Sunil Nautiyal Katari Bhaskar Y.D. Imran Khan Baseline Study For

Total Page:16

File Type:pdf, Size:1020Kb

Sunil Nautiyal Katari Bhaskar Y.D. Imran Khan Baseline Study For Environmental Science Sunil Nautiyal Katari Bhaskar Y.D. Imran Khan Biodiversity of Semiarid Landscape Baseline Study for Understanding the Impact of Human Development on Ecosystems Environmental Science and Engineering Environmental Science Series editors Rod Allan, Burlington, Canada Ulrich Förstner, Hamburg, Germany Wim Salomons, Haren, The Netherlands More information about this series at http://www.springer.com/series/3234 Sunil Nautiyal • Katari Bhaskar Y.D. Imran Khan Biodiversity of Semiarid Landscape Baseline Study for Understanding the Impact of Human Development on Ecosystems 123 Sunil Nautiyal Y.D. Imran Khan Centre for Ecological Economics Centre for Ecological Economics and Natural Resources and Natural Resources Institute for Social and Economic Change Institute for Social and Economic Change Bangalore, Karnataka Bangalore, Karnataka India India Katari Bhaskar Centre for Ecological Economics and Natural Resources Institute for Social and Economic Change Bangalore, Karnataka India ISSN 1863-5520 ISSN 1863-5539 (electronic) Environmental Science and Engineering ISSN 1431-6250 Environmental Science ISBN 978-3-319-15463-3 ISBN 978-3-319-15464-0 (eBook) DOI 10.1007/978-3-319-15464-0 Library of Congress Control Number: 2015939167 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com) Foreword Arid and semiarid regions cover around 40% of terrestrial area of the planet earth and support livelihoods of two billion people, with ∼90% people living in devel- oping countries. These regions cover 10 out of 15 agroecological zones in India. The region, though is not as much species-rich and forested as biodiversity hotspots namely Western Ghats and Himalayas, does harbour a large number of unique and crucial species, ecosystems and cultural landscapes that have received only mar- ginal attention of the research community. This volume based on a 3-year-long interdisciplinary study of a vast area (2800 km2) in the state of Karnataka, India, is a significant addition to the scientific knowledge on diverse dimensions of environ- ment, development and livelihoods in drylands. The volume provides baseline information on the flora, fauna, land cover/use and spatio-temporal dynamics of resource-livelihood linkages. Authors have dealt with multiple components (plants and animals in both aquatic and terrestrial ecosystems) and values of biodiversity in both qualitative and quantitative terms. Data analysis and presentation is such that the volume can serve as a reference point for assessing ecological impacts of development interventions and harmonizing multiple functions of species, eco- systems and cultural landscapes. Deductions on landscape dynamics and resource management are based on an effective integration of modern and conventional ecological monitoring techniques (remote sensing, geographic information system and intensive ground survey/sampling) and scientific knowledge and traditional ecological knowledge on resource management. The contents are thus useful for harmonizing the top-down and bottom-up policies and programmes to sustainable resource management. This contribution from Sunil Nautiyal, K. Bhaskar and Y.D. Imran Khan will be a reference point for future research and development endeavours and will provide a foundation for improving the current conservation- development policies and programmes in drylands. New Delhi, India K.G. Saxena May 2015 School of Environmental Sciences Jawaharlal Nehru University v Preface The study on “Biodiversity of Semiarid Landscape: Baseline Study for Understanding the Impact of Human Development on Ecosystems” covers the results compiled from datasets generated from rigorous empirical field studies. The study of biodiversity is meant to provide a reference point against which any future changes associated with any anthropogenic activity can be assessed and to offer information for subsequent monitoring of biodiversity performance. This research aimed to explore, survey, and quantify plant and animal specimens to document the species from aquatic and ter- restrial ecosystems. The phytosociological assessment and analysis of diversity indices of different vegetation strata, i.e., trees, shrubs, herbs, climbers, tree saplings, and seedlings across the study region, are part of the objectives of the study. The study and analysis of the conservation status, i.e., to identify and document floral and faunal species (including threatened and endemic), was taken up as a research component. The documentation of traditional knowledge related to use, conservation, and man- agement was also intended to be part of the study. The examination of land-use/ land-cover class of the region for vegetation analysis was another objective of this research. The study area is located in North-East Dry Zone of Yadgir and Gulbarga districts in Karnataka, India, and spreads over about 2800 km2. The central point of the study area is located 16° 43′ 35.40″N latitude and 76° 44′ 40.91″E near Gogi Village in Shahapur taluk (Yadgir district) with average elevation of 460 m (1510 ft.) above mean sea level. The study region falls in Deccan Plateau, mostly covered by dry deciduous plants. Two rivers flow in the study region, and 11 major lakes are also located within the boundary of the studied semiarid landscape. With reference to soil orders of Karnataka State, NBSS & LUP, Nagpur, India, the soil of the study area comprises entisols, vertisols, and inceptisols. Extreme climatic conditions are the characteristic features of the study region which is hot and receives low rainfall. The average rainfall is less than 650 mm with 40–55 rainy days in a year. The weather of the study area comprises of three seasons. Summer spans from late February to mid-June. It is followed by the southwest monsoon that ranges from late June to late September. It is then followed by dry winter weather until mid-January. The day temperature ranges from 26 °Cin winter to 42 °C in summer. vii viii Preface The study area was divided into habitat types and in each habitat 30 quadrats consisting of subgroups—trees, shrubs/climbers, and herbs with sizes of quadrats 10 × 10 m, 5 × 5 m, and 1 × 1 m, respectively were laid down for phytosociological study. When sampling trees and shrubs, the circumference and height of indi- viduals of each species were recorded. Seasonal appearance of plants like flower- ing, fruiting, and appearance of young leaves was also recorded under phenological study. To study invertebrates, line transects of variable lengths, light traps, pitfall traps, baited traps, and litter collection methods were used. The avian diversity study was done by using line transect and point count methods. Data on big mammals were recorded by sound observation and analysis of pugmarks, scats, pellets, and vocals. The fishes were surveyed and identified by net fishing in major water bodies and exploring the fish markets. Belowground biodiversity was also studied. Litter samples were collected from the field without disturbing the central 10 × 10 cm grid of the different land ecosystems and were transferred to the Berlese funnel for further cleaning and extraction of samples. For all the species, good photographs were taken. The plant species were preserved by preparing herbarium sheets using standard methods given by Botanical Survey of India. The inverte- brates and fish species collected were preserved by dry or wet methods for iden- tification and to deposit in regional centers of the Zoological Survey of India. Plants parts such as bark, roots, leaves, and fruits were also collected and preserved in the laboratory. Quantitative data on each species are described in detail. The survey was conducted in the selected villages of the region for documentation of traditional ecological knowledge and conservation and management of biodiversity. Detailed studies were carried out to explore, survey, and collect vertebrates, invertebrates, plants, zooplankton, and phytoplankton. The data collected were tabulated and used for calculating density, abundance, frequency, and importance value index (IVI). The analysis was done for preparing diversity indices such as Shannon–Wiener index, beta-diversity, concentration of dominance (Cd), and Simpson reciprocal index for different vegetation strata.
Recommended publications
  • Shahezan Issani Report Environment and Social Impact Assessment for Road Asset 2020-03-02
    Draft Initial Environmental Examination Project Number: 53376-001 September 2020 IND: DBL Highway Project Prepared by AECOM India Private Limited The initial environmental examination is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. Your attention is directed to the “Terms of Use” section of this website. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. FINAL ESIA Environment and Social Impact Assessment (ESIA) of Road Asset Anandapuram-Pendurthi-Anakapalli Section of NH-16 Dilip Buildcon Limited September 19, 2020 Environment and Social Impact Assessment of Road Asset – Anandapuram – Pendurthi – Ankapalli Section of NH 16, India FINAL Quality information Prepared by Checked by Verified by Approved by Shahezan Issani Bhupesh Mohapatra Bhupesh Mohapatra Chetan Zaveri Amruta Dhamorikar Deepti Bapat Revision History Revision Revision date Details Authorized Name Position 01 23 April 2020 First cut ESIA report without Yes Chetan Zaveri Executive Director monitoring data 02 30 April 2020 Draft ESIA report without monitoring Yes Chetan Zaveri Executive Director data 03 9 July 2020 Final ESIA report with monitoring Yes Chetan Zaveri Executive Director data and air modelling
    [Show full text]
  • Cravens Peak Scientific Study Report
    Geography Monograph Series No. 13 Cravens Peak Scientific Study Report The Royal Geographical Society of Queensland Inc. Brisbane, 2009 The Royal Geographical Society of Queensland Inc. is a non-profit organization that promotes the study of Geography within educational, scientific, professional, commercial and broader general communities. Since its establishment in 1885, the Society has taken the lead in geo- graphical education, exploration and research in Queensland. Published by: The Royal Geographical Society of Queensland Inc. 237 Milton Road, Milton QLD 4064, Australia Phone: (07) 3368 2066; Fax: (07) 33671011 Email: [email protected] Website: www.rgsq.org.au ISBN 978 0 949286 16 8 ISSN 1037 7158 © 2009 Desktop Publishing: Kevin Long, Page People Pty Ltd (www.pagepeople.com.au) Printing: Snap Printing Milton (www.milton.snapprinting.com.au) Cover: Pemberton Design (www.pembertondesign.com.au) Cover photo: Cravens Peak. Photographer: Nick Rains 2007 State map and Topographic Map provided by: Richard MacNeill, Spatial Information Coordinator, Bush Heritage Australia (www.bushheritage.org.au) Other Titles in the Geography Monograph Series: No 1. Technology Education and Geography in Australia Higher Education No 2. Geography in Society: a Case for Geography in Australian Society No 3. Cape York Peninsula Scientific Study Report No 4. Musselbrook Reserve Scientific Study Report No 5. A Continent for a Nation; and, Dividing Societies No 6. Herald Cays Scientific Study Report No 7. Braving the Bull of Heaven; and, Societal Benefits from Seasonal Climate Forecasting No 8. Antarctica: a Conducted Tour from Ancient to Modern; and, Undara: the Longest Known Young Lava Flow No 9. White Mountains Scientific Study Report No 10.
    [Show full text]
  • Coleoptera Carabidae) in the Ramsar Wetland: Dayet El Ferd, Tlemcen, Algeria
    Biodiversity Journal , 2016, 7 (3): 301–310 Diversity of Ground Beetles (Coleoptera Carabidae) in the Ramsar wetland: Dayet El Ferd, Tlemcen, Algeria Redouane Matallah 1,* , Karima Abdellaoui-hassaine 1, Philippe Ponel 2 & Samira Boukli-hacene 1 1Laboratory of Valorisation of human actions for the protection of the environment and application in public health. University of Tlemcen, BP119 13000 Algeria 2IMBE, CNRS, IRD, Aix-Marseille University, France *Corresponding author: [email protected] ABSTRACT A study on diversity of ground beetle communities (Coleoptera Carabidae) was conducted between March 2011 and February 2012 in the temporary pond: Dayet El Ferd (listed as a Ramsar site in 2004) located in a steppe area on the northwest of Algeria. The samples were collected bimonthly at 6 sampling plots and the gathered Carabidae were identified and coun - ted. A total of 55 species belonging to 32 genera of 7 subfamilies were identified from 2893 collected ground beetles. The most species rich subfamilies were Harpalinae (35 species, 64%) and Trechinae (14 species, 25.45%), others represented by one or two species. Accord- ing to the total individual numbers, Cicindelinae was the most abundant subfamily compris- ing 38.81% of the whole beetles, followed by 998 Harpalinae (34.49%), and 735 Trechinae (25.4%), respectively. The dominant species was Calomera lunulata (Fabricius, 1781) (1087 individuals, 37.57%) and the subdominant species was Pogonus chalceus viridanus (Dejean, 1828) (576 individuals, 19.91%). KEY WORDS Algeria; Carabidae; Diversity; Ramsar wetland “Dayet El Ferd”. Received 28.06.2016; accepted 31.07.2016; printed 30.09.2016 INTRODUCTION gards to vegetation and especially fauna, in partic- ular arthropods.
    [Show full text]
  • The Use of Fish and Herptiles in Traditional Folk Therapies in Three
    Altaf et al. Journal of Ethnobiology and Ethnomedicine (2020) 16:38 https://doi.org/10.1186/s13002-020-00379-z RESEARCH Open Access The use of fish and herptiles in traditional folk therapies in three districts of Chenab riverine area in Punjab, Pakistan Muhammad Altaf1* , Arshad Mehmood Abbasi2*, Muhammad Umair3, Muhammad Shoaib Amjad4, Kinza Irshad2 and Abdul Majid Khan5 Abstract Background: Like botanical taxa, various species of animals are also used in traditional and modern health care systems. Present study was intended with the aim to document the traditional uses of herptile and fish species among the local communities in the vicinity of the River Chenab, Punjab Pakistan. Method: Data collected by semi-structured interviews and questionnaires were subsequently analyzed using relative frequency of citation (FC), fidelity level (FL), relative popularity level (RPL), similarity index (SI), and rank order priority (ROP) indices. Results: Out of total 81 reported species, ethnomedicinal uses of eight herptiles viz. Aspideretes gangeticus, A. hurum, Eublepharis macularius, Varanus bengalensis, Python molurus, Eryx johnii, Ptyas mucosus mucosus, Daboia russelii russelii and five fish species including Hypophthalmichthys molitrix, Cirrhinus reba, Labeo dero, Mastacembelus armatus, and Pethia ticto were reported for the first time from this region. Fat, flesh, brain, and skin were among the commonly utilized body parts to treat allergy, cardiovascular, nervous and respiratory disorders, sexual impotency, skin infections, and as antidote and anti-diabetic agents. Hoplobatrachus tigerinus, Duttaphrynus stomaticus, and Ptyas mucosus mucosus (herptiles), as well as Labeo rohita, Wallago attu, and Cirrhinus reba (fish) were top ranked with maximum informant reports, frequency of citations, and rank order priority.
    [Show full text]
  • Medicinal Practices of Sacred Natural Sites: a Socio-Religious Approach for Successful Implementation of Primary
    Medicinal practices of sacred natural sites: a socio-religious approach for successful implementation of primary healthcare services Rajasri Ray and Avik Ray Review Correspondence Abstract Rajasri Ray*, Avik Ray Centre for studies in Ethnobiology, Biodiversity and Background: Sacred groves are model systems that Sustainability (CEiBa), Malda - 732103, West have the potential to contribute to rural healthcare Bengal, India owing to their medicinal floral diversity and strong social acceptance. *Corresponding Author: Rajasri Ray; [email protected] Methods: We examined this idea employing ethnomedicinal plants and their application Ethnobotany Research & Applications documented from sacred groves across India. A total 20:34 (2020) of 65 published documents were shortlisted for the Key words: AYUSH; Ethnomedicine; Medicinal plant; preparation of database and statistical analysis. Sacred grove; Spatial fidelity; Tropical diseases Standard ethnobotanical indices and mapping were used to capture the current trend. Background Results: A total of 1247 species from 152 families Human-nature interaction has been long entwined in has been documented for use against eighteen the history of humanity. Apart from deriving natural categories of diseases common in tropical and sub- resources, humans have a deep rooted tradition of tropical landscapes. Though the reported species venerating nature which is extensively observed are clustered around a few widely distributed across continents (Verschuuren 2010). The tradition families, 71% of them are uniquely represented from has attracted attention of researchers and policy- any single biogeographic region. The use of multiple makers for its impact on local ecological and socio- species in treating an ailment, high use value of the economic dynamics. Ethnomedicine that emanated popular plants, and cross-community similarity in from this tradition, deals health issues with nature- disease treatment reflects rich community wisdom to derived resources.
    [Show full text]
  • An International Peer Reviewed Open Access Journal for Rapid Publication
    VOLUME-12 NUMBER-4 (October-December 2019) Print ISSN: 0974-6455 Online ISSN: 2321-4007 CODEN: BBRCBA www.bbrc.in University Grants Commission (UGC) New Delhi, India Approved Journal An International Peer Reviewed Open Access Journal For Rapid Publication Published By: Society for Science & Nature (SSN) Bhopal India Indexed by Thomson Reuters, Now Clarivate Analytics USA ISI ESCI SJIF=4.186 Online Content Available: Every 3 Months at www.bbrc.in Registered with the Registrar of Newspapers for India under Reg. No. 498/2007 Bioscience Biotechnology Research Communications VOLUME-12 NUMBER-4 (Oct-Dec 2019) Characteristics of Peptone from the Mackerel, Scomber japonicus Head by-Product as Bacterial Growth Media 829-836 Dwi Setijawati, Abdul A. Jaziri, Hefti S. Yufidasari, Dian W. Wardani, Mohammad D. Pratomo, Dinda Ersyah and Nurul Huda Endomycorrhizae Enhances Reciprocal Resource Exchange Via Membrane Protein Induction 837-843 Faten Dhawi Does Prediabetic State Affects Dental Implant Health? A Systematic Review And Meta-Analysis 844-854 Khulud Abdulrahman Al-Aali An Updated Review on the Spiders of Order Araneae from the Districts of Western Ghats of India 855-864 Misal P. K, Bendre N. N, Pawar P. A, Bhoite S. H and Deshpande V. Y Synergetic Role of Endophytic Bacteria in Promoting Plant Growth and Exhibiting Antimicrobial 865-875 Mbarek Rahmoun and Bouri Amira Synergetic Role of Endophytic Bacteria in Promoting Plant Growth and Exhibiting 876-882 Antimicrobial Activities Bassam Oudh Al Johny Influence on Diabetic Pregnant Women with a Family History of Type 2 Diabetes 883-888 Sameera A. Al-Ghamdi Remediation of Cadmium Through Hyperaccumulator Plant, Solanum nigrum 889-893 Ihsan Ullah Biorefinery Sequential Extraction of Alginate by Conventional and Hydrothermal Fucoidan from the 894-903 Brown Alga, Sargassum cristaefolium Sugiono Sugiono and Doni Ferdiansyah Occupational Stress and Job Satisfaction in Prosthodontists working in Kingdom of Saudi Arabia 904-911 Nawaf Labban, Sulieman S.
    [Show full text]
  • Integrated Pest Management Package for Maize
    iv INTEGRATED PEST MANAGEMENT PACKAGE FOR MAIZE Sangit Kumar Pradyumn Kumar Jugal Kishor Bana M Shekhar S N Sushil A K Sinha Ram Asre K S Kapoor O P Sharma S Bhagat M Sehgal T Boopathi N Amaresan C Chattopadhyay K Satyagopal P Jeyakumar National Centre for Integrated Pest Management LBS Building, IARI Campus, New Delhi – 110 012 Directorate of Plant Protection, National Institute of Plant Health Quarantine & Storage (DPPQ&S) Management (NIPHM) CGO Complex, NH IV, Faridabad DAC, Min of Agri., Rajendranagar, Haryana- 121001 Hyderabad- 500030 © 2014 Directorate of Plant Protection, Quarantine & Storage CGO Complex, NH IV, Faridabad- 121001 Citation : Sangit Kumar, Pradyumn Kumar, Jugal Kishor Bana, M Shekhar, S N Sushil, A K Sinha, Ram Asre, K S Kapoor, O P Sharma, S Bhagat, M Sehgal, T Boopathi, N Amaresan, C Chattopadhyay, K Satyagopal and P Jeyakumar. 2014. Integrated Pest Management Package for Maize. Pp. 44. Cover picture : Healthy Cob Compiled by : Sangit Kumar1, Pradyumn Kumar1, Jugal Kishor Bana1, M Shekhar, S N Sushil, A K Sinha2, Ram Asre2, K S Kapoor2, O P Sharma, S Bhagat, M Sehgal, T Boopathi, N Amaresan, C C hattopadhyay, K Satyagopal3 and P Jeyakumar3. National Centre for Integrated Pest Management, LBS Building, IARI Campus, Pusa, New Delhi-110 012 1 Directorate of Maize Research, New Delhi, India 2 Directorate of Plant Protection, Quarantine & Storage, Faridabad- 121001 3 National Institute of Plant Health Management, Rajendranagar, Hyderabad 500030 Technical help : Kamlesh Kumar Published by : Director National Centre for Integrated Pest Management, LBS Building, IARI Campus New Delhi 110 012 on behalf of Directorate of Plant Protection, Quarantine & Storage, CGO Complex, NH IV, Faridabad Haryana- 121 001 Year : 2014 Copies : 500 Printed by: M/s.
    [Show full text]
  • Pest and Diseases in Mango (Mangifera Indica L.) J
    PEST AND DISEASES IN MANGO (MANGIFERA INDICA L.) J. González-Fernández, J.I. Hormaza IHSM la Mayora CSIC-UMA, 29750 Algarrobo, Malaga, Spain EXECUTIVE SUMMARY In this work, we review the most important pests and diseases that affect mango production worldwide as well as the main measures implemented to control them. Pests and diseases are the main factors that can impact sustainable mango fruit production in the tropics and subtropics worldwide. Commercial cultivation of mango, characterized by expansion to new areas, changing crop management, replacement of varieties and increased chemical interventions, has altered significantly the pest and disease community structure in this crop in the different mango producing regions. In addition, climate change is inducing the emergence of new pests and, whereas globalization and trade liberalization have created wide opportunities for mango commercialization growth, at the same time, this can result in faster dispersion of pests and diseases among different mango growing areas if proper sanitary measures are not implemented. This review covers different topics related to pests and diseases in mango. First, a thorough description of the main pests and diseases that affect mango is provided. Second, the different approaches used in different mango producing countries for chemical and biological control are described. Third, recommendations for appropriate mango management techiques that include integrated pest and disease management, reduction in the use of chemicals and the implementation of a good monitoring and surveillance system to help control the main pests and diseases, are also discussed. Finally, the current knowledge on agrohomeopathy and Korean Natural Farming is analyzed and recommendations on future lines of research to optimize mango pest and disease control are discussed.
    [Show full text]
  • Comparative Analysis of Biochemical Compounds of Leaf, Flower and Fruit of Couroupita Guianensis and Synthesis of Silver Nanoparticles
    Pharmacogn J. 2018; 10(2): 315-323 A Multifaceted Journal in the field of Natural Products and Pharmacognosy Original Article www.phcogj.com | www.journalonweb.com/pj | www.phcog.net Comparative Analysis of Biochemical Compounds of Leaf, Flower and Fruit of Couroupita guianensis and Synthesis of Silver Nanoparticles Prakash Pandurangan*, Madhumitha Sahadeven, Swetha Sunkar, Sai Krishna Nerella Mohana Dhana ABSTRACT Couroupita guianensis is commonly known as cannonball tree, belonging to the family Lecythidaceae. This tree has enormous medicinal values since most of its parts are used as medicines traditionally. In this work, two major aspects were studied. Firstly, the phytochemical screening and biological activities of various extracts of leaf, flower and fruit are prepared and studied. Secondly, silver nanoparticles were synthesized from these parts, characterized instrumentally and checked for its antibacterial activity. This study reveals that except the aqueous extracts, all other extracts have good antioxidant and antibacterial activity hence stating the presence of bioactive compounds. Flower mediated nanoparticles showed better results than others which may be due to the presence of certain phytochemical compounds responsible for the reduction and capping of silver nanoparticles. These results showed the potential of Couroupita guianensis and further investigation to isolate such pharmacologically active compounds that can be used in the production of novel drugs for various diseases would be promising. Key words: Couroupita guianensis, Bioactive compounds, Nanoparticles. Prakash Pandurangan*, Madhumitha sahadeven, INTRODUCTION Swetha Sunkar, Sai Krish- na Nerella Mohana Dhana Plants are one of the most valuable sources of the natural glycosides, isatin, indurubin, couroupitine and products. Almost all the parts of the plants namely phenolic substances with medicinal properties.
    [Show full text]
  • Seed Coat Anatomy and Its Relationship to Seed Dispersal in Subfamily Lecythidoideae of the Lecythidaceae (The Brazil Nut Family)
    TsouBot. Bull. and MoriAcad. — Sin. Seed (2002) coat 43: of 37-56 Lecythidoideae 37 Seed coat anatomy and its relationship to seed dispersal in subfamily Lecythidoideae of the Lecythidaceae (The Brazil Nut Family) Chih-Hua Tsou1 and Scott A. Mori2,* 1Institute of Botany, Academia Sinica, Taipei, Taiwan 115, Republic of China 2Nathaniel Lord Britton Curator of Botany, Institute of Systematic Botany, The New York Botanical Garden, Bronx, New York 10458-5126, USA (Received April 19, 2001; Accepted August 31, 2001) Abstract. The seed coat anatomy of representative species from all 10 Neotropical genera of Lecythidaceae subfam- ily Lecythidoideae and from the Paleotropical Barringtonia (Lecythidaceae subfamily Planchonioideae) was studied. The seed coat is mainly composed of the testa, which is developed through moderate or intensive multiplication of the outer integument of the ovule. The tegmen, derived from the inner integument of the ovule, is mostly crushed at seed maturity. Barringtonia and Grias, with fruits as diaspores, have an unspecialized exotesta and a poorly differ- entiated seed coat. In contrast, species of Lecythidoideae, with seeds as diaspores, possess well-differentiated seed coats with diversified protective mechanisms. Examples include: an expanded and lignified exotesta that serves as a water barrier and protects the embryo; an extensive area of tannin cells that provides a chemical defense against pathogens and predators; a thick and sclerotic mesotesta that protects the embryo; and large fibers surrounding and supporting
    [Show full text]
  • Studies on Wood Boring Insects of Malabar Region of Kerala
    Vol. 5, Issue 1, Pp: (19-25), March, 2021 STUDIES ON WOOD BORING INSECTS OF MALABAR REGION OF KERALA GANA KARIKKAN1 AND SHEIK MOHAMMED SHAMSUDEEN2 1Forest Entomology and GIS Research Laboratory, Department of Zoology, Sir Syed College, Taliparamba, Kannur, Kerala- 670142, India 2Department of Zoology, Mananthavady Campus, Kannur University, Wayanad, Kerala- 670645, India ARTICLE INFORMATION ABSTRACT Article History: The present study of wood boring insect was carried out during the period th Received : 20 March 2021 from February 2019 to January 2020. A Field survey was conducted in Accepted: 18th April 2021 Published online: 17th May 2021 different areas -Thaliparamba, Kannadiparamba, Thottada, Aralam Wildlife Sanctuary (Pookkund, Thullal, Valayamchal) and Elayavoor of Kannur Author’s contribution District. This short-term study recorded 38 species of wood borers. The GK complied all the results and performed the experiments, SMS collected specimens were under 7 Families named Cerambycidae, designed the study and wrote the paper. Curculionidae, Brentidae, Bostrychidae, Platypodidae, Buprestidae and Lyctidae. Cerambycidae was the dominant family followed by Bostrychidae Key words: and least was Brentidae. The collected specimens were pinned, dried and Wood boring insect, survey, Thaliparamba, Wildlife Sanctuary, stored in insect cabinets and kept in Forest Entomology and GIS Research Cerambycidae, Curculionidae, Brentidae Laboratory. 2. MATERIALS AND METHODS 1. INTRODUCTION In Kerala about 53 species of beetles were recorded The present study of wood boring insect was carried as pest of one or more of 46 species of stored timber out during the period from February 2019 to January (Mathew, 1982). Studies on the timber beetles found 2020. Different locations in Malabar region were in the Indian subcontinent were primarily made by selected for the investigation.
    [Show full text]
  • Biodiversity and Community Structure of Spiders in Saran, Part of Indo-Gangetic Plain, India
    Asian Journal of Conservation Biology, December 2015. Vol. 4 No. 2, pp. 121-129 AJCB: FP0062 ISSN 2278-7666 ©TCRP 2015 Biodiversity and Community structure of spiders in Saran, part of Indo-Gangetic Plain, India N Priyadarshini1*, R Kumari1, R N Pathak1, A K Pandey2 1Department of Zoology, D. A. V. College, J. P. University, Chhapra, India 2School of Environmental Studies, Jawaharlal Nehru University, New Delhi, India (Accepted November 21, 2015) ABSTRACT Present study was conducted to reveals the community structure and diversity of spider species in different habitat types (gardens, crop fields and houses) of Saran; a part of Indo – Gangetic Plain, India. This area has very rich diversity of flora and fauna due to its climatic conditions, high soil fer- tility and plenty of water availability. The spiders were sampled using two semi-quantitative methods and pitfall traps. A total of 1400 individual adult spiders belonging to 50 species, 29 genera and 15 families were recorded during 1st December 2013 to 28th February 2014. Spider species of houses were distinctive from other habitats it showed low spider species richness. The dominant spider fami- lies were also differs with habitat types. Araneidae, Pholcidae and Salticidae were the dominant spi- der families in gardens, houses and crop fields respectively. Comparison of beta diversity showed higher dissimilarity in spider communities of gardens and houses and higher similarity between spi- der communities of crop fields and gardens. We find that spiders are likely to be more abundant and species rich in gardens than in other habitat types. Habitat structural component had great impact on spider species richness and abundance in studied habitats.
    [Show full text]