The Milky Way
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  Pos(FRAPWS2016)027 ∗ -Elements, Fe and HeavierThe chemical evolution of the Milky Way PoS(FRAPWS2016)027 Francesca Matteucci∗ Dipartimento di Fisica, Università di Trieste E-mail: [email protected] Emanuele Spitoni Dipartimento di Fisica, Università di Trieste E-mail: [email protected] Donatella Romano I.N.A.F. Osservatorio Astronomico di Bologna E-mail: [email protected] Alvaro Rojas-Arriagada Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile Millennium Institute of Astrophysics, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile E-mail: [email protected] We will discuss some highlights concerning the chemical evolution of our Galaxy, the Milky Way. First we will describe the main ingredients necessary to build a model for the chemical evolution of the Milky Way. Then we will illustrate some Milky Way models which includes detailed stellar nucleosynthesis and compute the evolution of a large number of chemical elements, including C, N, O, α-elements, Fe and heavier. The main observables and in particular the chemical abun- dances in stars and gas will be considered. A comparison theory-observations will follow and finally some conclusions from this astroarchaeological approach will be derived. Frontier Research in Astrophysics - II 23-28 May 2016 Mondello (Palermo), Italy Speaker. ∗ © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/ Milky Way Francesca Matteucci 1. Introduction In the last years a great deal of spectroscopic data concerning a very large number of Galactic stars has appeared in the literature.
- 
												  Constructing a Galactic Coordinate System Based on Near-Infrared and Radio CatalogsA&A 536, A102 (2011) Astronomy DOI: 10.1051/0004-6361/201116947 & c ESO 2011 Astrophysics Constructing a Galactic coordinate system based on near-infrared and radio catalogs J.-C. Liu1,2,Z.Zhu1,2, and B. Hu3,4 1 Department of astronomy, Nanjing University, Nanjing 210093, PR China e-mail: [jcliu;zhuzi]@nju.edu.cn 2 key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210093, PR China 3 Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, PR China 4 Graduate School of Chinese Academy of Sciences, Beijing 100049, PR China e-mail: [email protected] Received 24 March 2011 / Accepted 13 October 2011 ABSTRACT Context. The definition of the Galactic coordinate system was announced by the IAU Sub-Commission 33b on behalf of the IAU in 1958. An unrigorous transformation was adopted by the Hipparcos group to transform the Galactic coordinate system from the FK4-based B1950.0 system to the FK5-based J2000.0 system or to the International Celestial Reference System (ICRS). For more than 50 years, the definition of the Galactic coordinate system has remained unchanged from this IAU1958 version. On the basis of deep and all-sky catalogs, the position of the Galactic plane can be revised and updated definitions of the Galactic coordinate systems can be proposed. Aims. We re-determine the position of the Galactic plane based on modern large catalogs, such as the Two-Micron All-Sky Survey (2MASS) and the SPECFIND v2.0. This paper also aims to propose a possible definition of the optimal Galactic coordinate system by adopting the ICRS position of the Sgr A* at the Galactic center.
- 
												  Set 4: Active GalaxiesSet 4: Active Galaxies Phenomenology • History: Seyfert in the 1920’s reported that a small fraction (few tenths of a percent) of galaxies have bright nuclei with broad emission lines. 90% are in spiral galaxies • Seyfert galaxies categorized as 1 if emission lines of HI, HeI and HeII are very broad - Doppler broadening of 1000-5000 km/s and narrower forbidden lines of ∼ 500km/s. Variable. Seyfert 2 if all lines are ∼ 500km/s. Not variable. • Both show a featureless continuum, for Seyfert 1 often more luminous than the whole galaxy • Seyferts are part of a class of galaxies with active galactic nuclei (AGN) • Radio galaxies mainly found in ellipticals - also broad and narrow line - extremely bright in the radio - often with extended lobes connected to center by jets of ∼ 50kpc in extent Radio Galaxy 3C31, NGC 383 Phenomenology • Quasars discovered in 1960 by Matthews and Sandage are extremely distant, quasi-starlike, with broad emission lines. Faint fuzzy halo reveals the parent galaxy of extremely luminous object 38−41 11−14 - visible luminosity L ∼ 10 W or ∼ 10 L • Quasars can be both radio loud (QSR) and quiet (QSO) • Blazars (BL Lac) highly variable AGN with high degree of polarization, mostly in ellipticals • ULIRGs - ultra luminous infrared galaxies - possibly dust enshrouded AGN (alternately may be starburst) • LINERS - similar to Seyfert 2 but low ionization nuclear emission line region - low luminosity AGN with strong emission lines of low ionization species Spectrum . • AGN share a basic general form for their continuum emission • Flat broken power law continuum - specific flux −α Fν / ν .
- 
												  Exploring the Galactic CenterExploring the V Galactic Center Goinyk/Shutterstock.com olodymyr A case study of how USRA answered a question posed by James Webb in 1966. On 14 January 1966, NASA (5) C r e Administrator James Webb (1906-1992) wrote a letter d i Should we change the t : N to the prominent Harvard physicist, Professor Norman A orientation of some of S F. Ramsey Jr. (1915-2011), asking him to establish an A our NASA Centers? advisory group that would: (6) What steps should Review the resources at our NASA field centers, and James Webb be taken in scientific such other institutions as would be appropriate, staffing, both inside and against the requirements of the next generation of outside NASA, over the next few years to assure that space projects and advise NASA on a number of key we have the proper people at the proper places to do problems, such as: the job? (1) How can we organize these major projects so that (7) How can we obtain the competent scientists to the most competent scientists and engineers can take the key roles in these major projects? 1 participate? Ramsey assembled his advisory group, and they (2) How can academic personnel participate and at worked through the spring and summer on their report, the same time continue in strong academic roles? which they delivered to the Administrator on 15 August 1966. Their first recommendation was that the NASA (3) What mechanism should be used to determine Administrator appoint a General Advisory Committee the scientific investigations which should be to bring to bear “maximum competence” on “the conducted? formulation and execution of long-term programs of NASA.”2 (4) How does a scientist continue his career development during the six to eight years it requires This recommendation, and many of the others in the to develop an ABL [Automated Biological Laboratory] report, were not what NASA was looking for, and so or a large astronomical facility? the Administrator turned to the National Academy of Sciences to find answers for at least some of the Infrared radiation gets Cr ed i t: A questions posed to Ramsey.
- 
												  Introduction to Astronomy from Darkness to Blazing GloryIntroduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice:
- 
												  Nearby Dwarf Galaxies and Imbh Mini-SpikesSF2A 2008 C. Charbonnel, F. Combes and R. Samadi (eds) DARK MATTER SEARCHES WITH H.E.S.S: NEARBY DWARF GALAXIES AND IMBH MINI-SPIKES Moulin, E.1, Vivier, M. 1 , Brun, P.1 , Glicenstein, J-F.1 and the H.E.S.S. Collaboration2 Abstract. WIMP pair annihilations produce high energy gamma-rays, which can be detected by IACTs such as the H.E.S.S. array of Imaging Atmospheric Cherenkov telescopes. Nearby dwarf galaxies and mini- spikes around intermediate-mass black holes (IMBHs) in the Galactic halo are possible targets for the ob- servation of these annihilations. H.E.S.S. observations on the nearby dwarf galaxy candidate Canis Major is reported. Using a modelling of the unknown dark matter density profile, constraints on the velocity-weighted annihilation cross section of DM particles are derived in the framework of Supersymmetric (pMSSM) and Kaluza-Klein (KK) models. Next, a search for DM mini-spikes around IMBHs is described and constraints on the particle physics parameters in various scenarios are given. 1 Introduction WIMPS (Weakly Interacting Massive Particles) are among the best motivated particle dark matter candidates. The WIMP annihilation rate is proportional to the square of the DM density integrated along the line of sight. Celestial objects with enhanced DM density are thus primary targets for indirect DM searches. Among these are the Galactic Center, nearby external galaxies and substructures in galactic haloes. In this paper, we report on H.E.S.S. results towards a dwarf galaxy candidate, Canis Major, and on a search for DM mini-spikes around IMBHs.
- 
												  A Spectroscopic Redshift Measurement for a Luminous Lyman Break Galaxy at Z = 7.730 Using Keck/MosfireDraft version May 5, 2015 Preprint typeset using LATEX style emulateapj v. 5/2/11 A SPECTROSCOPIC REDSHIFT MEASUREMENT FOR A LUMINOUS LYMAN BREAK GALAXY AT Z = 7:730 USING KECK/MOSFIRE P. A. Oesch1,2, P. G. van Dokkum2, G. D. Illingworth3, R. J. Bouwens4, I. Momcheva2, B. Holden3, G. W. Roberts-Borsani4,5, R. Smit6, M. Franx4, I. Labbe´4, V. Gonzalez´ 7, D. Magee3 Draft version May 5, 2015 ABSTRACT We present a spectroscopic redshift measurement of a very bright Lyman break galaxy at z = 7:7302 ± 0:0006 using Keck/MOSFIRE. The source was pre-selected photometrically in the EGS field as a robust z ∼ 8 candidate with H = 25:0 mag based on optical non-detections and a very red Spitzer/IRAC [3.6]−[4.5] broad-band color driven by high equivalent width [O III]+Hβ line emission. The Lyα line is reliably detected at 6:1σ and shows an asymmetric profile as expected for a galaxy embedded in a relatively neutral inter-galactic medium near the Planck peak of cosmic reionization. ˚ +90 The line has a rest-frame equivalent width of EW0 = 21 ± 4 A and is extended with VFWHM = 360−70 km s−1. The source is perhaps the brightest and most massive z ∼ 8 Lyman break galaxy in the 9:9±0:2 full CANDELS and BoRG/HIPPIES surveys, having assembled already 10 M of stars at only 650 Myr after the Big Bang. The spectroscopic redshift measurement sets a new redshift record for galaxies. This enables reliable constraints on the stellar mass, star-formation rate, formation epoch, as well as combined [O III]+Hβ line equivalent widths.
- 
												  Rev 06/2018 ASTRONOMY EXAM CONTENT OUTLINE the FollowingASTRONOMY EXAM INFORMATION CREDIT RECOMMENDATIONS This exam was developed to enable schools to award The American Council on Education’s College credit to students for knowledge equivalent to that learned Credit Recommendation Service (ACE CREDIT) by students taking the course. This examination includes has evaluated the DSST test development history of the Science of Astronomy, Astrophysics, process and content of this exam. It has made the Celestial Systems, the Science of Light, Planetary following recommendations: Systems, Nature and Evolution of the Sun and Stars, Galaxies and the Universe. Area or Course Equivalent: Astronomy Level: 3 Lower Level Baccalaureate The exam contains 100 questions to be answered in 2 Amount of Credit: 3 Semester Hours hours. Some of these are pretest questions that will not Minimum Score: 400 be scored. Source: www.acenet.edu Form Codes: SQ500, SR500 EXAM CONTENT OUTLINE The following is an outline of the content areas covered in the examination. The approximate percentage of the examination devoted to each content area is also noted. I. Introduction to the Science of Astronomy – 5% a. Nature and methods of science b. Applications of scientific thinking c. History of early astronomy II. Astrophysics - 15% a. Kepler’s laws and orbits b. Newtonian physics and gravity c. Relativity III. Celestial Systems – 10% a. Celestial motions b. Earth and the Moon c. Seasons, calendar and time keeping IV. The Science of Light – 15% a. The electromagnetic spectrum b. Telescopes and the measurement of light c. Spectroscopy d. Blackbody radiation V. Planetary Systems: Our Solar System and Others– 20% a. Contents of our solar system b.
- 
												  Two Stellar Components in the Halo of the Milky Way1 Two stellar components in the halo of the Milky Way Daniela Carollo1,2,3,5, Timothy C. Beers2,3, Young Sun Lee2,3, Masashi Chiba4, John E. Norris5 , Ronald Wilhelm6, Thirupathi Sivarani2,3, Brian Marsteller2,3, Jeffrey A. Munn7, Coryn A. L. Bailer-Jones8, Paola Re Fiorentin8,9, & Donald G. York10,11 1INAF - Osservatorio Astronomico di Torino, 10025 Pino Torinese, Italy, 2Department of Physics & Astronomy, Center for the Study of Cosmic Evolution, 3Joint Institute for Nuclear Astrophysics, Michigan State University, E. Lansing, MI 48824, USA, 4Astronomical Institute, Tohoku University, Sendai 980-8578, Japan, 5Research School of Astronomy & Astrophysics, The Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Australian Capital Territory 2611, Australia, 6Department of Physics, Texas Tech University, Lubbock, TX 79409, USA, 7US Naval Observatory, P.O. Box 1149, Flagstaff, AZ 86002, USA, 8Max-Planck-Institute für Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany, 9Department of Physics, University of Ljubljana, Jadronska 19, 1000, Ljubljana, Slovenia, 10Department of Astronomy and Astrophysics, Center, 11The Enrico Fermi Institute, University of Chicago, Chicago, IL, 60637, USA The halo of the Milky Way provides unique elemental abundance and kinematic information on the first objects to form in the Universe, which can be used to tightly constrain models of galaxy formation and evolution. Although the halo was once considered a single component, evidence for is dichotomy has slowly emerged in recent years from inspection of small samples of halo objects. Here we show that the halo is indeed clearly divisible into two broadly overlapping structural components -- an inner and an outer halo – that exhibit different spatial density profiles, stellar orbits and stellar metallicities (abundances of elements heavier than helium).
- 
												  Resolving the Radio Loud/Radio Quiet Dichotomy Without Thick Disks DavidResolving the radio loud/radio quiet dichotomy without thick disks David Garofalo Department of Physics, Kennesaw State University, Marietta GA 30060, USA Abstract Observations of radio loud active galaxies in the XMM-Newton archive by Mehdipour & Costantini show a strong anti-correlation between the column density of the ionized wind and the radio loudness parameter, providing evidence that jets may thrive in thin disks. This is in contrast with decades of analytic and numerical work suggesting jet formation is contingent on the presence of an inner, geometrically thick disk structure, which serves to both collimate and accelerate the jet. Thick disks emerge in radiatively inefficient disks which are associated with sub-Eddington as well as super-Eddington accretion regimes yet we show that the inverse correlation between winds and jets survives where it should not, namely in a luminosity regime normally attributed to radio quiet active galaxies which are modeled with thin disks. This along with other lines of evidence argues against thick disks as the foundation behind the radio loud/radio quiet dichotomy, opening up the possibility that jetted versus non jetted black holes may be understood within the context of radiatively efficient thin disk accretion. 1. Introduction Sikora et al (2007) explored the inverse correlation between radio loudness and Eddington accretion rate for a large sample of active galaxies (AGN) including Seyfert galaxies and LINERs, optically selected quasars, FRI radio galaxies, FRII quasars, and broad line radio galaxies. Despite a clear dichotomy in radio loudness between objects referred to as radio loud and those as radio quiet, the data was insufficiently detailed to shed light on the jet-disk connection near the Eddington limit where we traditionally model the radio quiet subset of the AGN family.
- 
												  Radio Observations of the Supermassive Black Hole at the Galactic Center and Its Orbiting MagnetarRadio Observations of the Supermassive Black Hole at the Galactic Center and its Orbiting Magnetar Rebecca Rimai Diesing Honors Thesis Department of Physics and Astronomy Northwestern University Spring 2017 Honors Thesis Advisor: Farhad Zadeh ! Radio Observations of the Supermassive Black Hole at the Galactic Center and its Orbiting Magnetar Rebecca Rimai Diesing Department of Physics and Astronomy Northwestern University Honors Thesis Advisor: Farhad Zadeh Department of Physics and Astronomy Northwestern University At the center of our galaxy a bright radio source, Sgr A*, coincides with a black hole four million times the mass of our sun. Orbiting Sgr A* at a distance of 3 arc seconds (an estimated 0.1 pc) and rotating with a period of 3.76 s is a magnetar, or pulsar⇠ with an extremely strong magnetic field. This magnetar exhibited an X-ray outburst in April 2013, with enhanced, highly variable radio emission detected 10 months later. In order to better understand the behavior of Sgr A* and the magnetar, we study their intensity variability as a function of both time and frequency. More specifically, we present the results of short (8 minute) and long (7 hour) radio continuum observations, taken using the Jansky Very Large Array (VLA) over multiple epochs during the summer of 2016. We find that Sgr A*’s flux density (a proxy for intensity) is highly variable on an hourly timescale, with a frequency dependence that di↵ers at low (34 GHz) and high (44 GHz) frequencies. We also find that the magnetar remains highly variable on both short (8 min) and long (monthly) timescales, in agreement with observations from 2014.
- 
												  Elements of Astronomy and Cosmology Outline 1ELEMENTS OF ASTRONOMY AND COSMOLOGY OUTLINE 1. The Solar System The Four Inner Planets The Asteroid Belt The Giant Planets The Kuiper Belt 2. The Milky Way Galaxy Neighborhood of the Solar System Exoplanets Star Terminology 3. The Early Universe Twentieth Century Progress Recent Progress 4. Observation Telescopes Ground-Based Telescopes Space-Based Telescopes Exploration of Space 1 – The Solar System The Solar System - 4.6 billion years old - Planet formation lasted 100s millions years - Four rocky planets (Mercury Venus, Earth and Mars) - Four gas giants (Jupiter, Saturn, Uranus and Neptune) Figure 2-2: Schematics of the Solar System The Solar System - Asteroid belt (meteorites) - Kuiper belt (comets) Figure 2-3: Circular orbits of the planets in the solar system The Sun - Contains mostly hydrogen and helium plasma - Sustained nuclear fusion - Temperatures ~ 15 million K - Elements up to Fe form - Is some 5 billion years old - Will last another 5 billion years Figure 2-4: Photo of the sun showing highly textured plasma, dark sunspots, bright active regions, coronal mass ejections at the surface and the sun’s atmosphere. The Sun - Dynamo effect - Magnetic storms - 11-year cycle - Solar wind (energetic protons) Figure 2-5: Close up of dark spots on the sun surface Probe Sent to Observe the Sun - Distance Sun-Earth = 1 AU - 1 AU = 150 million km - Light from the Sun takes 8 minutes to reach Earth - The solar wind takes 4 days to reach Earth Figure 5-11: Space probe used to monitor the sun Venus - Brightest planet at night - 0.7 AU from the