Characteristics of Vesicomyid Clams and Their Environment at the Blake Ridge Cold Seep

Total Page:16

File Type:pdf, Size:1020Kb

Characteristics of Vesicomyid Clams and Their Environment at the Blake Ridge Cold Seep W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2005 Characteristics of Vesicomyid Clams and their Environment at the Blake Ridge Cold Seep Taylor Perrine Heyl College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Fresh Water Studies Commons, Marine Biology Commons, and the Oceanography Commons Recommended Citation Heyl, Taylor Perrine, "Characteristics of Vesicomyid Clams and their Environment at the Blake Ridge Cold Seep" (2005). Dissertations, Theses, and Masters Projects. Paper 1539626834. https://dx.doi.org/doi:10.21220/s2-vdv4-1352 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. CHARACTERISTICS OF VESICOMYID CLAMS AND THEIR ENVIRONMENT AT THE BLAKE RIDGE COLD SEEP A Thesis Presented to The Faculty of the Department of Biology The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Master of Science by Taylor Perrine Heyl 2 0 0 4 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science Taylor Perrine Heyl Approved by the Committee, December 2004 Dr CindyNbee Van Dover, Chair Professor, Biology Departmem, College of William and Dr © g e r Mann, Professor, Virginia Institute of Marine Science Dr Randy M. Chambers, Biology Department, College of William and Mary To my father, Captain Phillip J. Heyl, who taught me to accept challenges, and to mother, Karen B. Hunter, who helped me follow them through. TABLE OF CONTENTS Page ACKNOWLEDGEMENTS vi LIST OF TABLES vii LIST OF FIGURES viii ABSTRACT x INTRODUCTION 2 G e o l o g ic a l s e t t in g a n d g l o b a l distribution o f s e e p s 4 B l a k e R id g e se e p 6 Geological setting 6 Biological setting 10 R eproductive s t r a t e g ie s in seep b iv a l v e s 15 METHODS 19 S a m p l in g a n d in it ia l c o r e p r o c e s s in g 19 G e o c h e m ic a l a n d p h y s ic a l a n a l y s e s 2 0 B io l o g ic a l a n a l y s e s 21 S t a t is t ic a l a n a l y s e s 22 RESULTS 2 4 S e d im e n t characterization b y h a b it a t 2 4 G e n e r a l c l a m characteristics 32 C l a m reproductive characteristics 38 General reproductive anatomy and condition 38 iv Page Relationship between reproductive characteristics and the environment 46 DISCUSSION 47 B l a k e R id g e v e s ic o m y id c l a m h a b it a t s 47 Sediment porewater geochemistry 48 V e s ic o m y id c l a m reproductive characterization 52 L ife h is t o r y st r a t e g ie s 53 APPENDIX 57 LITERATURE CITED 58 VITA 76 v ACKNOWLEDGEMENTS I would like to thank my major advisor, Cindy Lee Van Dover, for the incredible opportunity to work in the deep sea, for the chance to see the Blake Ridge seep from Alvin’s viewports and for guidance through this project. I would also like to thank my committee members Randy Chambers and Roger Mann for support and encouragement, especially in the absence of my advisor. Thank you to the Van Dover lab, past and present for emotional and intellectual support, most especially to Rachel Horak for plotting endless Eh graphs at sea and for standing with me in the cold room onboard the R/V Atlantis, Kristen Schmidt for sorting juvenile clams, Megan Ward for electron microscopy, and to Lizzie Blake and Jessica Wallace for their optimism and sense of humor. Thank you to Steve Macko and Bill Gillhooly at the University of Virginia for their expertise in geochemistry and for porewater sulfide and sulfate analyses. Thanks must also go to Linda Meneghini and Heidi Romine from the Virginia Institute of Marine Science for help with grain size analyses, Ken Moore for allowing a deep-sea student into his seagrass lab, teaching me how to take redox potential measurements and loaning instrumentation for use at sea, and to Beth Waterson for patience with deep-sea organic carbon and nitrogen analyses. Thank you to George Gilchrist for help with statistical analyses. Thanks to Tom Mayes, and Kirk and John from the William & Mary Physics machine shop for construction of Alvin pushcores. This work would not have been possible without the Captain and crew of the R/V Atlantis and expedition Leader Pat Hickey. Thank you to the pilots and technicians of Alvin, chief-scientist Carolyn Ruppel, and members of the Windows to the Deep science party for their assistance at sea. And finally, thank you to Peter Kingsley-Smith, who stood by me so long and so well. Note: Sulfide and sulfate porewater data reported herein make up a portion o f the Ph.D. thesis o f W. Gillhooly in Prof. S. Macko's lab at the University o f Virginia, and are used here with their permission as part of a collaboration between the Van Dover and Macko laboratories. T.P. Heyl assisted in all aspects o f the sulfide and sulfate chemical analyses, including collection o f samples, extraction o f porewater fluids, and wet chemistry analyses in the laboratory of Prof. Macko. Mineral sulfide data reported herein was analyzed by Randy Chambers at the College o f William and M ary’s KECK laboratory. Gillhooly, Macko and Chambers will be co-authors on any publication resulting from the work reported in this thesis. vi LIST OF TABLES Table Page 1. Environmental and reproductive variables in vesicomyid and 16 solemyid bivalves in chemosynthetic communities vii LIST OF FIGURES Figure Page 1. Site and sample locations A. Blake Ridge seep site 8 B. Location of pushcores 9 2. In situ photographs of the distribution of vesicomyid clams at Blake Ridge A. Clam bed showing distribution in small circular patches 12 B. Pushcore sampling in a shell bed 13 3. Photos of representative pushcores from 4 microhabitats at Blake Ridge 26 4. Redox potential, sulfide, and sulfate concentration (mM) profiles in representative pushcores from 4 microhabitats at Blake Ridge 27 5. A. Concentrations of porewater and mineral sulfides across all intervals within pushcores from 4 microhabitats at Blake Ridge 30 B. Sulfide retention at the 4 microhabitats at Blake Ridge 31 6. Grain size for sediments sampled from Blake Ridge 33 7. Percent organic carbon and total nitrogen in Blake Ridge sediments 34 8 . Size-frequency distribution of vesicomyid clam shell lengths 35 9. A. Relationship between number of juvenile and adult clams per pushcore 36 B. Relationship between clam density per pushcore and ZEfeSiocm 37 10. Relationship between clam shell length (mm) and EH 2Siocm 40 11. General anatomy of vesicomyid clams from Blake Ridge 41 12. Reproductive anatomy of vesicomyid clams from Blake Ridge A. Female gonad 42 B. Male gonad 43 13. Stages of reproductive condition in vesicomyid clams from Blake Ridge 44 14. Reproductive stages, mean and maximum oocyte diameters in vesicomyid clams from Blake Ridge vs. ZH 2SioCm 45 viii ABSTRACT Vesicomyid clams are one of the dominant megafaunal taxa found in deep-sea cold-seep communities. They rely on chemoautotrophic sulfide-oxidizing symbionts located in their gill tissues. Since their survival depends on a flux of sulfide, clam populations may be viewed as 'flux indicators' within chemosynthetic ecosystems. At the Blake Ridge methane hydrate seep, extensive beds of dead clams are interspersed with smaller (> 1 m diameter) circular patches of live clams or a combination of live clams and shell beds. The patchy distribution of live clams may reflect underlying heterogeneity in sulfide flux or in other environmental parameters that influence the health and reproductive condition of the clams. The research effort included sediment geochemical analyses from 4 distinct microhabitats (background sediments, clam beds, a combination of clam/shell beds, and shell beds) within the seep site. Porewater chemistry indicates sulfide concentrations are five times higher (10.3-14mM) in shell beds than in clam beds (0.1-3.1mM) and this could be the cause of massive clam mortality. Gametogenic characteristics of vesicomyid clams (collected from different microhabitats in July 2003) were investigated but there was no correlation between health of clams and geochemistry within or among microhabitats at the seep. This study suggests that Blake Ridge clams have a broad range of sulfide tolerance that limits local and population-wide extinction of the species but they have a critical sulfide tolerance limit above which mortalities due to toxicity occur. ix CHARACTERISTICS OF VESICOMYID CLAMS AND THEIR ENVIRONMENT AT THE BLAKE RIDGE COLD SEEP INTRODUCTION Cold seeps are found in environments where reduced sulfur and methane emerge from seafloor sediments without an appreciable temperature anomaly. These environments are among the most recently discovered marine habitats; the first seep was discovered just 20 yr ago in 1984, on the Florida Escarpment in the Gulf of Mexico (Pauli et al.
Recommended publications
  • Preliminary Catalog of the Sedimentary Basins of the United States
    Preliminary Catalog of the Sedimentary Basins of the United States By James L. Coleman, Jr., and Steven M. Cahan Open-File Report 2012–1111 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Coleman, J.L., Jr., and Cahan, S.M., 2012, Preliminary catalog of the sedimentary basins of the United States: U.S. Geological Survey Open-File Report 2012–1111, 27 p. (plus 4 figures and 1 table available as separate files) Available online at http://pubs.usgs.gov/of/2012/1111/. iii Contents Abstract ...........................................................................................................................................................1
    [Show full text]
  • Cold Seep Benthic Communities in Japan Subduction Zones: Spatial Organization, Trophic Strategies and Evidence for Temporal Evolution*
    MARINE ECOLOGY - PROGRESS SERIES Vol. 40: 115-126. 1987 Published October 7 Mar. Ecol. Prog. Ser. Cold seep benthic communities in Japan subduction zones: spatial organization, trophic strategies and evidence for temporal evolution* S. Kim Juniper", Myriam Sibuet IFREMER, Centre de Brest. BP 337. F-29273 Brest Cedex. France ABSTRACT: Submersible exploration of the Japan subduction zones has revealed benthic communities dominated by clams (Calyptogena spp.) around sed~mentporewater seeps at depths from 3850 to 6000 m. Photographic and video records were used to produce microcartographlc reconstructions of 3 contrasting cold seep sites. Spatial and abundance relations of megafauna lead us to propose several hypotheses regard~ngthe ecological functioning of these cold seep communities. We dlst~nguish between the likely direct use of reducing substances in venting fluids by Calyptogena-bacteria symbioses and indirect usage by accompanying abyssal species not known to harbour symbionts. Microdistribution and known or presumed feedmg modes of the accompanying species indicate 2 different sources of organic matter enrichment within cold seep sites: organic debris originating from bivalve colonies, and enrichment of extensive areas of surrounding surface sediments where weaker, more hffuse porewater seepage may support chemosynthetic production by free-living bacteria. The occurrence of colony-like groupings of empty Calyptogena valves indicates that cold seeps are ephemeral, with groups of living clams, mixed living and dead clams, and empty dissolving shells marlung the course of a cycle of porewater venting and offering clues to the recent history of cold seep activity. INTRODUCTION al. 1985). One of the bivalve species from this area has been shown to harbour symbiotic bacteria in its gill The discovery of deep-sea hydrothermal vents has tissue and to oxidise methane (Childress et al.
    [Show full text]
  • Tsunami Risk Analysis of the East Coast of the United States
    Tsunami Risk Analysis of the East Coast of the United States INTRODUCTION METHODOLOGY In the wake of the 2004 Indian Ocean tsunami and the 2011 Japan tsunami and Given the large area of the east coast, a rudimentary analysis was performed. corresponding nuclear disaster, much more attention has been focused on coastal Elevation is the most important factor in analyzing the risk of flooding in a coastal vulnerability to tsunamis. Areas near active tectonic margins have a much higher area; the lower the elevation, the greater the potential for damage. Elevation data risk of being hit by a tsunami, due to proximity. People who live in these areas are was reclassified into no risk, medium risk, and high risk zones. These zones were: more aware of the danger than their counterparts on passive tectonic margins. It is 25+ m above sea level, 10 to 25 m above sea level, and below 10 m above sea lev- generally a good assumption that the risk of a tsunami is low in places like the el. Essentially, most land adjacent to the coast that falls in the final category eastern seaboard of the United States. would be badly damaged by a 10m tsunami from the Canary Islands, unless buff- Despite the low risk, the east coast has been hit by tsunamis in the past. Ex- ered by another portion of land blocking the coast. If a larger tsunami were to oc- amples include the Newfoundland tsunami caused by the Grand Banks earth- cur, up to the max wave height predicted by Ward and Day of 25 m, any land ad- quake.
    [Show full text]
  • Coupled Onshore Erosion and Offshore Sediment Loading As Causes of Lower Crust Flow on the Margins of South China Sea Peter D
    Clift Geosci. Lett. (2015) 2:13 DOI 10.1186/s40562-015-0029-9 REVIEW Open Access Coupled onshore erosion and offshore sediment loading as causes of lower crust flow on the margins of South China Sea Peter D. Clift1,2* Abstract Hot, thick continental crust is susceptible to ductile flow within the middle and lower crust where quartz controls mechanical behavior. Reconstruction of subsidence in several sedimentary basins around the South China Sea, most notably the Baiyun Sag, suggests that accelerated phases of basement subsidence are associated with phases of fast erosion onshore and deposition of thick sediments offshore. Working together these two processes induce pressure gradients that drive flow of the ductile crust from offshore towards the continental interior after the end of active extension, partly reversing the flow that occurs during continental breakup. This has the effect of thinning the continental crust under super-deep basins along these continental margins after active extension has finished. This is a newly recognized form of climate-tectonic coupling, similar to that recognized in orogenic belts, especially the Himalaya. Climatically modulated surface processes, especially involving the monsoon in Southeast Asia, affects the crustal structure offshore passive margins, resulting in these “load-flow basins”. This further suggests that reorganiza- tion of continental drainage systems may also have a role in governing margin structure. If some crustal thinning occurs after the end of active extension this has implications for the thermal history of hydrocarbon-bearing basins throughout the area where application of classical models results in over predictions of heatflow based on observed accommodation space.
    [Show full text]
  • Passive Margin Salt Tectonics: Effects of Margin Tilt, Sediment Progradation, and Regional Extension
    Passive Margin Salt Tectonics: Effects of Margin Tilt, Sediment Progradation, and Regional Extension Steven J. Ings* Department of Earth Sciences, Dalhousie University, Halifax, NS, B3H 3J5 [email protected] and Lykke Gemmer and Chris Beaumont Department of Oceanography, Dalhousie University, Halifax, NS, B3H 4J1 ABSTRACT Deformation of many passive continental margin sedimentary packages is dominated by salt tectonics (e.g., offshore west Africa, east Brazil, eastern Canada). In many cases, salt became mobilized at an early stage of basin formation. In cases where salt deposition was syn-rift or immediately post-rift (e.g., Scotian margin, offshore eastern Canada), early salt mobilization may have been initiated by a combination of tilting and regional extension of the margin. On the Scotian margin, salt tectonics has been long-lived; once salt was initially mobilized, it continued to deform well into the Tertiary. Sediment progradation and aggradation into the Scotian Basin was likely the primary control on long- lived salt tectonics on the Nova Scotian margin. We analyze the driving mechanisms of passive margin salt tectonics using finite element numerical models of a viscous substratum (salt) overlain by a frictional- plastic overburden (sedimentary rocks), and present results of models incorporating margin tilting, regional extension, and sedimentation. The numerical models show that sediment progradation combined with basinward tilt destabilizes the salt-overburden system more than progradation alone. A basinward margin tilt of 1 degree accelerates the evolution of the system, and thereby produces landward extensional structures and basinward contractional salt structures earlier in the model evolution than with progradation alone, resulting in the formation of long allochthonous salt sheets extending greater lateral distances than in equivalent models without tilt.
    [Show full text]
  • Structure and Distribution of Cold Seep Communities Along the Peruvian Active Margin: Relationship to Geological and Fluid Patterns
    MARINE ECOLOGY PROGRESS SERIES Vol. 132: 109-125, 1996 Published February 29 Mar Ecol Prog Ser l Structure and distribution of cold seep communities along the Peruvian active margin: relationship to geological and fluid patterns 'Laboratoire Ecologie Abyssale, DROIEP, IFREMER Centre de Brest, BP 70, F-29280 Plouzane, France '~epartementdes Sciences de la Terre, UBO, 6 ave. Le Gorgeu, F-29287 Brest cedex, France 3~aboratoireEnvironnements Sedimentaires, DROIGM, IFREMER Centre de Brest, BP 70, F-29280 Plouzane, France "niversite P. et M. Curie, Observatoire Oceanologique de Banyuls, F-66650 Banyuls-sur-Mer, France ABSTRACT Exploration of the northern Peruvian subduction zone with the French submersible 'Nau- tile' has revealed benthlc communities dominated by new species of vesicomyid bivalves (Calyptogena spp and Ves~comyasp ) sustained by methane-nch fluid expulsion all along the continental margin, between depths of 5140 and 2630 m Videoscoplc studies of 25 dives ('Nautiperc cruise 1991) allowed us to describe the distribution of these biological conlnlunities at different spahal scales At large scale the communities are associated with fluid expuls~onalong the major tectonic features (scarps, canyons) of the margln At a smaller scale on the scarps, the distribuhon of the communities appears to be con- trolled by fluid expulsion along local fracturatlon features such as joints, faults and small-scale scars Elght dlves were made at one particular geological structure the Middle Slope Scarp (the scar of a large debns avalanche) where numerous
    [Show full text]
  • Gas Seeps and Gas Hydrates in the Amazon Deep-Sea
    Gas seeps and gas hydrates in the Amazon deep-sea fan Joao Marcelo Ketzer, Adolpho Augustin, Luiz Frederico Rodrigues, Rafael Oliveira, Daniel Praeg, Maria Alejandra Gomez Pivel, Antonio Tadeu dos Reis, Cleverson Silva, Bruno Leonel To cite this version: Joao Marcelo Ketzer, Adolpho Augustin, Luiz Frederico Rodrigues, Rafael Oliveira, Daniel Praeg, et al.. Gas seeps and gas hydrates in the Amazon deep-sea fan. Geo-Marine Letters, Springer Verlag, 2018, 38 (5), pp.429-438. 10.1007/s00367-018-0546-6. hal-02196115 HAL Id: hal-02196115 https://hal.archives-ouvertes.fr/hal-02196115 Submitted on 9 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geo-Marine Letters (2018) 38:429–438 https://doi.org/10.1007/s00367-018-0546-6 ORIGINAL Gas seeps and gas hydrates in the Amazon deep-sea fan Joao Marcelo Ketzer1,2 & Adolpho Augustin1 & Luiz Frederico Rodrigues1 & Rafael Oliveira1 & Daniel Praeg1,3 & 4 Maria Alejandra Gomez Pivel & Antonio Tadeu dos Reis5 & Cleverson Silva6 & Bruno Leonel7 Received: 10 January 2018 /Accepted: 2 August 2018 /Published online: 17 August 2018 # The Author(s) 2018 Abstract Deep-sea fans have been proposed to act as carbon sinks, rapid deposition driving shallow methanogenesis to favor net storage within the gas hydrate stability zone (GHSZ).
    [Show full text]
  • Reconstructing the History of Fluid Flow at Cold Seep Sites from Ba/Ca Ratios
    Limnol. Oceanogr., 46(7), 2001, 1701±1708 q 2001, by the American Society of Limnology and Oceanography, Inc. Reconstructing the history of ¯uid ¯ow at cold seep sites from Ba/Ca ratios in vesicomyid clam shells M. E. Torres1 COAS, 104 Ocean Administration Building, Oregon State University, Corvallis, Oregon 97331 J. P. Barry MBARI, 7700 Sandholdt Road, Moss Landing, California 95039 D. A. Hubbard COAS, 104 Ocean Administration Building, Oregon State University, Corvallis, Oregon 97331 E. Suess GEOMAR, 1-3 Wischhofstrasse, Kiel D-24148, Germany Abstract Hydrogen sul®de discharge at cold seep sites is recorded as enrichment in the barium to calcium (Ba/Ca) ratio in shells of vesicomyid clams collected live from cold seeps in Monterey Canyon and the Cascadia margin. A direct relationship between increased Ba ¯uxes from cold seeps and Ba incorporation into shells was established for the Cascadia margin site. For the Monterey canyon site, a 2-yr episode of high ¯uid ¯ow centered on 1992 was inferred from coherent changes in the Ba/Ca pro®les of three Calyptogena kilmeri shells. Comparison with precipitation and d18O data indicates that this high-¯ow period may have been driven by an increase in rainfall after the 1988±1990 California drought. High-resolution records preserved in clam shells are shown to be useful in elucidating charac- teristics, history, and possible mechanisms driving ¯uid discharge at continental margin seeps, thus establishing their potential use as paleotracers of ¯uid seepage events. An extensive set of geophysical and geochemical mea- seepage along continental margins. Carbon and oxygen iso- surements is currently available to document the ¯ow and tope records of calcareous macrofossils have long been used expulsion of ¯uids at transform and convergent margins.
    [Show full text]
  • Biodiversidad De Los Equinodermos (Echinodermata) Del Mar Profundo Mexicano
    Biodiversidad de los equinodermos (Echinodermata) del mar profundo mexicano Francisco A. Solís-Marín,1 A. Laguarda-Figueras,1 A. Durán González,1 A.R. Vázquez-Bader,2 Adolfo Gracia2 Resumen Nuestro conocimiento de la diversidad del mar profundo en aguas mexicanas se limita a los escasos estudios existentes. El número de especies descritas es incipiente y los registros taxonómicos que existen provienen sobre todo de estudios realizados por ex- tranjeros y muy pocos por investigadores mexicanos, con los cuales es posible conjuntar algunas listas faunísticas. Es importante dar a conocer lo que se sabe hasta el momen- to sobre los equinodermos de las zonas profundas de México, información básica para diversos sectores en nuestro país, tales como los tomadores de decisiones y científicos interesados en el tema. México posee hasta el momento 643 especies de equinoder- mos reportadas en sus aguas territoriales, aproximadamente el 10% del total de las especies reportadas en todo el planeta (~7,000). Según los registros de la Colección Nacional de Equinodermos (ICML, UNAM), la Colección de Equinodermos del “Natural History Museum, Smithsonian Institution”, Washington, DC., EUA y la bibliografía revisa- 1 Colección Nacional de Equinodermos “Ma. E. Caso Muñoz”, Laboratorio de Sistemá- tica y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología (ICML), Universidad Nacional Autónoma de México (UNAM). Apdo. Post. 70-305, México, D. F. 04510, México. 2 Laboratorio de Ecología Pesquera de Crustáceos, Instituto de Ciencias del Mar y Lim- nología (ICML), (UNAM), Apdo. Postal 70-305, México D. F., 04510, México. 215 da, existen 348 especies de equinodermos que habitan las aguas profundas mexicanas (≥ 200 m) lo que corresponde al 54.4% del total de las especies reportadas para el país.
    [Show full text]
  • Diversity and Distribution of Cold-Seep Fauna Associated With
    Marine Biology Archimer June 2011, Volume 158, Issue 6, Pages 1187-1210 http://archimer.ifremer.fr http://dx.doi.org/10.1007/s00227-011-1679-6 © 2011, Springer-Verlag The original publication is available at http://www.springerlink.com ailable on the publisher Web site Diversity and distribution of cold-seep fauna associated with different geological and environmental settings at mud volcanoes and pockmarks of the Nile Deep-Sea Fan Bénédicte Ritta, *, Catherine Pierreb, Olivier Gauthiera, c, d, Frank Wenzhöfere, f, Antje Boetiuse, f and Jozée Sarrazina, * blisher-authenticated version is av aIfremer, Centre de Brest, Département Etude des Ecosystèmes Profonds/Laboratoire Environnement Profond, BP 70, 29280 Plouzané, France bLOCEAN, UMR 7159, Université Pierre et Marie Curie,75005 Paris, France cLEMAR, UMR 6539, Universiteé de Bretagne Occidentale, Place N. Copernic, 29200 Plouzaneé, France dEcole Pratique des Hautes Etudes CBAE, UMR 5059, 163 rue Auguste Broussonet, 34000 Montpellier, France eMPI, Habitat Group, Celsiusstrasse 1, 28359 Bremen, Germany fAWI, HGF MPG Research Group on Deep Sea Ecology and Technology, 27515 Bremerhaven, Germany *: Corresponding authors : Bénédicte Ritt, email address : [email protected] ; [email protected] Jozée Sarrazin, Tel.: +33 2 98 22 43 29, Fax: +33 2 98 22 47 57, email address : [email protected] Abstract : The Nile Deep-Sea Fan (NDSF) is located on the passive continental margin off Egypt and is characterized by the occurrence of active fluid seepage such as brine lakes, pockmarks and mud volcanoes. This study characterizes the structure of faunal assemblages of such active seepage systems of the NDSF. Benthic communities associated with reduced, sulphidic microhabitats such as ccepted for publication following peer review.
    [Show full text]
  • 54. Mesozoic–Tertiary Tectonic Evolution of the Easternmost Mediterranean Area: Integration of Marine and Land Evidence1
    Robertson, A.H.F., Emeis, K.-C., Richter, C., and Camerlenghi, A. (Eds.), 1998 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 160 54. MESOZOIC–TERTIARY TECTONIC EVOLUTION OF THE EASTERNMOST MEDITERRANEAN AREA: INTEGRATION OF MARINE AND LAND EVIDENCE1 Alastair H.F. Robertson2 ABSTRACT This paper presents a synthesis of Holocene to Late Paleozoic marine and land evidence from the easternmost Mediterra- nean area, in the light of recent ODP Leg 160 drilling results from the Eratosthenes Seamount. The synthesis is founded on three key conclusions derived from marine- and land-based study over the last decade. First, the North African and Levant coastal and offshore areas represent a Mesozoic rifted continental margin of Triassic age, with the Levantine Basin being under- lain by oceanic crust. Second, Mesozoic ophiolites and related continental margin units in southern Turkey and Cyprus repre- sent tectonically emplaced remnants of a southerly Neotethyan oceanic basin and are not far-travelled units derived from a single Neotethys far to the north. Third, the present boundary of the African and Eurasian plates runs approximately east-west across the easternmost Mediterranean and is located between Cyprus and the Eratosthenes Seamount. The marine and land geology of the easternmost Mediterranean is discussed utilizing four north-south segments, followed by presentation of a plate tectonic reconstruction for the Late Permian to Holocene time. INTRODUCTION ocean (Figs. 2, 3; Le Pichon, 1982). The easternmost Mediterranean is defined as that part of the Eastern Mediterranean Sea located east ° The objective here is to integrate marine- and land-based geolog- of the Aegean (east of 28 E longitude).
    [Show full text]
  • Elasmobranch Egg Capsules Associated with Modern and Ancient Cold Seeps: a Nursery for Marine Deep-Water Predators
    Vol. 437: 175–181, 2011 MARINE ECOLOGY PROGRESS SERIES Published September 15 doi: 10.3354/meps09305 Mar Ecol Prog Ser OPEN ACCESS Elasmobranch egg capsules associated with modern and ancient cold seeps: a nursery for marine deep-water predators Tina Treude1,*, Steffen Kiel2, Peter Linke1, Jörn Peckmann3, James L. Goedert4 1Leibniz Institute of Marine Sciences, IFM-GEOMAR, Wischhofstrasse 1−3, 24148 Kiel, Germany 2Geobiology Group and Courant Research Center Geobiology, Georg-August-Universität Göttingen, Geoscience Center, Goldschmidtstr. 3, 37077 Göttingen, Germany 3Department of Geodynamics and Sedimentology, Center for Earth Sciences, University of Vienna, Althanstrasse 14 (UZA II), 1090 Vienna, Austria 4Burke Museum, University of Washington, Seattle, Washington 98195-3010, USA ABSTRACT: At 2 modern deep-water cold-seep sites, the North Alex Mud Volcano (eastern Mediterranean Sea, water depth ~500 m) and the Concepción Methane Seep Area (south-east Pacific Ocean, water depth ~700 m), we found abundant catshark (Chondrichthyes: Scylio - rhinidae) and skate (Chondrichthyes: Rajidae) egg capsules, respectively, associated with carbon- ates and tubeworms. Fossilized catshark egg capsules were found at the 35 million year old Bear River Cold-Seep Deposit (Washington State, USA) closely associated with remains of tubeworms and sponges. We suggest that cold-seep ecosystems have served as nurseries for predatory elas- mobranch fishes since at least late Eocene time and therewith possibly play an important role for the functioning of deep-water ecosystems. KEY WORDS: Catshark · Skate · Authigenic carbonate · Tubeworm · Methane · Deep sea · Chemosynthesis Resale or republication not permitted without written consent of the publisher INTRODUCTION methanotrophic or thiotrophic bacteria; chemosym- biotic clams, mussels, and vestimentiferan tube- Cold-seep ecosystems are based on chemosyn- worms) or feed on biomass produced by chemosyn- thetic processes fueled by methane and petroleum thesis (e.g.
    [Show full text]