Acyclic Coloring of Middle and Total Graph of Extended Duplicate Graph of Ladder Graph C

Total Page:16

File Type:pdf, Size:1020Kb

Acyclic Coloring of Middle and Total Graph of Extended Duplicate Graph of Ladder Graph C International Journal of Mathematics Trends and Technology (IJMTT) – Special Issue NCCFQET May 2018 Acyclic Coloring of Middle and Total graph of Extended Duplicate graph of Ladder Graph C. Shobana Sarma1, K. Thirusangu2 1Department of Mathematics, Bharathi Women’s College (Autonomous) Chennai – 600 108, India 2Department of Mathematics, S.I.V.E.T. College Chennai 600 073, India Abstract—In this paper we present acyclic coloring algorithms to color the vertices of middle graph and total graph of extended Duplicate graph of ladder Lm. Also we obtain the chromatic numbers of the same. Keywords—Acyclic coloring, chromatic number, middle graph, total graph, extended duplicate graph, ladder graph. I. INTRODUCTION A proper coloring of a graph G is the coloring of the vertices of G such that no two neighbors in G are assigned the same color. Thoughout this paper, by a graph we mean a finite, undirected, simple graph and the term coloring is used to denote vertex coloring of graphs. A acyclic coloring of a graph G is the proper vertex coloring such that the subgraph induced by any two color classes does not contains a cycle. The notion of acyclic chromatic number was introduced by B.Grunbaum in 1973[4]. The acyclic chromatic number of a graph G = G(V, E) is the minimum number of colors which are necessary to color G acyclically and is denoted by a(G). The acycling coloring of middle and total graphs of some class of graphs have been studied in the literature [1,5,6,7,8]. A ladder graph Lm is a planar undirected graph with 2m vertices and 3m-2 edges. It is obtained as the cartesian product of two path graphs, one of which has only one edge : Lm=Pm X P1, where m is the number of rungs in the ladder. The concept of extended duplicate graph was introduced by Thirusangu, et al. [10]. A duplicate graph of G is DG = (V1, E1) where the vertex set V1 = V V and V V= and f : V V is bijective (for v V, we write f(v) = v) and the edge set E1 of DG is defined as follows. The edge uv is in E if and only if both uv and uv are edges in E1. The extended duplicate graph of DG, denoted by EDG, is defined as, adding an edge between any vertex from V to any other vertex in V', except the terminal vertices of V and V'. For convenience, we take v2V and v'2V and thus the edge v2v'2 is formed. The middle graph of G, denoted by M(G) was introduced by Michalak[2], in 1981 and is defined as follows. The vertex set of M(G) is V(G) E(G). Any two vertices x, y in M(G) are adjacent in M(G) if one of the following case holds. (i) x and y are adjacent edges in G (ii) x and y are incident in G. The total graph of G, denoted by T(G) was introduced by Michalak(1981) and Harary(1969)[2,3] and is defined as follows. The vertex set of T(G) is V(G) E(G). Any two vertices x, y in the vertex set of T(G) are adjacent in T(G) if one of the following cases holds. (i) x and y are adjacent vertices in G. (ii) x and y are adjacent edges in G. (iii) x and y are incident in G. A Duplicate graph of Lm DG(Lm) contains 4m vertices and 6m-4 edges. A duplicate graph of Ladder graph have been studied in the literature [9]. The extended duplicate graph ofLm, denoted by EDG(Lm) with 4m vertices and 6m-3 edges, is obtained from the duplicate graph of ladder by joining the vertices v2 and v2. This document is a template. An electronic copy can be downloaded from the conference website. For questions on paper guidelines, please contact the conference publications committee as indicated on the conference website. Information about final paper submission is available from the conference website. ISSN: 2231-5373 http://www.ijmttjournal.org Page 102 International Journal of Mathematics Trends and Technology (IJMTT) – Special Issue NCCFQET May 2018 II. ACYCLIC COLORING OF M[EDG(LM)] Coloring Algorithm 1: Input: M[EDG(Lm)], m 3 V {v1, v2, …, v2m, vꞌ1, vꞌ2, …, vꞌ2m ,x1,x2,....,x6m-3} { for (k = 1 to 2m) { vk, vꞌk 1; } for (k =1 to m) { x2k-1 2; x3(m-1)+2k 2; } for (k =1 to m-1) { x2k 3; x3m+2(k-1) 3; } for (k = 1 to m ) 2 { x2(m+k-1) 4; x5m+2(k-2) 4; } for (k = 1 to m 1 ) 2 { x2(m+k)-1 5; x5m+2k-3 5; } x6m-3 5; } Output: vertex colored M[EDG(Lm)]. Theorem 1:The acyclic chromatic number of middle graph of extended duplicate graph of ladder Lm is given by a(M[EDG(Lm)]) = 5, m 3. ProofColor the vertices of M[EDG(Lm)] as given in the algorithm 1. The color class of 1 is { vk, vꞌk ; 1 k 2m}. The color class of 2 and 3 are {x2k-1 , x3(m-1)+2k ; 1 k 2m} and { x2k , xm+2k+4 ; 1 k m-1} respectively. The color class of 4 and 5 are {x2(m+k-1) , x5m+2(k-2) ; 1 k } and { x2(m+k)-1 , x5m+2k-3 , x6m-3 ; 1 k } respectively. Case (i) Consider the color classes of 1 and 2. The induced subgraph of the color classes of 1 and 2 is a collection of paths P3 and therefore, it is an acyclic graph. Case (ii) Consider the color classes of 1 and 3. The induced subgraph of the color classes of 1 and 3 is a collection of paths P3 and therefore, it is an acyclic graph. Case (iii)Consider the color classes of 1 and 4. The induced subgraph of the color classes of 1 and 4 is a collection of paths P3 and isolated vertices, therefore, it is an acyclic graph. Case (iv)Consider the color classes of 1 and 5. The induced subgraph of the color classes of 1 and 5 is a collection of paths P3 and isolated vertices, therefore, it is an acyclic graph. Case (v)Consider the color classes of 2 and 3. The induced subgraph of the color classes of 2 and 3 is a collection {x1 x2 x3 ......... x2m-1} and {x3n-1 x3n x3n+1 ......... x5m-3} of paths and therefore, it is an acyclic graph. Case (vi)Consider the color classes of 2 and 4. The induced subgraph of the color classes of 2 and 4 is a collection of paths P3, P5 and isolated vertices, therefore, it is an acyclic graph. Case (vii)Consider the color classes of 2 and 5. The induced subgraph of the color classes of 2 and 5 is a collection of paths P3, P5 and isolated vertices, therefore, it is an acyclic graph. ISSN: 2231-5373 http://www.ijmttjournal.org Page 103 International Journal of Mathematics Trends and Technology (IJMTT) – Special Issue NCCFQET May 2018 Case (viii)Consider the color classes of 3 and 4. The induced subgraph of the color classes of 3 and 4 is a collection of paths P3 and isolated vertices, therefore, it is an acyclic graph. Case (ix)Consider the color classes of 3 and 5. The induced subgraph of the color classes of 3 and 5 is a collection of paths P3 and isolated vertices, therefore, it is an acyclic graph. Case (x)Consider the color classes of 4 and 5. The induced subgraph of the color classes of 4 and 5 is a collection of paths {x2m x2m+1} and {x6m-3 x5m-2}therefore, it is an acyclic graph. Thus, the induced subgraph of any two color classes is acyclic and therefore the coloring given in the algorithm is an acyclic coloring. Hence a(M[EDG(Lm)]) = 5, m 3. III. ACYCLIC COLORING OF T[EDG(LM)] Coloring Algorithm 2: Input: M[EDG(Lm)], m 4 V {v1, v2, …, v2m, vꞌ1, vꞌ2, …, vꞌ2m ,x1,x2,....,x6m-3} { for (k = 1 to m ) 2 { if m 1 (mod 2) v1, v4k, v4k+1 1; else v1, v4k 1; for (r = 0 to m -1) 2 xm+2r+1 1; } for (k = -1 to m ) 3 { if m 1 (mod 2) for (r = 0 to ) { x3m+2k+1 , v3+4r 1; } else for (r = 0 to -1) ISSN: 2231-5373 http://www.ijmttjournal.org Page 104 International Journal of Mathematics Trends and Technology (IJMTT) – Special Issue NCCFQET May 2018 { x3m+2k+1 , vꞌ5+4r 1; } } if m 1 (mod 2) for (k =0 to m ) 2 { for (r = 1 to ) { vꞌ2+4k, xm+2r 2; } } for (k = 0 to m-1) { x3m+2k 2; } else for (k =0 to m ) 3 { for (r = 1 to m ) 3 { v3, x2m, vꞌ4k+2, vꞌ4r+3 2; } for (k = 0 to m-2) { x3m+2k 2; } } for (k = 1 to m +1) 2 { if m 1 (mod 2) for (r = 0 to m ) 3 { x2k-1 , vꞌ4r+3 3; for (r = 1 to m ) 2 vꞌ1, vꞌ4r, vꞌ4r+1 3; } else for (r = 0 to m -1) 3 { x2k-1 , v4r+5 3; } for (k = 1 to ) { ISSN: 2231-5373 http://www.ijmttjournal.org Page 105 International Journal of Mathematics Trends and Technology (IJMTT) – Special Issue NCCFQET May 2018 for (r = 1 to (m 2) ) 2 vꞌ1, vꞌ4k, x4m+2r -1 3; } } if m 1 (mod 2) m for (k =0 to ) 2 { for (r = 0 to -1) v4k+2, x4m+2r 4; } for (k = 1 to m) { x2k 4; } else for (k = 1 to m -1) 2 { v2, x5m-2, v4k+2, v4k+3 4; } for (k = 1 to m-1) { x2k, vꞌ3 4; } } if m 1 (mod 2) for (k = 1 to ) { for (r = 0 to -1) x2m+2k-1, x5m+2r-1 5; } else for (k =1 to -1) { for (r = 0 to -2) { x2m+2k-1, x5m+2r-1 5; } for (k = 1 to -1) { for (r = 0 to -2) { x2m+2k, x5m+2r 6; } x6m-3 6; } ISSN: 2231-5373 http://www.ijmttjournal.org Page 106 International Journal of Mathematics Trends and Technology (IJMTT) – Special Issue NCCFQET May 2018 Output: vertex colored T[EDG(Lm)].
Recommended publications
  • Distance Labelings of Möbius Ladders
    Distance Labelings of M¨obiusLadders A Major Qualifying Project Report: Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science by Anthony Rojas Kyle Diaz Date: March 12th; 2013 Approved: Professor Peter R. Christopher Abstract A distance-two labeling of a graph G is a function f : V (G) ! f0; 1; 2; : : : ; kg such that jf(u) − f(v)j ≥ 1 if d(u; v) = 2 and jf(u) − f(v)j ≥ 2 if d(u; v) = 1 for all u; v 2 V (G). A labeling is optimal if k is the least possible integer such that G admits a k-labeling. The λ2;1 number is the largest integer assigned to some vertex in an optimally labeled network. In this paper, we examine the λ2;1 number for M¨obiusladders, a class of graphs originally defined by Richard Guy and Frank Harary [9]. We completely determine the λ2;1 number for M¨obius ladders of even order, and for a specific class of M¨obiusladders with odd order. A general upper bound for λ2;1(G) is known [6], and for the remaining cases of M¨obiusladders we improve this bound from 18 to 7. We also provide some results for radio labelings and extensions to other labelings of these graphs. Executive Summary A graph is a pair G = (V; E), such that V (G) is the vertex set, and E(G) is the set of edges. For simple graphs (i.e., undirected, loopless, and finite), the concept of a radio labeling was first introduced in 1980 by Hale [8].
    [Show full text]
  • ABC Index on Subdivision Graphs and Line Graphs
    IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728 p-ISSN: 2319–765X PP 01-06 www.iosrjournals.org ABC index on subdivision graphs and line graphs A. R. Bindusree1, V. Lokesha2 and P. S. Ranjini3 1Department of Management Studies, Sree Narayana Gurukulam College of Engineering, Kolenchery, Ernakulam-682 311, Kerala, India 2PG Department of Mathematics, VSK University, Bellary, Karnataka, India-583104 3Department of Mathematics, Don Bosco Institute of Technology, Bangalore-61, India, Recently introduced Atom-bond connectivity index (ABC Index) is defined as d d 2 ABC(G) = i j , where and are the degrees of vertices and respectively. In this di d j vi v j di .d j paper we present the ABC index of subdivision graphs of some connected graphs.We also provide the ABC index of the line graphs of some subdivision graphs. AMS Subject Classification 2000: 5C 20 Keywords: Atom-bond connectivity(ABC) index, Subdivision graph, Line graph, Helm graph, Ladder graph, Lollipop graph. 1 Introduction and Terminologies Topological indices have a prominent place in Chemistry, Pharmacology etc.[9] The recently introduced Atom-bond connectivity (ABC) index has been applied up until now to study the stability of alkanes and the strain energy of cycloalkanes. Furtula et al. (2009) [4] obtained extremal ABC values for chemical trees, and also, it has been shown that the star K1,n1 , has the maximal ABC value of trees. In 2010, Kinkar Ch Das present the lower and upper bounds on ABC index of graphs and trees, and characterize graphs for which these bounds are best possible[1].
    [Show full text]
  • Graceful Labeling of Some New Graphs ∗
    Bulletin of Pure and Applied Sciences Bull. Pure Appl. Sci. Sect. E Math. Stat. Section - E - Mathematics & Statistics 38E(Special Issue)(2S), 60–64 (2019) e-ISSN:2320-3226, Print ISSN:0970-6577 Website : https : //www.bpasjournals.com/ DOI: 10.5958/2320-3226.2019.00080.8 c Dr. A.K. Sharma, BPAS PUBLICATIONS, 387-RPS- DDA Flat, Mansarover Park, Shahdara, Delhi-110032, India. 2019 Graceful labeling of some new graphs ∗ J. Jeba Jesintha1, K. Subashini2 and J.R. Rashmi Beula3 1,3. P.G. Department of Mathematics, Women’s Christian College, Affiliated to University of Madras, Chennai-600008, Tamil Nadu, India. 2. Research Scholar (Part-Time), P.G. Department of Mathematics, Women’s Christian College, Affiliated to University of Madras, Chennai-600008, Tamil Nadu, India. 1. E-mail: jjesintha [email protected] , 2. E-mail: [email protected] Abstract A graceful labeling of a graph G with q edges is an injection f : V (G) → {0, 1, 2,...,q} with the property that the resulting edge labels are distinct where the edge incident with the vertices u and v is assigned the label |f (u) − f (v) |. A graph which admits a graceful labeling is called a graceful graph. In this paper, we prove that the series of isomorphic copies of Star graph connected between two Ladders are graceful. Key words Graceful labeling, Path, Ladder Graph, Star Graph. 2010 Mathematics Subject Classification 05C60, 05C78. 1 Introduction In 1967, Rosa [2] introduced the graceful labeling method as a tool to attack the Ringel-Kotzig-Rosa Conjecture or the Graceful Tree Conjecture that “All Trees are Graceful” and he also proved that caterpillars (a caterpillar is a tree with the property that the removal of its endpoints leaves a path) are graceful.
    [Show full text]
  • Total Coloring Conjecture for Certain Classes of Graphs
    algorithms Article Total Coloring Conjecture for Certain Classes of Graphs R. Vignesh∗ , J. Geetha and K. Somasundaram Department of Mathematics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India; [email protected] (J.G.); [email protected] (K.S.) * Correspondence: [email protected] Received: 30 August 2018; Accepted: 17 October 2018; Published: 19 October 2018 Abstract: A total coloring of a graph G is an assignment of colors to the elements of the graph G such that no two adjacent or incident elements receive the same color. The total chromatic number of a graph G, denoted by c00(G), is the minimum number of colors that suffice in a total coloring. Behzad and Vizing conjectured that for any graph G, D(G) + 1 ≤ c00(G) ≤ D(G) + 2, where D(G) is the maximum degree of G. In this paper, we prove the total coloring conjecture for certain classes of graphs of deleted lexicographic product, line graph and double graph. Keywords: total coloring; lexicographic product; deleted lexicographic product; line graph; double graph MSC: 05C15 1. Introduction All the graphs in this paper are finite, simple and connected. The edge chromatic number of a graph G, denoted by c0(G) , is the smallest number of colors needed to color the edges of G so that no two adjacent edges share the same color. For any graph G, it clear that from the Vizing’s theorem that the edge chromatic number c0(G) ≤ D(G) + 1, where D(G) is the maximum degree of G. If c0(G) = D(G) then G is called class-I graph and if c0(G) = D(G) + 1 then G is called class-II graph.
    [Show full text]
  • On the Euclidean Dimension of Graphs
    ON THE EUCLIDEAN DIMENSION OF GRAPHS JIN HYUP HONG GREAT NECK SOUTH HIGH SCHOOL, GREAT NECK, NY AND DAN ISMAILESCU MATHEMATICS DEPARTMENT, HOFSTRA UNIVERSITY, NY arXiv:1501.00204v1 [math.MG] 31 Dec 2014 1 Abstract. The Euclidean dimension a graph G is defined to be the smallest integer d such that the vertices of G can be located in Rd in such a way that two vertices are unit distance apart if and only if they are adjacent in G. In this paper we determine the Euclidean dimension for twelve well known graphs. Five of these graphs, D¨urer, Franklin, Desargues, Heawood and Tietze can be embedded in the plane, while the remaining graphs, Chv´atal, Goldner-Harrary, Herschel, Fritsch, Gr¨otzsch, Hoffman and Soifer have Euclidean dimension 3. We also present explicit embeddings for all these graphs. 1. History and previous work The Euclidean dimension of a graph G = (V, E), denoted dim(G) is the least integer n such that there exists a 1 : 1 embedding f : V Rn for which f(u) f(v) = 1 if and only → | − | if uv E. ∈ The concept was introduced by Erd˝os, Harary and Tutte in their seminal paper [7], where the authors determine the Euclidean dimension for several classes of graphs. For instance, they show that dim(K ) = n 1, where K is the complete graph on n n − n vertices. Using a construction due to Lenz, they also compute the Euclidean dimension of Km,n, the complete bipartite graph with m vertices in one class and n vertices in the other.
    [Show full text]
  • Arxiv:2108.07942V1 [Math.CO]
    ALGORITHMIC TECHNIQUES FOR FINDING RESISTANCE DISTANCES ON STRUCTURED GRAPHS E. J. EVANS AND A. E. FRANCIS Abstract. In this paper we give a survey of methods used to calculate values of resistance distance (also known as effective resistance) in graphs. Resistance distance has played a prominent role not only in circuit theory and chemistry, but also in combinatorial matrix theory and spectral graph theory. Moreover resistance distance has applications ranging from quantifying biological struc- tures, distributed control systems, network analysis, and power grid systems. In this paper we discuss both exact techniques and approximate techniques and for each method discussed we provide an illustrative example of the technique. We also present some open questions and conjectures. 1. Introduction The resistance distance (occasionally referred to as the effective resistance) of a graph is a measure that quantifies its structural properties. Resistance distance has its origin in electrical circuit theory and its first known application to graph structure occurred in the analysis of chemical structure [22]. Resistance distance in graphs has played a prominent role not only in circuit theory and chemistry [18, 22, 30], but also in combinatorial matrix theory [4, 36] and spectral graph theory [2, 10, 13, 29]. A few specific examples of the use of resistance distance are: Spielman and Srivastava [29] have used resistance distance between nodes • of graphs to develop an algorithm to rapidly sparsify a given graph while maintaining spectral properties. Ghosh, Boyd, and Saberi [21] considered the problem of minimizing the • total resistance distance by allocating edge weights on a given graph. This problem has applications to Markov chains and continuous-time averaging arXiv:2108.07942v2 [math.CO] 13 Sep 2021 networks.
    [Show full text]
  • Erdös-Ko-Rado Theorems for Chordal and Bipartite Graphs Arxiv
    Erdös-Ko-Rado theorems for chordal and bipartite graphs Glenn Hurlbert∗ and Vikram Kamaty School of Mathematical and Statistical Sciences Arizona State University, Tempe, Arizona 85287-1804 April 19, 2019 arXiv:0903.4203v2 [math.CO] 15 Jul 2009 ∗[email protected] (Corresponding author) [email protected] 1 Abstract One of the more recent generalizations of the Erdös-Ko-Rado theorem, for- mulated by Holroyd, Spencer and Talbot [10], denes the Erdös-Ko-Rado prop- erty for graphs in the following manner: for a graph G, vertex v 2 G and some integer r ≥ 1, denote the family of independent r-sets of V (G) by J (r)(G) and (r) (r) the subfamily fA 2 J (G): v 2 Ag by Jv (G), called a star. Then, G is said to be r-EKR if no intersecting subfamily of J (r)(G) is larger than the largest star in J (r)(G). In this paper, we prove that if G is a disjoint union of chordal graphs, including at least one singleton, then is -EKR if µ(G) , where G r r ≤ 2 µ(G) is the minimum size of a maximal independent set. We will also prove Erdös-Ko-Rado results for chains of complete graphs, which are a class of chordal graphs obtained by blowing up edges of a path into complete graphs. We also consider similar problems for ladder graphs and trees, and prove preliminary results for these graphs. Key words. intersecting family, star, independent sets, chordal graphs, trees 2 1 Introduction Let X = [n] = f1; : : : ; ng be a set of size n.
    [Show full text]
  • ON DIFFERENCE CORDIAL GRAPHS 1 Introduction
    Mathematica Aeterna, Vol. 5, 2015, no. 1, 105 - 124 ON DIFFERENCE CORDIAL GRAPHS M. A. Seoud Department of Mathematics, Faculty of Science Ain Shams University, Cairo, Egypt [email protected] Shakir M. Salman Department of Mathematics, Basic Education College Diyala University , Diyala , Iraq [email protected] Abstract In this paper we introduce some results in dierence cordial graphs and the dierence cordial labeling for some families of graphs as: lad- der,triangular ladder,grid,step ladder and two sided step ladder graph. Also we discussed some families of graphs which may be dierence cor- dial or not,such as diagonal ladder and some types of one-point union graphs. Mathematics Subject Classication: 05C78 Keywords: Dierence cordial graphs. 1 Introduction In this paper we will deal with nite,simple and undirected graphs. By the expression G = (V; E) we mean a simple undirected graph with vertex set V , jV j is called the order of graph and edge set E, jEj is called its size. Graph labeling connects many branches of mathematics and is considered one of important blocks of graph theory, for more details see [3]. Cordial labeling was rst introduced in 1987 by Cahit [1], then there was a major eort in this area made this topic growing steadily and widely,see[2]. In [4] Ponraj ,Shathish Naraynan and Kala introduce the notions of dier- ence cordial labeling for nite undirected and simple graph,as in the following denition : 106 Seoud and Salman Denition 1.1 Let G = (V; E) be a (p; q) graph,and f be a map from V (G) to 1; 2; :::; p.
    [Show full text]
  • The M-Polynomial of Line Graph of Subdivision Graphs
    Available online: July 5, 2019 Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 68, Number 2, Pages 2104—2116 (2019) DOI: 10.31801/cfsuasmas.587655 ISSN 1303—5991 E-ISSN 2618-6470 http://communications.science.ankara.edu.tr/index.php?series=A1 THE M-POLYNOMIAL OF LINE GRAPH OF SUBDIVISION GRAPHS SOURAV MONDAL, NILANJAN DE, AND ANITA PAL Abstract. Three composite graphs Ladder graph (Ln), Tadpole graph (Tn,k) and Wheel graph (Wn) are graceful graphs, which have different applications in electrical, electronics, wireless communication etc. In this report, we first determine M-polynomial of the Line graph of those three graphs using subdi- vision idea and then compute some degree based indices of the same. 1. Introduction Throughout this article we use molecular graph, a connected graph having no loops and no parallel edges where vertices and edges are correspond to atoms and chemical bonds of the compound. Consider a molecular graph G having V (G) and E(G) as vertex set and edge set respectively. The degree of a vertex v V (G) of 2 a graph G, denoted by dv, is the total number of edges incident with v. Mathematical modelling play significant role to analyze important concepts in chemistry. Mathematical chemistry has excellent tools such as polynomials, func- tions which can predict properties of chemical compounds successfully. Topological indices are functions T : R+ with the property T (G) = T (H) for every graph G isomorphic to H, where! is the class of all graphs. These numerical quantity corresponding toP a molecular graph are effective in correlating the struc- ture with different physicochemicalP properties, chemical reactivity, and biological activities.
    [Show full text]
  • SKEW CHROMATIC INDEX of COMB, LADDER, and MOBIUS LADDER GRAPHS Joice Punitha M.1, S
    International Journal of Pure and Applied Mathematics Volume 101 No. 6 2015, 1003-1011 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu AP ijpam.eu SKEW CHROMATIC INDEX OF COMB, LADDER, AND MOBIUS LADDER GRAPHS Joice Punitha M.1, S. Rajakumari2 1Department of Mathematics L.N. Government College (Autonomous) Ponneri, 601 204, Tamilnadu, INDIA 2Department of Mathematics R.M. D Engineering College Kavaraipettai, 601 206, Tamilnadu, INDIA Abstract: A skew edge coloring of a graph G is defined to be a set of two edge colorings such that no two edges are assigned the same unordered pair of colors. The skew chromatic index s(G) is the minimum number of colors required for a skew edge coloring of G. In this paper, an algorithm is determined for skew edge coloring of comb, ladder and Mobius ladder graphs. Also the skew chromatic index of these graphs is solved in polynomial time. AMS Subject Classification: 05C15 Key Words: skew edge coloring; skew chromatic index; comb graph; ladder graph; Mobius ladder graph 1. Introduction Let G = (V, E) be a simple, connected undirected graph with vertex set V and edge set E. An edge coloring of a graph G is an assignment of colors to the edges of G so that no two adjacent edges are assigned the same color. The minimum number of colors required for an edge coloring of G is the edge chromatic number denoted by χ′(G). By Vizing’s theorem, ∆(G) ≤ χ′(G) ≤ ∆(G) + 1, where ∆(G) is the maximum degree of vertices in G.
    [Show full text]
  • Proper Diameter of 2-Connected Bipartite Graphs
    Proper Diameter of 2-connected Bipartite Graphs Grant Fickes1, Dylan Green2, Jonelle Hook3, Karen McCready4, Kathleen Ryan5, Nathaniel Sauerberg6, and Jill Stifano7 1Department of Mathematics, University of South Carolina 2Department of Mathematics, Dartmouth College 3Department of Mathematics and Computer Science, Mount St. Mary's University 4Department of Mathematics and Computer Science, King's College 5Department of Mathematics and Computer Science, DeSales University 6Department of Computer Science, University of Texas{Austin 7Department of Mathematics, Brandeis University July 20, 2021 Abstract A properly colored path is a path in which no two consecutive edges have the same color. A properly connected coloring of a graph is one in which there exists a properly colored path between every pair of vertices. Given a graph G with a properly connected coloring c, the proper distance between any two vertices is the length of a shortest properly colored path between them. Furthermore, the proper diameter of G is the largest proper distance between any pair of vertices in G under the given coloring c. Since there can be many properly connected colorings of G, there are possibly many different values for the proper diameter of G. Here we explore 2-colorings and the associated proper diameter for bipartite graphs, classifying 2-connected bipartite graphs with maximum proper diameter. 1 Introduction The work of Vizing popularized the idea of proper edge-colorings of graphs [8]. Since then some researchers have shifted their focus and studied edge-colorings in which certain sub- graphs, rather than the entire graph, are properly colored [1], [5], [9]. In a similar fashion, we are interested in graphs which have been colored so that between every pair of vertices there exists a properly colored path, that is, a path in which no two consecutive edges have 1 the same color.
    [Show full text]
  • On the Achromatic Number of Certain Distance Graphs 1 Introduction
    b b International Journal of Mathematics and M Computer Science, 15(2020), no. 4, 1187–1192 CS On the Achromatic Number of Certain Distance Graphs Sharmila Mary Arul1, R. M. Umamageswari2 1Division of Mathematics Saveetha School of Engineering SIMATS Chennai, Tamilnadu, India 2Department of Mathematics Jeppiaar Engineering College Chennai, Tamilnadu, India email: [email protected], [email protected] (Received July 9, 2020, Accepted September 8, 2020) Abstract The achromatic number for a graph G = (V, E) is the largest integer m such that there is a partition of V into disjoint independent sets (V 1,. ,Vm) satisfying the condition that for each pair of distinct sets Vi,Vj,Vi Vj is not an independent set in G. In this paper, we ∪ present O(1) approximation algorithms to determine the achromatic number of certain distance graphs. 1 Introduction A proper coloring of a graph G is an assignment of colors to the vertices of G such that adjacent vertices are assigned different colors. A proper coloring of a graph G is said to be complete if, for every pair of colors i and j, there are adjacent vertices u and v colored i and j respectively. The achromatic number of the graph G is the largest number m such that G has a complete coloring Key words and Phrases: Achromatic number, approximation algorithms, graph algorithms, NP-completeness. AMS (MOS) Subject Classifications: 05C15, 05C85. ISSN 1814-0432, 2020, http://ijmcs.future-in-tech.net 1188 S. M. Arul, R. M. Umamageswari with m colors. Thus the achromatic number for a graph G = (V, E) is the largest integer m such that there is a partition of V into disjoint independent sets (V , V ,..., Vm) such that for each pair of distinct sets Vi,Vj, Vi Vj is 1 2 ∪ not an independent set in G.
    [Show full text]