New Technologies in Census Data Collection Part 3: Timeline Impacts Select Topics in International Censuses1

Total Page:16

File Type:pdf, Size:1020Kb

New Technologies in Census Data Collection Part 3: Timeline Impacts Select Topics in International Censuses1 New Technologies in Census Data Collection Part 3: Timeline Impacts Select Topics in International Censuses1 Released February 2019 INTRODUCTION Difference in countries’ sizes and populations make it diffi- cult to provide milestone recommendations that are defini- Building a census timeline is a foundational activity for tive and generally applicable. This STIC includes some census planning and management. This brief is part three recommended milestones and offers a roadmap for how of a series of technical notes, New Technologies in Census to merge the requirements of a traditional census timeline Data Collection. The two previously published STICs in with the system development requirements of an e-census. this series contain more information on the logistical and Appendix I provides an example of milestones for a hypo- methodological implications of the transition to electronic thetical country deploying an e-census for the first time. collection technologies. This STIC will assist National Statistical Offices (NSOs) in planning an e-census timeline TIMELINE DEVELOPMENT by comparing the scheduling requirements for a traditional paper and pencil (PAPI) census with electronic collection Team Formation and Determining Milestones using computer-assisted personal interviewing (CAPI) on Development of an integrated data collection system is a mobile devices or computer-assisted self-interview (CASI) key difference between e- and PAPI-censuses. The NSO on the Internet. An integrated system that combines case will oversee the development of a major new system that allocation and operational control with data transmission includes software and hardware components. Some of the and storage is assumed to underpin an e-census. first steps are creating the specifications for this system Principles and Recommendations for Population and and assembling a timeline. Putting together teams with Housing Censuses (United Nations, 2015) notes the impor- the expertise to produce the timeline and other planning tance of fully developed timelines for a range of census documents is one of the first steps toward an e-census. operations. It also suggests that the milestones associ- Teams comprised of software developers and IT ated with timelines be used to monitor progress, provide a specialists/network administrators along with specialists benchmark for risk analysis, and raise alerts when neces- from field, subject matter, and geography/cartography sary. The Handbook on the Management of Population areas, must be assembled and tasked with developing and Housing Censuses (United Nations, 2016) expands timelines for their pieces of the census timeline. Managers on these recommendations by (1) providing information should provide information on the major methodological on the Gantt chart, the primary tool for showing project and logistical differences between e- and PAPI-censuses. timelines, (2) listing activities that comprise census time- Refer to the previous New Technologies in Census Data lines, and (3) offering guidance on how to use these tools Collection STICs for more information on methodological for project control and risk management. These resources differences and logistical requirements. should be the first stop for any NSO management team requiring background on census timeline creation. 1 This technical note is part of a series on Select Topics in International Censuses (STIC), exploring matters of interest to the international statistical commu- nity. The U.S. Census Bureau helps countries improve their national statistical systems by engaging in capacity building to enhance statistical competencies in sustainable ways. Milestones are key to project management. They allow all of a traditional PAPI census timeline and the consequences the teams working on the census project to measure prog- of these dependencies should be familiar to experienced ress against a common standard. Monitoring milestones managers at NSOs. In a PAPI census, important decisions also helps to manage risk for parts of an e-census that are with far-reaching implications could be delayed or changes new to NSOs. In the context of the first deployment of an may be requested late in the census process. For example, e-census system, milestones can be used to: the addition of a question or a change in the geographic hierarchy of the country, while not ideal, could be accom- 1. Establish decision points, including features of the final modated so long as questionnaires or maps were not yet system. printed. 2. Discover and document the risks associated with sys- tem changes requested outside of the proper develop- Timeline for E-Censuses ment phase. The transition to e-censuses affects both the order of tasks and how they are dependent on each other. Dependencies Timeline for Paper Census between operational areas and the software/system Timeline development for a (PAPI) census can be a boiler- development team have a stronger effect on overall census plate task. Project management techniques dictate, how- progress. This section explains how to use key milestones ever,the that teams a timeline with the should exper tibese generated to produce from the ati melinethorough and otheras guideposts planning documents to work through is one anof thee-census first s tepstimeline. analysis of the component tasks of a project and informed toward an e-census. These phases can be used during the development of the estimates of the time required to complete those tasks. integrated e-census system: CensusTeams managers comprised should of so ftattemptware developers to produce and a complete, IT specialists/network administrators along with specialists from hierarchicalfield, subj ectroster matt ofe activitiesr, and geography/cartography that captures dependencies areas, must1. beScope: assembl Createed an ad project tasked documentwith developing to describe what along with duration estimates based on previous experi- the system will do and with which resources. timelines for their pieces of the census timeline. Managers should provide information on the major ence or best guesses. methodological and logistical differences between e- and PAPI-censuses.2. Business caseRefer and to therequirements: previous New Develop models and FigureTechnologies 1 shows thein Census traditional Data sequence Collection of STICs operations for more for informati onbusiness on methodologic rules to guideal diffe development.rences and logistical a PAPI census. The left column in Figure 1 shows three requirements. 3. Development: Write code and integrate subsystems. groups of activities that are part of the census lifecycle— populationMilestones and are housing key to prodataject production, management. frame They develop- allow all the4. teamsTesting working and validation: on the censu Debugs pro andjec timprove to measure system in ment,progress and publicity. against a Taskscommon from standard. each activity Monitoring group may milestones alsopreparation help to manage for deployment. risk for parts of an e-census overlap with each other because the operations are not that are new to NSOs. In the context of the first deployment of a n e-census system, milestones can be used to: sequentially interdependent. Within the groups, however, A major milestone occurs at the end of each of these phases, affecting both system developers and all other the major1. Establishoutputs for decision each task points represents, including an features input for of the final system. subsequent tasks. These start-stop dependencies are part teams working on the census. Aligning work streams 2. Discover and document the risks associated with system changes requested outside of the proper development phase. Figure 1. FigureSeque 1:nce Sequence of Operations of operations for for a a PAPI PAPI censusCensus Population and Questionnaire Field Data collection Analysis and Archiving and housing data Planning design operations and processing dissemination storage production Frame Demar- Field map Spatial data Listing development cation production update Concept Management Campaign Publicity development and production implementation Census Day Source: U.S. Census Bureau. Timeline for paper census Timeline development for a (PAPI) census can be a boilerplate task. Project management techniques dictate, however, that a timeline should be generated from a thorough analysis of the component tasks of a project and 2 informed estimates of the time required to complete those tasks. Census managers should attempt to produceU.S. Census a Bureau complete, hierarchical roster of activities that captures dependencies along with duration estimates based on previous experience or best guesses. Figure 1 shows the traditional sequence of operations for a PAPI census. The left column in Figure 1 shows three groups of activities that are part of the census lifecycle—Population and Hous ing Data Production, Frame Development, and Publicity. Tasks from each activity group may overlap with each other because the operations are not sequentially interdependent. Within the groups, however, the major outputs for each task represents an input for subsequent tasks. These start-stop dependencies are part of a traditional PAPI census timeline and the consequences of these dependencies should be familiar to experienced managers at NSOs. In a PAPI census, important decisions with far-reaching implications could be delayed or changes requested late in the census 2 between the system development team and teams working The Census Data Production rows of Figure
Recommended publications
  • DATA COLLECTION METHODS Section III 5
    AN OVERVIEW OF QUANTITATIVE AND QUALITATIVE DATA COLLECTION METHODS Section III 5. DATA COLLECTION METHODS: SOME TIPS AND COMPARISONS In the previous chapter, we identified two broad types of evaluation methodologies: quantitative and qualitative. In this section, we talk more about the debate over the relative virtues of these approaches and discuss some of the advantages and disadvantages of different types of instruments. In such a debate, two types of issues are considered: theoretical and practical. Theoretical Issues Most often these center on one of three topics: · The value of the types of data · The relative scientific rigor of the data · Basic, underlying philosophies of evaluation Value of the Data Quantitative and qualitative techniques provide a tradeoff between breadth and depth, and between generalizability and targeting to specific (sometimes very limited) populations. For example, a quantitative data collection methodology such as a sample survey of high school students who participated in a special science enrichment program can yield representative and broadly generalizable information about the proportion of participants who plan to major in science when they get to college and how this proportion differs by gender. But at best, the survey can elicit only a few, often superficial reasons for this gender difference. On the other hand, separate focus groups (a qualitative technique related to a group interview) conducted with small groups of men and women students will provide many more clues about gender differences in the choice of science majors, and the extent to which the special science program changed or reinforced attitudes. The focus group technique is, however, limited in the extent to which findings apply beyond the specific individuals included in the groups.
    [Show full text]
  • Data Extraction for Complex Meta-Analysis (Decimal) Guide
    Pedder, H. , Sarri, G., Keeney, E., Nunes, V., & Dias, S. (2016). Data extraction for complex meta-analysis (DECiMAL) guide. Systematic Reviews, 5, [212]. https://doi.org/10.1186/s13643-016-0368-4 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1186/s13643-016-0368-4 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via BioMed Central at http://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-016-0368-4. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Pedder et al. Systematic Reviews (2016) 5:212 DOI 10.1186/s13643-016-0368-4 RESEARCH Open Access Data extraction for complex meta-analysis (DECiMAL) guide Hugo Pedder1*, Grammati Sarri2, Edna Keeney3, Vanessa Nunes1 and Sofia Dias3 Abstract As more complex meta-analytical techniques such as network and multivariate meta-analyses become increasingly common, further pressures are placed on reviewers to extract data in a systematic and consistent manner. Failing to do this appropriately wastes time, resources and jeopardises accuracy. This guide (data extraction for complex meta-analysis (DECiMAL)) suggests a number of points to consider when collecting data, primarily aimed at systematic reviewers preparing data for meta-analysis.
    [Show full text]
  • Data Collection WP Template
    Distr. GENERAL 02 September 2013 WP 14 ENGLISH ONLY UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE CONFERENCE OF EUROPEAN STATISTICIANS Seminar on Statistical Data Collection (Geneva, Switzerland, 25-27 September 2013) Topic (ii): Managing data collection functions in a changing environment THE BUSINESS STATISTICAL PORTAL: A NEW WAY OF ORGANIZING AND MANAGING DATA COLLECTION PROCESSES FOR BUSINESS SURVEYS IN ISTAT Working Paper Prepared by Natale Renato Fazio, Manuela Murgia, Andrea Nunnari, ISTAT – Italian National Statistical Institute I. Introduction 1. A broad shift of the social and technological context requires ISTAT to modify the way data are collected in order to improve the efficiency in producing timely estimates and, at the same time, to increase or at least maintain the level of data quality, while reducing respondent burden. All of this, within a climate of general budgets cuts. 2. In 2010, as a way to deal with these challenges, a medium-long term project was launched (Stat2015), envisaging the gradual standardisation and industrialisation of the entire cycle of ISTAT statistical processes, according to a model based on a metadata-driven, service-oriented architecture. With regard to data collection, as well for the other production phases, Stat2015 aims at outlining strong enterprise architecture standards. 3. A first step along these lines was to develop a comprehensive set of requirements according to which select, design or further develop the IT tools supporting data collection. The requirements encompassed four areas, covering the main functions of the entire (data collection) process: i) Survey unit management, ii) Data collection management, iii) Questionnaire, iv) Communication facilities. 4. A significant contribution to the definition and implementation of these requirements came with the development of the new ISTAT Business Statistical Portal, a single entry point for Web-based data collection from enterprises, which is at the same time an attempt to streamline the organization and management of business surveys as a whole.
    [Show full text]
  • Standardization and Harmonization of Data and Data Collection Initiatives
    Conference of the Parties to the WHO Framework Convention on Tobacco Control Fourth session FCTC/COP/4/15 Punta del Este, Uruguay, 15–20 November 2010 15 August 2010 Provisional agenda item 6.2 Standardization and harmonization of data and data collection initiatives Report of the Convention Secretariat INTRODUCTION 1. At its third session (Durban, South Africa, 17–22 November 2008) the Conference of the Parties requested the Convention Secretariat to compile a report on data collection measures, in decision FCTC/COP3(17). The decision outlined the fact that this should be undertaken under the guidance of the Bureau, and with the assistance of competent authorities within WHO, in particular WHO’s Tobacco Free Initiative, as well as relevant intergovernmental and nongovernmental organizations with specific expertise in this area. Paragraph 6 of the decision stated that the report should cover measures: to improve the comparability of data over time; to standardize1 collected data within and between Parties; to develop indicators and definitions to be used by Parties’ national and international data collection initiatives; and to further harmonize2 with other data collection initiatives. 2. The request to provide such a report is in line with Article 23.5 of the Convention, which requires the Conference of the Parties to “keep under regular review the implementation of the Convention” and to “promote and guide the development and periodic refinement of comparable methodologies for research and the collection of data, in addition to those provided for in Article 20, relevant to the implementation of the Convention”. 1 Standardization: the adoption of generally accepted uniform technical specifications, criteria, methods, processes or practices to measure an item.
    [Show full text]
  • Data Collection and Analysis Plan FAMILY OPTIONS STUDY
    Data Collection and Analysis Plan FAMILY OPTIONS STUDY UU.S..S. DDepaepartmentrtment ofof HouHousingsing andand UrUrbanban DevDevelopelopmmentent || OOfficeffice ofof PolicPolicyy DevDevelopelopmentment andand ResReseaearchrch Visit PD&R’s website www.huduser.org to find this report and others sponsored by HUD’s Office of Policy Development and Research (PD&R). Other services of HUD USER, PD&R’s research information service, include listservs, special interest reports, bimonthly publications (best practices, significant studies from other sources), access to public use databases, and a hotline (800-245-2691) for help accessing the information you need. Data Collection and Analysis Plan FAMILY OPTIONS STUDY Prepared for: U.S. Department of Housing and Urban Development Washington, D.C. Prepared by: Abt Associates Inc. Daniel Gubits Michelle Wood Debi McInnis Scott Brown Brooke Spellman Stephen Bell In partnership with : Vanderbilt University Marybeth Shinn March 2013 Disclaimer Disclaimer The contents of this report are the views of the authors and do not necessarily reflect the views or policies of the U.S. Department of Housing and Urban Development or the U.S. Government. Family Options Study Data Collection and Analysis Plan Table of Contents Family Options Study Revised Data Collection and Analysis Plan Table of Contents Chapter 1. Introduction and Evaluation Design .................................................................................. 1 1.1 Overview and Objectives ........................................................................................................
    [Show full text]
  • Ground Data Collection and Use
    ANDREWS. BENSON WILLIAMC. DRAEGER LAWRENCER. PETTINGER University of California* Berkeley, Calif. 94720 Ground Data Collection and Use These are essential components of an agricultural resource survey. INTRODUCTION sions based on their efforts to perform re- HE IMPORTANCE OF collecting meaningful gional agricultural inventories in Maricopa T and timely ground data for resource in- County, Arizona, using space and high-alti- ventories which employ remote sensing tech- tude aerial photography, as part of an ongoing niques is often discussed, and appropriately NASA-sponsored research project (Draeger, so. However, those wishing to conduct inven- et a]., 1970). This paper draws upon examples tories frequently fail to devote as much time from this research. However, much of the dis- to the planning of field activities which occur cussion is relevant to other disciplines for in conjunction with an aircraft mission as which ground data is important. they do in planning the flight itself. As a re- sult. adequate remote sensing data mav be collected,-but no adequate sipporting infor- Preliminary evaluation of the geographical ABSTRACT:During the past two years, extensive studies have been conducted out in the Phoenix, Arizona area to ascertain the degree to which sequential high- altitude aircraft and spacecraft imagery can contribute to operational agri- cultural crop surveys. Data collected on the ground within the test site con- stituted an essential component of the three phases of the survey: (I)farniliariza- tion with the area and design of preliminary evalz~ationexperiments, (2) train- in,g of interpreters, and (3)providing the basis upon which image interpretation estimates can be adjusted and evaluated.
    [Show full text]
  • Design and Implementation of N-Of-1 Trials: a User's Guide
    Design and Implementation of N-of-1 Trials: A User’s Guide N of 1 The Agency for Healthcare Research and Quality’s (AHRQ) Effective Health Care Program conducts and supports research focused on the outcomes, effectiveness, comparative clinical effectiveness, and appropriateness of pharmaceuticals, devices, and health care services. More information on the Effective Health Care Program and electronic copies of this report can be found at www.effectivehealthcare.ahrq. gov. This report was produced under contract to AHRQ by the Brigham and Women’s Hospital DEcIDE (Developing Evidence to Inform Decisions about Effectiveness) Methods Center under Contract No. 290-2005-0016-I. The AHRQ Task Order Officer for this project was Parivash Nourjah, Ph.D. The findings and conclusions in this document are those of the authors, who are responsible for its contents; the findings and conclusions do not necessarily represent the views ofAHRQ or the U.S. Department of Health and Human Services. Therefore, no statement in this report should be construed as an official position of AHRQ or the U.S. Department of Health and Human Services. Persons using assistive technology may not be able to fully access information in this report. For assistance contact [email protected]. The following investigators acknowledge financial support: Dr. Naihua Duan was supported in part by NIH grants 1 R01 NR013938 and 7 P30 MH090322, Dr. Heather Kaplan is part of the investigator team that designed and developed the MyIBD platform, and this work was supported in part by Cincinnati Children’s Hospital Medical Center. Dr. Richard Kravitz was supported in part by National Institute of Nursing Research Grant R01 NR01393801.
    [Show full text]
  • Collapsing the Distinction Between Experimentation and Treatment in the Regulation of New Drugs
    File: LAAKMANN EIC PUBLISH.doc Created on: 3/30/2011 4:56:00 PM Last Printed: 4/7/2011 11:58:00 AM COLLAPSING THE DISTINCTION BETWEEN EXPERIMENTATION AND TREATMENT IN THE REGULATION OF NEW DRUGS Anna B. Laakmann* The explosion of scientific knowledge in recent decades has simulta- neously increased pressure on the Food and Drug Administration (FDA) both to expedite market entry of promising medical breakthroughs and to safeguard the public from harms caused by new products. Ironically, as the FDA and drug manufacturers spend huge sums in the premarketing phase gathering and interpreting data from planned trials, an enormous amount of valuable information about postmarketing clinical experiences with FDA-regulated drugs is not being effectively captured. The Article asserts that the FDA should formally recognize the blurred line between experimentation and treatment by adopting a more fluid approach to its review of new medical technologies. It argues that the FDA should shift its focus toward harnessing and distilling accumulated experiential knowledge about the effects of new drugs so as to enable patients and doctors to make rational treatment decisions based on inevitably imperfect information. The Article sets forth an alternative regulatory approach that seamlessly incor- porates prospective outcomes data into the FDA drug review process. This approach would be facilitated by the creation of a centralized database that serves as a clearinghouse of information about treatment outcomes. The proposed scheme would help to address current failures in the imple- mentation of the agency’s “fast-track” programs. More broadly, it could serve as the instrumentality to effectuate a shift in the perceived role of the FDA from market gatekeeper to consolidator and purveyor of information about drug safety and efficacy.
    [Show full text]
  • (EPOC) Data Collection Checklist
    Cochrane Effective Practice and Organisation of Care Review Group DATA COLLECTION CHECKLIST Page 2 Cochrane Effective Practice and Organisation of Care Review Group (EPOC) Data Collection Checklist CONTENTS Item Page Introduction 5-6 1 Inclusion criteria* 7-8 1.1 Study design* 7 1.1.1 Randomised controlled trial* 1.1.2 Controlled clinical trial* 1.1.3 Controlled before and after study* 1.1.4 Interrupted time series* 1.2 Methodological inclusion criteria* 8 2 Interventions* 9-12 2.1 Type of intervention 9 2.1.1 Professional interventions* 9 2.1.2 Financial interventions* 10 2.1.2.1 Provider interventions* 2.1.2.2 Patient interventions* 2.1.3 Organisational interventions* 11 2.1.3.1 Provider orientated interventions* 2.1.3.2 Patient orientated interventions* 2.1.3.3 Structural interventions* 2.1.4 Regulatory interventions* 12 2.2 Controls* 13 3 Type of targeted behaviour* 13 4 Participants* 14-15 4.1 Characteristics of participating providers* 14 4.1.1 Profession* Item Page Page 3 4.1.2 Level of training* 4.1.3 Clinical speciality* 4.1.4 Age 4.1.5 Time since graduation 4.2 Characteristics of participating patients* 15 4.2.1 Clinical problem* 4.2.2 Other patient characteristics 4.2.3 Number of patients included in the study* 5 Setting* 16 5.1 Reimbursement system 5.2 Location of care* 5.3 Academic Status* 5.4 Country* 5.5 Proportion of eligible providers from the sampling frame* 6 Methods* 17 6.1 Unit of allocation* 6.2 Unit of analysis* 6.3 Power calculation* 6.4 Quality criteria* 17-22 6.4.1 Quality criteria for randomised controlled trials
    [Show full text]
  • Patient Reported Outcomes (PROS) in Performance Measurement
    Patient-Reported Outcomes Table of Contents Introduction ............................................................................................................................................ 2 Defining Patient-Reported Outcomes ............................................................................................ 2 How Are PROs Used? ............................................................................................................................ 3 Measuring research study endpoints ........................................................................................................ 3 Monitoring adverse events in clinical research ..................................................................................... 3 Monitoring symptoms, patient satisfaction, and health care performance ................................ 3 Example from the NIH Collaboratory ................................................................................................................... 4 Measuring PROs: Instruments, Item Banks, and Devices ....................................................... 5 PRO Instruments ............................................................................................................................................... 5 Item Banks........................................................................................................................................................... 8 Devices .................................................................................................................................................................
    [Show full text]
  • Reasoning with Qualitative Data: Using Retroduction with Transcript Data
    Reasoning With Qualitative Data: Using Retroduction With Transcript Data © 2019 SAGE Publications, Ltd. All Rights Reserved. This PDF has been generated from SAGE Research Methods Datasets. SAGE SAGE Research Methods Datasets Part 2019 SAGE Publications, Ltd. All Rights Reserved. 2 Reasoning With Qualitative Data: Using Retroduction With Transcript Data Student Guide Introduction This example illustrates how different forms of reasoning can be used to analyse a given set of qualitative data. In this case, I look at transcripts from semi-structured interviews to illustrate how three common approaches to reasoning can be used. The first type (deductive approaches) applies pre-existing analytical concepts to data, the second type (inductive reasoning) draws analytical concepts from the data, and the third type (retroductive reasoning) uses the data to develop new concepts and understandings about the issues. The data source – a set of recorded interviews of teachers and students from the field of Higher Education – was collated by Dr. Christian Beighton as part of a research project designed to inform teacher educators about pedagogies of academic writing. Interview Transcripts Interviews, and their transcripts, are arguably the most common data collection tool used in qualitative research. This is because, while they have many drawbacks, they offer many advantages. Relatively easy to plan and prepare, interviews can be flexible: They are usually one-to one but do not have to be so; they can follow pre-arranged questions, but again this is not essential; and unlike more impersonal ways of collecting data (e.g., surveys or observation), they Page 2 of 13 Reasoning With Qualitative Data: Using Retroduction With Transcript Data SAGE SAGE Research Methods Datasets Part 2019 SAGE Publications, Ltd.
    [Show full text]
  • Chapter 5 Statistical Inference
    Chapter 5 Statistical Inference CHAPTER OUTLINE Section 1 Why Do We Need Statistics? Section 2 Inference Using a Probability Model Section 3 Statistical Models Section 4 Data Collection Section 5 Some Basic Inferences In this chapter, we begin our discussion of statistical inference. Probability theory is primarily concerned with calculating various quantities associated with a probability model. This requires that we know what the correct probability model is. In applica- tions, this is often not the case, and the best we can say is that the correct probability measure to use is in a set of possible probability measures. We refer to this collection as the statistical model. So, in a sense, our uncertainty has increased; not only do we have the uncertainty associated with an outcome or response as described by a probability measure, but now we are also uncertain about what the probability measure is. Statistical inference is concerned with making statements or inferences about char- acteristics of the true underlying probability measure. Of course, these inferences must be based on some kind of information; the statistical model makes up part of it. Another important part of the information will be given by an observed outcome or response, which we refer to as the data. Inferences then take the form of various statements about the true underlying probability measure from which the data were obtained. These take a variety of forms, which we refer to as types of inferences. The role of this chapter is to introduce the basic concepts and ideas of statistical inference. The most prominent approaches to inference are discussed in Chapters 6, 7, and 8.
    [Show full text]