A Web Server for Rapid NMR-Based Protein Structure Determination Berjanskii, M.; Tang, P.; Liang, J.; Cruz, J

Total Page:16

File Type:pdf, Size:1020Kb

A Web Server for Rapid NMR-Based Protein Structure Determination Berjanskii, M.; Tang, P.; Liang, J.; Cruz, J NRC Publications Archive Archives des publications du CNRC GeNMR: a web server for rapid NMR-based protein structure determination Berjanskii, M.; Tang, P.; Liang, J.; Cruz, J. A.; Zhou, J.; Zhou, Y.; Bassett, E.; Macdonell, C.; Lu, P.; Lin, G.; Wishart, D. S. This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous. Publisher’s version / Version de l'éditeur: https://doi.org/10.1093/nar/gkp280 Nucleic Acids Research, 37, Suppl. 2, pp. W670-W677, 2009-07-01 NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=8c24f92f-5a63-4bc9-9510-868e720b942e https://publications-cnrc.canada.ca/fra/voir/objet/?id=8c24f92f-5a63-4bc9-9510-868e720b942e Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB. Questions? Contact the NRC Publications Archive team at [email protected]. If you wish to email the authors directly, please see the first page of the publication for their contact information. Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à [email protected]. W670–W677 Nucleic Acids Research, 2009, Vol. 37, Web Server issue Published online 30 April 2009 doi:10.1093/nar/gkp280 GeNMR: a web server for rapid NMR-based protein structure determination Downloaded from https://academic.oup.com/nar/article-abstract/37/suppl_2/W670/1126378 by National Research Council Canada user on 21 January 2019 January 21 user on Canada Council Research National by https://academic.oup.com/nar/article-abstract/37/suppl_2/W670/1126378 from Downloaded Mark Berjanskii1, Peter Tang1, Jack Liang1, Joseph A. Cruz1, Jianjun Zhou1, You Zhou1, Edward Bassett1, Cam MacDonell1, Paul Lu1, Guohui Lin1 and David S. Wishart1,2,3,* 1Department of Computing Science, 2Department of Biological Sciences, University of Alberta and 3National Research Council, National Institute for Nanotechnology (NINT), Edmonton, AB, Canada T6G 2E8 Received February 9, 2009; Revised April 2, 2009; Accepted April 14, 2009 ABSTRACT INTRODUCTION GeNMR (GEnerate NMR structures) is a web server Nuclear magnetic resonance (NMR) spectroscopy, along for rapidly generating accurate 3D protein struc- with X-ray crystallography, is one of only two methods tures using sequence data, NOE-based dis- that can be used to determine the 3D structures of proteins tance restraints and/or NMR chemical shifts as to atomic resolution. To date, nearly 8000 peptide and input. GeNMR accepts distance restraints in protein structures have been determined by NMR and deposited into the PDB (1). The standard route to deter- XPLOR or CYANA format as well as chemical shift mine protein structures by NMR involves three basic files in either SHIFTY or BMRB formats. The web steps: (i) determining the chemical shift assignments of server produces an ensemble of PDB coordinates the target protein; (ii) measuring the inter- and intra- for the protein within 15–25 min, depending on residue 1H NOEs (nuclear Overhauser enhancements) to model complexity and completeness of experimen- generate distance constraints; and (iii) using the NOE- tal restraints. GeNMR uses a pipeline of several derived constraints to perform simulated annealing or dis- pre-existing programs and servers to calculate the tance geometry to calculate the 3D structure of the protein actual protein structure. In particular, GeNMR com- (2). The last step in this process is very computationally bines genetic algorithms for structure optimization demanding and requires very specialized software and sig- along with homology modeling, chemical shift nificant computational resources. Over the past 20 years, a threading, torsion angle and distance predictions number of stand-alone programs have been specifically from chemical shifts/NOEs as well as ROSETTA- developed to facilitate these calculations including, based structure generation and simulated annealing DYANA (3), CYANA (4), XPLOR-NIH (5), CNS with XPLOR-NIH to generate and/or refine protein (6) and ARIA (7). All of these programs are excellent at coordinates. GeNMR greatly simplifies the task what they do, and all have been extensively tested. However, they are also somewhat unwieldy, platform- of protein structure determination as users do not specific software packages that are difficult to learn or have to install or become familiar with complex use. Furthermore, these programs work almost exclusively stand-alone programs or obscure format conver- with NOE data and most of them do not take advantage sion utilities. Tests conducted on a sample of of chemical shift information in their structure refinement 90 proteins from the BioMagResBank indicate that process. Likewise, they do not incorporate a number of GeNMR produces high-quality models for all protein widely used structural informatics techniques such as queries, regardless of the type of NMR input data. threading, fragment-based assembly or homology model- GeNMR was developed to facilitate rapid, user- ing to accelerate the structure determination process. friendly structure determination of protein struc- Consequently, these programs often require many CPU tures via NMR spectroscopy. GeNMR is accessible hours of dedicated calculation and refinement to complete at http://www.genmr.ca. their tasks. *To whom correspondence should be addressed. Tel: +780 492 0383; Fax: +780 492 5305; Email: [email protected] ß 2009 The Author(s) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Nucleic Acids Research, 2009, Vol. 37, Web Server issue W671 While most NMR-based structure determination packages use NOE data almost exclusively, it has recently been shown that it is possible to determine protein struc- tures using only chemical shift data (i.e. without NOEs). Indeed, several stand-alone programs and web servers 2019 January 21 user on Canada Council Research National by https://academic.oup.com/nar/article-abstract/37/suppl_2/W670/1126378 from Downloaded have been developed for this purpose, including Cheshire (8), CS-Rosetta (9) and CS23D (10). However, chemical shift-based structure determination is not as robust or as rapid as NOE-based structure determination—especially for novel protein folds (10) or large structures (8,9). Indeed, some of these programs take hundreds or even thousands of CPU hours to complete their calculations. Furthermore, none of these shift-based structure determination techniques takes advantage of the additional information contained in NOE constraint data. Ideally, what is needed for NMR-based structure deter- mination is a tool that is: (i) easy to use (a ‘single click’ solution); (ii) platform independent (a web server); (iii) fast (generating structures in minutes, not hours); (iv) capable of handling both NOE and chemical shift data; and (v) smart enough to perform the NMR equiva- lent of ‘molecular replacement’ by taking advantage of well-known structural bioinformatics techniques such as threading, homology modeling and fragment-based assembly. Here, we wish to describe a simple web server, called GeNMR, that addresses these needs. In particular, Figure 1. A flow chart outlining the general structure of the GeNMR GeNMR is a next generation, highly generalizable system web server and the programs that it calls to generate protein structures for rapidly generating protein structures by NMR using a from chemical shift and/or NOE data. The specific function of each of the named programs is explained in the text. combination of genetic algorithms and simulated anneal- ing. It allows the rapid (15 min) and accurate determi- the (common) situation where there are missing NOE or nation of protein structures using any combination of chemical shift assignments. Without the complete protein chemical shifts and/or NOEs as input. GeNMR builds sequence, GeNMR would typically generate concatenated on nearly 15 years of research in our lab related to using (i.e. incorrect) structures in the regions where NOE or chemical shifts and other NMR data to identify protein chemical shift data was missing. secondary structures (11), to predict torsion angles (12), to The sequence, chemical shift and/or NOE files may be identify protein folds (13), to predict protein flexibility either pasted or typed into the text box or uploaded (14) and to calculate protein structures (10). GeNMR through a file browse
Recommended publications
  • Accurate and Automated Classification of Protein Secondary Structure with Psicsi
    Accurate and automated classification of protein secondary structure with PsiCSI LING-HONG HUNG AND RAM SAMUDRALA Computational Genomics, Department of Microbiology, University of Washington, Seattle, Washington 98109, USA (RECEIVED July 2, 2002; FINAL REVISION October 18, 2002; ACCEPTED October 31, 2002) Abstract PsiCSI is a highly accurate and automated method of assigning secondary structure from NMR data, which is a useful intermediate step in the determination of tertiary structures. The method combines information from chemical shifts and protein sequence using three layers of neural networks. Training and testing was performed on a suite of 92 proteins (9437 residues) with known secondary and tertiary structure. Using a stringent cross-validation procedure in which the target and homologous proteins were removed from the databases used for training the neural networks, an average 89% Q3 accuracy (per residue) was observed. This is an increase of 6.2% and 5.5% (representing 36% and 33% fewer errors) over methods that use chemical shifts (CSI) or sequence information (Psipred) alone. In addition, PsiCSI improves upon the and is able to use sequence (87.4% ס translation of chemical shift information to secondary structure (Q3 without 13C shifts and 86.9% ס information as an effective substitute for sparse NMR data (Q3 with only H␣ shifts available). Finally, errors made by PsiCSI almost exclusively involve the 86.8% ס Q3 interchange of helix or strand with coil and not helix with strand (<2.5 occurrences per 10000 residues). The automation, increased accuracy, absence of gross errors, and robustness with regards to sparse data make PsiCSI ideal for high-throughput applications, and should improve the effectiveness of hybrid NMR/de novo structure determination methods.
    [Show full text]
  • Chemical Shift Secondary Structure Population Inference
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.20.432095; this version posted February 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 CheSPI: Chemical shift Secondary structure Population Inference Jakob Toudahl Nielsen1* and Frans A.A. Mulder1* 1Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds VeJ 14, 8000 Aarhus C, Denmark *Correspondence to: [email protected], [email protected] ORCID: Jtn http://orcid.org/0000-0002-9554-4662 faam http://orcid.org/0000-0001-9427-8406 Keywords: NMR, protein, order, disorder, chemical shifts Abstract NMR chemical shifts (CSs) are delicate reporters of local protein structure, and recent advances in random coil CS (RCCS) prediction and interpretation now offer the compelling prospect of inferring small populations of structure from small deviations from RCCSs. Here, we present CheSPI, a simple and efficient method that provides unbiased and sensitive aggregate measures of local structure and disorder. It is demonstrated that CheSPI can predict even very small amounts of residual structure and robustly delineate subtle differences into four structural classes for intrinsically disordered proteins. For structured regions and proteins, CheSPI can assign up to eight structural classes, which coincide with the well-known DSSP classification. The program is freely available, and can either be invoked from URL www.protein-nmr.org as a web implementation, or run locally from command line as a python program.
    [Show full text]
  • CSI 3.0: a Web Server for Identifying Secondary and Super-Secondary Structure in Proteins Using NMR Chemical Shifts Noor E
    W370–W377 Nucleic Acids Research, 2015, Vol. 43, Web Server issue Published online 15 May 2015 doi: 10.1093/nar/gkv494 CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts Noor E. Hafsa1, David Arndt1 and David S. Wishart1,2,* 1Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada and 2Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada Received March 10, 2015; Revised April 23, 2015; Accepted May 02, 2015 ABSTRACT ture elements has long been an integral part of the pro- tein structure determination process. This is particularly The Chemical Shift Index or CSI 3.0 (http://csi3. true for nuclear magnetic resonance (NMR)-based protein wishartlab.com) is a web server designed to accu- structure determination where secondary structure is used rately identify the location of secondary and super- to help in structure generation and refinement (2,3). In pro- secondary structures in protein chains using only tein NMR, secondary structures are traditionally identi- nuclear magnetic resonance (NMR) backbone chem- fied and assigned using NOE-based (Nuclear Overhauser ical shifts and their corresponding protein sequence Effect) methods. By manually analyzing the positions and data. Unlike earlier versions of CSI, which only iden- patterns of weak, medium or strong NOEs it is possible to tified three types of secondary structure (helix, ␤- identify helices, ␤-turns and ␤-stands with reasonably good strand and coil), CSI 3.0 now identifies total of 11 accuracy. Even today NOE pattern measurements continue types of secondary and super-secondary structures, to be the most commonly used method for identifying sec- ondary structures in peptides and proteins (2).
    [Show full text]
  • BMC Structural Biology Biomed Central
    BMC Structural Biology BioMed Central Research article Open Access Relationship between chemical shift value and accessible surface area for all amino acid atoms Wim F Vranken*1 and Wolfgang Rieping2 Address: 1Protein Databank Europe, European Bioinformatics Institute, Cambridge, UK and 2Department of Biochemistry, University of Cambridge, Cambridge, UK Email: Wim F Vranken* - [email protected]; Wolfgang Rieping - [email protected] * Corresponding author Published: 2 April 2009 Received: 12 November 2008 Accepted: 2 April 2009 BMC Structural Biology 2009, 9:20 doi:10.1186/1472-6807-9-20 This article is available from: http://www.biomedcentral.com/1472-6807/9/20 © 2009 Vranken and Rieping; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Chemical shifts obtained from NMR experiments are an important tool in determining secondary, even tertiary, protein structure. The main repository for chemical shift data is the BioMagResBank, which provides NMR-STAR files with this type of information. However, it is not trivial to link this information to available coordinate data from the PDB for non-backbone atoms due to atom and chain naming differences, as well as sequence numbering changes. Results: We here describe the analysis of a consistent set of chemical shift and coordinate data, in which we focus on the relationship between the per-atom solvent accessible surface area (ASA) in the reported coordinates and their reported chemical shift value.
    [Show full text]
  • Noor E Hafsa
    Protein Structure Characterization From NMR Chemical Shifts by Noor E Hafsa A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Computing Science University of Alberta © Noor E Hafsa, 2016 Abstract In order to understand the complex biological functions of proteins, highly detailed, atomic resolution protein structures are needed. Experimental methods such as X-ray crystallography and NMR spectroscopy provide standard platforms for determining the atomic-resolution structures of proteins. However, a continuing bottleneck in conventional NOE-based NMR structure determination lies in the difficulty of measuring NOEs for medium-to-large proteins and the resulting time-costs and the corresponding reduction in structure accuracy and precision. This has led to an increased interest in using other easily identifiable NMR parameters, such as chemical shifts, to facilitate protein structure determination by NMR. Chemical shifts, often considered as mileposts of NMR, have long been used to decipher the structures of small molecules. However, chemical shifts are much less frequently utilized for structural interpretation of larger macromolecules such as peptides and proteins. Most existing macromolecular methods use chemical shifts and various heuristic, rule-based algorithms to identify and determine a small number of structural parameters (such as secondary structure). Other methods, such as CS-Rosetta and CS23D, which attempt to determine 3D structures from chemical shifts alone, are only modestly successful (~50% success). So while good progress has been made, I believe that there is still substantial room for improvement and that the “Shift-to- Structure” problem has not yet been fully solved. My PhD project involves investigating innovative computational and machine- learning approaches to develop chemical-shift based prediction models to determine protein structures with high efficiency and high accuracy (>90%).
    [Show full text]
  • An Efficient Backbone Assignment Tool for NMR Studies of Proteins
    Reduced Dimensionality (4,3)D-hnCOCANH Experiment: An Efficient Backbone Assignment tool for NMR studies of Proteins Dinesh Kumar* Centre of Biomedical Magnetic Resonance, SGPGIMS Campus, Raibareli Road, Lucknow-226014, India; *Email: [email protected] KEYWORDS: Multidimensional NMR; Backbone Assignment; hncoCANH, hnCOcaNH; Sequential Correlations. ABBREVIATIONS: NMR, Nuclear Magnetic Resonance; HSQC, Heteronuclear Single Quantum Correlation; CARA, Computer Aided Resonance Assignment; RD: Reduced dimensionality. 1 Abstract: Sequence specific resonance assignment and secondary structure determination of proteins form the basis for variety of structural and functional proteomics studies by NMR. In this context, an efficient standalone method for rapid assignment of backbone (1H, 15N, 13C and 13C') resonances and secondary structure determination of proteins has been presented here. Compared to currently available strategies used for the purpose, the method employs only a single reduced dimensionality (RD) experiment -(4,3)D-hnCOCANH and exploits the linear combinations of backbone (13C and 13C') chemical shifts to achieve a dispersion relatively better compared to those of individual chemical shifts (see the text) for efficient and rapid data analysis. Further, the experiment leads to the spectrum with direct distinction of self (intra-residue) and sequential (inter-residue) carbon correlation peaks; these appear opposite in signs and therefore can easily be discriminated without using an additional complementary experiment. On top of
    [Show full text]
  • Bioinformatics Methods for NMR Chemical Shift Data
    Bioinformatics Methods for NMR Chemical Shift Data Dissertation an der Fakult¨at fur¨ Mathematik, Informatik und Statistik der Ludwig-Maximilians-Universit¨at Munchen¨ Simon W. Ginzinger vorgelegt am 24.10.2007 Erster Gutachter: Prof. Dr. Volker Heun, Ludwig-Maximilians-Universit¨at Munchen¨ Zweiter Gutachter: Prof. Dr. Robert Konrat, Universit¨at Wien Rigorosum: 8. Februar 2008 Kurzfassung Die nukleare Magnetresonanz-Spektroskopie (NMR) ist eine der wichtigsten Meth- oden, um die drei-dimensionale Struktur von Biomolekulen¨ zu bestimmen. Trotz großer Fortschritte in der Methodik der NMR ist die Aufl¨osung einer Protein- struktur immer noch eine komplizierte und zeitraubende Aufgabe. Das Ziel dieser Doktorarbeit ist es, Bioinformatik-Methoden zu entwickeln, die den Prozess der Strukturaufkl¨arung durch NMR erheblich beschleunigen k¨onnen. Zu diesem Zweck konzentriert sich diese Arbeit auf bestimmte Messdaten aus der NMR, die so genannten chemischen Verschiebungen. Chemische Verschiebungen werden standardm¨aßig zu Beginn einer Struktur- aufl¨osung bestimmt. Wie alle Labordaten k¨onnen chemische Verschiebungen Fehler enthalten, die die Analyse erschweren, wenn nicht sogar unm¨oglich machen. Als erstes Resultat dieser Arbeit wird darum CheckShift pr¨asentiert, eine Meth- ode, die es erm¨oglich einen weit verbreiteten Fehler in chemischen Verschiebungs- daten automatisch zu korrigieren. Das Hauptziel dieser Doktorarbeit ist es jedoch, strukturelle Informationen aus chemischen Verschiebungen zu extrahieren. Als erster Schritt in diese Richtung wurde SimShift entwickelt. SimShift erm¨oglicht es zum ersten Mal, strukturelle Ahnlichkeiten¨ zwischen Proteinen basierend auf chemischen Verschiebungen zu identifizieren. Der Vergleich zu Methoden, die nur auf der Aminos¨aurensequenz basieren, zeigt die Uberlegenheit¨ des verschiebungsbasierten Ansatzes. Als eine naturliche¨ Erweiterung des paarweisen Vergleichs von Proteinen wird darauf fol- gend SimShiftDB vorgestellt.
    [Show full text]
  • Anna Katharina Dehof Novel Approaches for Bond Order Assignment and NMR Shift Prediction
    Anna Katharina Dehof Novel Approaches for Bond Order Assignment and NMR Shift Prediction Novel Approaches for Bond Order Assignment and NMR Shift Prediction Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) der Naturwissenschaftlich–Technischen Fakult¨at I – Mathematik und Informatik – der Universit¨at des Saarlandes vorgelegt von Anna Katharina Dehof, M.Sc. Saarbr¨ucken 2011 c 2011 Anna Katharina Dehof Covergestaltung und Titelbild: c 2011 Anna Katharina Dehof, BALL developer team, http://www.ball-project.org Herstellung und Verlag: Books on Demand GmbH, Norderstedt ISBN 978-3-8482-0773-2 Bibliografische Informationen der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliografische Daten sind im Internetuber ¨ http://dnb.d-ndb.de abrufbar. Tag des Kolloquiums 15.03.2012 Dekan Prof. Dr. Holger Hermanns Berichterstatter Prof. Dr. Hans-Peter Lenhof Prof. Dr. Sebastian B¨ocker Vorsitz Prof. Dr. Philipp Slusallek Akad. Mitarbeiter Dr. Oliver M¨uller Eidesstattliche Versicherung Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstst¨andig und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quellen oder indirekt ubernommenen¨ Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ¨ahnlicher Form in einem Verfahren zur Erlangung eines akademischen Grades vorgelegt. Saarbr¨ucken, den 17. November 2011 (Anna Katharina Dehof) Abstract Molecular modelling is one of the cornerstones of modern biological and pharmaceutical research. Accurate modelling approaches easily become computationally overwhelming and thus, different levels of approximations are typically employed. In this work, we develop such approximation approaches for problems arising in structural bioinformatics.
    [Show full text]
  • Equilibrium Simulations of Proteins Using Molecular Fragment Replacement and NMR Chemical Shifts
    Equilibrium simulations of proteins using molecular fragment replacement and NMR chemical shifts Wouter Boomsmaa,1,2, Pengfei Tianb,1, Jes Frellsenc, Jesper Ferkinghoff-Borgd, Thomas Hamelrycka, Kresten Lindorff-Larsena, and Michele Vendruscoloe,2 aDepartment of Biology, University of Copenhagen, 2200 Copenhagen, Denmark; bNiels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark; cDepartment of Engineering, University of Cambridge, Cambridge, CB2 1PZ, United Kingdom; dBiotech Research and Innovation Center, University of Copenhagen, Technical University of Denmark Campus, 2800 Kongens Lyngby, Denmark; and eDepartment of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom Edited by José N. Onuchic, Rice University, Houston, TX, and approved August 7, 2014 (received for review March 18, 2014) Methods of protein structure determination based on NMR chemical data provide information primarily about local structural prop- shifts are becoming increasingly common. The most widely used erties of a molecule. In such cases, without modifying the force approaches adopt the molecular fragment replacement strat- field, the data can be integrated directly in the sampling pro- egy, in which structural fragments are repeatedly reassembled cedure, which can dramatically increase the efficiency of the into different complete conformations in molecular simulations. simulations. For instance, local structural information can be Although these approaches are effective in generating individual integrated into the simulations
    [Show full text]
  • An Overview of Tools for the Validation of Protein NMR Structures
    J Biomol NMR (2014) 58:259–285 DOI 10.1007/s10858-013-9750-x ARTICLE An overview of tools for the validation of protein NMR structures Geerten W. Vuister • Rasmus H. Fogh • Pieter M. S. Hendrickx • Jurgen F. Doreleijers • Aleksandras Gutmanas Received: 27 March 2013 / Accepted: 4 June 2013 / Published online: 23 July 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract Biomolecular structures at atomic resolution examples from the PDB: a small, globular monomeric present a valuable resource for the understanding of biol- protein (Staphylococcal nuclease from S. aureus, PDB ogy. NMR spectroscopy accounts for 11 % of all structures entry 2kq3) and a small, symmetric homodimeric protein (a in the PDB repository. In response to serious problems with region of human myosin-X, PDB entry 2lw9). the accuracy of some of the NMR-derived structures and in order to facilitate proper analysis of the experimental Keywords NMR Á Structure Á Validation Á Restraints Á models, a number of program suites are available. We Quality Á Program Á Review Á Chemical shifts discuss nine of these tools in this review: PROCHECK- NMR, PSVS, GLM-RMSD, CING, Molprobity, Vivaldi, ResProx, NMR constraints analyzer and QMEAN. We Introduction evaluate these programs for their ability to assess the structural quality, restraints and their violations, chemical Biomolecular structures at atomic resolution are crucial for shifts, peaks and the handling of multi-model NMR interpreting cellular processes in a molecular context. In ensembles. We document both the input required by the addition, they serve important roles in drug discovery and programs and output they generate.
    [Show full text]
  • Model-Based Assignment and Inference of Protein Backbone Nuclear Magnetic Resonances
    Model-based assignment and inference of protein backbone nuclear magnetic resonances. Olga Vitek∗ Jan Vitek† Bruce Craig∗ Chris Bailey-Kellogg†‡ Abstract Nuclear Magnetic Resonance (NMR) spectroscopy is a key experimental technique used to study protein structure, dynamics, and interactions. NMR methods face the bottleneck of spectral analysis, in particular determining the resonance assignment, which helps define the mapping between atoms in the protein and peaks in the spectra. A substantial amount of noise in spectral data, along with ambiguities in interpretation, make this analysis a daunting task, and there exists no generally accepted measure of uncertainty associated with the resulting solutions. This paper develops a model- based inference approach that addresses the problem of characterizing uncertainty in backbone resonance assignment. We argue that NMR spectra are subject to random variation, and ignoring this stochasticity can lead to false optimism and erroneous conclusions. We propose a Bayesian statistical model that accounts for various sources of uncertainty and provides an automatable framework for inference. While assignment has previously been viewed as a deterministic optimization problem, we demonstrate the importance of considering all solutions consistent with the data, and develop an algorithm to search this space within our statistical framework. Our approach is able to characterize the uncertainty associated with backbone resonance assignment in several ways: 1) it quantifies of uncertainty in the individually assigned resonances in terms of their posterior standard deviations; 2) it assesses the information content in the data with a posterior distribution of plausible assignments; and 3) it provides a measure of the overall plausibility of assignments. We demonstrate the value of our approach in a study of experimental data from two proteins, Human Ubiquitin and Cold-shock protein A from E.
    [Show full text]
  • NMR Study of the Secondary Structure and Biopharmaceutical Formulation of an Active Branched Antimicrobial Peptide
    molecules Article NMR Study of the Secondary Structure and Biopharmaceutical Formulation of an Active Branched Antimicrobial Peptide Francesca Castiglia 1, Fabrizia Zevolini 1, Giulia Riolo 1, Jlenia Brunetti 1 , Alessandra De Lazzari 2, Alberto Moretto 2, Giulia Manetto 2, Marco Fragai 3, Jenny Algotsson 4, Johan Evenäs 4, Luisa Bracci 1,5, Alessandro Pini 1,5 and Chiara Falciani 1,5,* 1 Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; [email protected] (F.C.); [email protected] (F.Z.); [email protected] (G.R.); [email protected] (J.B.); [email protected] (L.B.); [email protected] (A.P.) 2 Zambon S.p.a, Via della Chimica, 9. 36100 Vicenza, Italy; [email protected] (A.D.L.); [email protected] (A.M.); [email protected] (G.M.) 3 Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, 50019 Sesto Fiorentino (Firenze), Italy; [email protected]fi.it 4 Red Glead Discovery AB, Medicon Village, 223 81 Lund, Sweden; [email protected] (J.A.); [email protected] (J.E.) 5 SetLance srl, via Aldo Moro 2, 53100 Siena, Italy * Correspondence: [email protected]; Tel.: +0039-577-232022 Academic Editor: Hirokazu Tamamura Received: 15 October 2019; Accepted: 20 November 2019; Published: 25 November 2019 Abstract: The synthetic antimicrobial peptide SET-M33 is being developed as a possible new antibacterial candidate for the treatment of multi-drug resistant bacteria. SET-M33 is a branched peptide featuring higher resistance and bioavailability than its linear analogues.
    [Show full text]