also mentioned. The p'per conclude!! with a brief discussion of some implicatioD8 for foundations. ·Su.pported by Office of Na.val Reeultll Contlade NOOO14-85.C.M17 and NOOOI"'8~C.0450, NSF Gnat CCR-8707I55, a.nd a girt flOW the Sy.lew Development Foundation. CONTENTS Contents 0 Introduction 1 Cat€!gorieB 2 1.1 lsomorph.iBm 4 1.2 Diagram Chasing 5 2 Functors • 3 NatlU'ality • • Adjoints 8 • Colimits 9 8 Further Top.lc:s 11 • Discussion 12 o Introduction Among the reasons why a computing scientist might be interested in category theory are that it can pTovide belp with the following: • Formulating definitions and rh,vrlelJ.
    [Show full text]
  • Semantics of the Distributed Ontology Language: Institutes and Institutions Till Mossakowski, Oliver Kutz, Christoph Lange
    Semantics of the Distributed Ontology Language: Institutes and Institutions Till Mossakowski, Oliver Kutz, Christoph Lange To cite this version: Till Mossakowski, Oliver Kutz, Christoph Lange. Semantics of the Distributed Ontology Lan- guage: Institutes and Institutions. 21th InternationalWorkshop on Algebraic Development Techniques (WADT), Jun 2012, Salamanca, Spain. pp.212-230, 10.1007/978-3-642-37635-1_13. hal-01485971 HAL Id: hal-01485971 https://hal.inria.fr/hal-01485971 Submitted on 9 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Semantics of the Distributed Ontology Language: Institutes and Institutions Till Mossakowski1;3, Oliver Kutz1, and Christoph Lange1;2 1 Research Center on Spatial Cognition, University of Bremen 2 School of Computer Science, University of Birmingham 3 DFKI GmbH Bremen Abstract. The Distributed Ontology Language (DOL) is a recent development within the ISO standardisation initiative 17347 Ontology Integration and Inter- operability (OntoIOp). In DOL, heterogeneous and distributed ontologies can be expressed, i.e. ontologies that are made up of parts written in ontology languages based on various logics. In order to make the DOL meta-language and its seman- tics more easily accessible to the wider ontology community, we have developed a notion of institute which are like institutions but with signature partial orders and based on standard set-theoretic semantics rather than category theory.
    [Show full text]
  • Goguen's Contributions to Fuzzy Logic in Retrospect
    International Journal of General Systems ISSN: 0308-1079 (Print) 1563-5104 (Online) Journal homepage: https://www.tandfonline.com/loi/ggen20 Goguen's contributions to fuzzy logic in retrospect R. Belohlavek To cite this article: R. Belohlavek (2019) Goguen's contributions to fuzzy logic in retrospect, International Journal of General Systems, 48:8, 811-824, DOI: 10.1080/03081079.2019.1675051 To link to this article: https://doi.org/10.1080/03081079.2019.1675051 Published online: 09 Oct 2019. Submit your article to this journal Article views: 68 View related articles View Crossmark data Citing articles: 1 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ggen20 INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 2019, VOL. 48, NO. 8, 811–824 https://doi.org/10.1080/03081079.2019.1675051 Goguen’s contributions to fuzzy logic in retrospect R. Belohlavek Department of Computer Science, Palacký University, Olomouc, Czech Republic ABSTRACT ARTICLE HISTORY In the very early stage of the development of fuzzy logic, Joseph Received 15 July 2019 Goguen published profound work with lasting influence. Fifty years Accepted 28 September 2019 later, we provide an assessment of his contributions to fuzzy logic KEYWORDS and thus pay tribute to Goguen, a former long-term member of the Fuzzy logic; fuzzy set editorial board of this journal. We cover both Goguen’s technical results, the research directions inspired by him, which have later been pursued, as well as his suggestions, which as yet remained explored to a lesser extent or practically unexplored. 1. Introduction In the course of his rich scientific career, Joseph Amadee Goguen (1941–2006) made con- tributions to several areas.
    [Show full text]
  • III1II1IIIII 303387008X . ---.--.-. ----­ Copyright © 1992 Joseph A
    0,,1 ..1 r r ..... ;"'"'r.... ;f-' ,...1')ri'~"~!n1 L.'"'~Cr2_tory j _.' ....i LJ~il.,d.J UX 1 ~UU THE DRY AND THE WET hy Joseph A. Goguen Technical. Monograph l-'RG-IOO March 1992 Oxford University Computing Laborator)' Progra.mrning Research Group 8-Jl Kehle Road f~ ">_",,• .,"c" ,,--­ :;:::.~"~~'"'" (:,,~ i 2~T[~'~OO) ,L ~ "'c •. __ "..•. ,'..",.. >. OXFOF2IJ .'~ III1II1IIIII 303387008X _._---.--.-._----­ Copyright © 1992 Joseph A. Goguen Oxlord University Computing Laboratory Progrilmming Research Group 8-11 Keble Road OXFORD OX! 3QD United Kingdom Electronic mail: goguenClprg.odord.ac .uk The Dry and the Wet I J06eph A. Goguen" Abstract This paper discusses the rela.tionship between formal, context insensitive informa.tion, and informal, situated informa.tion, in the context of Require­ ments Engineering; these opposite but complf'mentary aEipects of informa.­ tion are called "the dry" and "the wet." Formal informa.tion occurs in the syntactic representations used in computer-based systems. Informal situ­ ated information arises in social interaction, for example, between users and ma.nagers, as well aEi in their interactions with systems a.nalysts. Thus. Re­ quirements Engineering has a strong practical need to reconcile the dry and the wet. Following some background on the culture of Computing Science, the pa­ per describes some projects in the Centre for Requirements and Foundations at Oxford. One of these is a taxonomy for Requirements Engineering meth­ ods. Another is applying techniques from sociology and sociolinguistics to requirements elicitation, and in particular, to detemtining the value system of an organisation. These projects draw on ideas from ethnomethodology and Conversation Analysis.
    [Show full text]
  • Fuzzy Logic Is Not Fuzzy: World-Renowned Computer Scientist Lotfi A
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL ISSN 1841-9836, 12(6), 748-789, December 2017. Fuzzy Logic Is Not Fuzzy: World-renowned Computer Scientist Lotfi A. Zadeh I. Dzitac, F.G. Filip, M.J. Manolescu Lotfi A. Zadeh (1921-2017) Ioan Dzitac 1,2, Florin Gheorghe Filip 3, Misu-Jan Manolescu 2,∗ 1. Aurel Vlaicu University of Arad 310330 Arad, Elena Dragoi, 2, Romania, [email protected] 2. Agora University of Oradea 410526 Oradea, P-ta Tineretului 8, Romania *Corresponding author: [email protected] 3. Romanian Academy Calea Victoriei 125, Sector 1, 010071 Bucharest, Romania, ffi[email protected] Abstract: In 1965 Lotfi A. Zadeh published "Fuzzy Sets", his pioneering and contro- versial paper, that now reaches almost 100,000 citations. All Zadeh’s papers were cited over 185,000 times. Starting from the ideas presented in that paper, Zadeh founded later the Fuzzy Logic theory, that proved to have useful applications, from consumer to industrial intelligent products. We are presenting general aspects of Zadeh’s con- tributions to the development of Soft Computing(SC) and Artificial Intelligence(AI), and also his important and early influence in the world and in Romania. Several early contributions in fuzzy sets theory were published by Romanian scientists, such as: Grigore C. Moisil (1968), Constantin V. Negoita & Dan A. Ralescu (1974), Dan Butnariu (1978). In this review we refer the papers published in "From Natural Lan- guage to Soft Computing: New Paradigms in Artificial Intelligence" (2008, Eds.: L.A. Zadeh, D. Tufis, F.G. Filip, I. Dzitac), and also from the two special issues (SI) of the International Journal of Computers Communications & Control (IJCCC, founded in 2006 by I.
    [Show full text]