The Original Euler's Calculus-Of-Variations Method: Key
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 4 Finite Difference Gradient Information
Chapter 4 Finite Difference Gradient Information In the masters thesis Thoresson (2003), the feasibility of using gradient- based approximation methods for the optimisation of the spring and damper characteristics of an off-road vehicle, for both ride comfort and handling, was investigated. The Sequential Quadratic Programming (SQP) algorithm and the locally developed Dynamic-Q method were the two successive approximation methods used for the optimisation. The determination of the objective function value is performed using computationally expensive numerical simulations that exhibit severe inherent numerical noise. The use of forward finite differences and central finite differences for the determination of the gradients of the objective function within Dynamic-Q is also investigated. The results of this study, presented here, proved that the use of central finite differencing for gradient information improved the optimisation convergence history, and helped to reduce the difficulties associated with noise in the objective and constraint functions. This chapter presents the feasibility investigation of using gradient-based successive approximation methods to overcome the problems of poor gradient information due to severe numerical noise. The two approximation methods applied here are the locally developed Dynamic-Q optimisation algorithm of Snyman and Hay (2002) and the well known Sequential Quadratic 47 CHAPTER 4. FINITE DIFFERENCE GRADIENT INFORMATION 48 Programming (SQP) algorithm, the MATLAB implementation being used for this research (Mathworks 2000b). This chapter aims to provide the reader with more information regarding the Dynamic-Q successive approximation algorithm, that may be used as an alternative to the more established SQP method. Both algorithms are evaluated for effectiveness and efficiency in determining optimal spring and damper characteristics for both ride comfort and handling of a vehicle. -
Introduction to Differential Equations
Introduction to Differential Equations Lecture notes for MATH 2351/2352 Jeffrey R. Chasnov k kK m m x1 x2 The Hong Kong University of Science and Technology The Hong Kong University of Science and Technology Department of Mathematics Clear Water Bay, Kowloon Hong Kong Copyright ○c 2009–2016 by Jeffrey Robert Chasnov This work is licensed under the Creative Commons Attribution 3.0 Hong Kong License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/hk/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Preface What follows are my lecture notes for a first course in differential equations, taught at the Hong Kong University of Science and Technology. Included in these notes are links to short tutorial videos posted on YouTube. Much of the material of Chapters 2-6 and 8 has been adapted from the widely used textbook “Elementary differential equations and boundary value problems” by Boyce & DiPrima (John Wiley & Sons, Inc., Seventh Edition, ○c 2001). Many of the examples presented in these notes may be found in this book. The material of Chapter 7 is adapted from the textbook “Nonlinear dynamics and chaos” by Steven H. Strogatz (Perseus Publishing, ○c 1994). All web surfers are welcome to download these notes, watch the YouTube videos, and to use the notes and videos freely for teaching and learning. An associated free review book with links to YouTube videos is also available from the ebook publisher bookboon.com. I welcome any comments, suggestions or corrections sent by email to [email protected]. -
3 Runge-Kutta Methods
3 Runge-Kutta Methods In contrast to the multistep methods of the previous section, Runge-Kutta methods are single-step methods — however, with multiple stages per step. They are motivated by the dependence of the Taylor methods on the specific IVP. These new methods do not require derivatives of the right-hand side function f in the code, and are therefore general-purpose initial value problem solvers. Runge-Kutta methods are among the most popular ODE solvers. They were first studied by Carle Runge and Martin Kutta around 1900. Modern developments are mostly due to John Butcher in the 1960s. 3.1 Second-Order Runge-Kutta Methods As always we consider the general first-order ODE system y0(t) = f(t, y(t)). (42) Since we want to construct a second-order method, we start with the Taylor expansion h2 y(t + h) = y(t) + hy0(t) + y00(t) + O(h3). 2 The first derivative can be replaced by the right-hand side of the differential equation (42), and the second derivative is obtained by differentiating (42), i.e., 00 0 y (t) = f t(t, y) + f y(t, y)y (t) = f t(t, y) + f y(t, y)f(t, y), with Jacobian f y. We will from now on neglect the dependence of y on t when it appears as an argument to f. Therefore, the Taylor expansion becomes h2 y(t + h) = y(t) + hf(t, y) + [f (t, y) + f (t, y)f(t, y)] + O(h3) 2 t y h h = y(t) + f(t, y) + [f(t, y) + hf (t, y) + hf (t, y)f(t, y)] + O(h3(43)). -
Runge-Kutta Scheme Takes the Form K1 = Hf (Tn, Yn); K2 = Hf (Tn + Αh, Yn + Βk1); (5.11) Yn+1 = Yn + A1k1 + A2k2
Approximate integral using the trapezium rule: h Y (t ) ≈ Y (t ) + [f (t ; Y (t )) + f (t ; Y (t ))] ; t = t + h: n+1 n 2 n n n+1 n+1 n+1 n Use Euler's method to approximate Y (tn+1) ≈ Y (tn) + hf (tn; Y (tn)) in trapezium rule: h Y (t ) ≈ Y (t ) + [f (t ; Y (t )) + f (t ; Y (t ) + hf (t ; Y (t )))] : n+1 n 2 n n n+1 n n n Hence the modified Euler's scheme 8 K1 = hf (tn; yn) > h <> y = y + [f (t ; y ) + f (t ; y + hf (t ; y ))] , K2 = hf (tn+1; yn + K1) n+1 n 2 n n n+1 n n n > K1 + K2 :> y = y + n+1 n 2 5.3.1 Modified Euler Method Numerical solution of Initial Value Problem: dY Z tn+1 = f (t; Y ) , Y (tn+1) = Y (tn) + f (t; Y (t)) dt: dt tn Use Euler's method to approximate Y (tn+1) ≈ Y (tn) + hf (tn; Y (tn)) in trapezium rule: h Y (t ) ≈ Y (t ) + [f (t ; Y (t )) + f (t ; Y (t ) + hf (t ; Y (t )))] : n+1 n 2 n n n+1 n n n Hence the modified Euler's scheme 8 K1 = hf (tn; yn) > h <> y = y + [f (t ; y ) + f (t ; y + hf (t ; y ))] , K2 = hf (tn+1; yn + K1) n+1 n 2 n n n+1 n n n > K1 + K2 :> y = y + n+1 n 2 5.3.1 Modified Euler Method Numerical solution of Initial Value Problem: dY Z tn+1 = f (t; Y ) , Y (tn+1) = Y (tn) + f (t; Y (t)) dt: dt tn Approximate integral using the trapezium rule: h Y (t ) ≈ Y (t ) + [f (t ; Y (t )) + f (t ; Y (t ))] ; t = t + h: n+1 n 2 n n n+1 n+1 n+1 n Hence the modified Euler's scheme 8 K1 = hf (tn; yn) > h <> y = y + [f (t ; y ) + f (t ; y + hf (t ; y ))] , K2 = hf (tn+1; yn + K1) n+1 n 2 n n n+1 n n n > K1 + K2 :> y = y + n+1 n 2 5.3.1 Modified Euler Method Numerical solution of Initial Value Problem: dY Z tn+1 = -
The Original Euler's Calculus-Of-Variations Method: Key
Submitted to EJP 1 Jozef Hanc, [email protected] The original Euler’s calculus-of-variations method: Key to Lagrangian mechanics for beginners Jozef Hanca) Technical University, Vysokoskolska 4, 042 00 Kosice, Slovakia Leonhard Euler's original version of the calculus of variations (1744) used elementary mathematics and was intuitive, geometric, and easily visualized. In 1755 Euler (1707-1783) abandoned his version and adopted instead the more rigorous and formal algebraic method of Lagrange. Lagrange’s elegant technique of variations not only bypassed the need for Euler’s intuitive use of a limit-taking process leading to the Euler-Lagrange equation but also eliminated Euler’s geometrical insight. More recently Euler's method has been resurrected, shown to be rigorous, and applied as one of the direct variational methods important in analysis and in computer solutions of physical processes. In our classrooms, however, the study of advanced mechanics is still dominated by Lagrange's analytic method, which students often apply uncritically using "variational recipes" because they have difficulty understanding it intuitively. The present paper describes an adaptation of Euler's method that restores intuition and geometric visualization. This adaptation can be used as an introductory variational treatment in almost all of undergraduate physics and is especially powerful in modern physics. Finally, we present Euler's method as a natural introduction to computer-executed numerical analysis of boundary value problems and the finite element method. I. INTRODUCTION In his pioneering 1744 work The method of finding plane curves that show some property of maximum and minimum,1 Leonhard Euler introduced a general mathematical procedure or method for the systematic investigation of variational problems. -
Numerical Stability; Implicit Methods
NUMERICAL STABILITY; IMPLICIT METHODS When solving the initial value problem 0 Y (x) = f (x; Y (x)); x0 ≤ x ≤ b Y (x0) = Y0 we know that small changes in the initial data Y0 will result in small changes in the solution of the differential equation. More precisely, consider the perturbed problem 0 Y"(x) = f (x; Y"(x)); x0 ≤ x ≤ b Y"(x0) = Y0 + " Then assuming f (x; z) and @f (x; z)=@z are continuous for x0 ≤ x ≤ b; −∞ < z < 1, we have max jY"(x) − Y (x)j ≤ c j"j x0≤x≤b for some constant c > 0. We would like our numerical methods to have a similar property. Consider the Euler method yn+1 = yn + hf (xn; yn) ; n = 0; 1;::: y0 = Y0 and then consider the perturbed problem " " " yn+1 = yn + hf (xn; yn ) ; n = 0; 1;::: " y0 = Y0 + " We can show the following: " max jyn − ynj ≤ cbj"j x0≤xn≤b for some constant cb > 0 and for all sufficiently small values of the stepsize h. This implies that Euler's method is stable, and in the same manner as was true for the original differential equation problem. The general idea of stability for a numerical method is essentially that given above for Eulers's method. There is a general theory for numerical methods for solving the initial value problem 0 Y (x) = f (x; Y (x)); x0 ≤ x ≤ b Y (x0) = Y0 If the truncation error in a numerical method has order 2 or greater, then the numerical method is stable if and only if it is a convergent numerical method. -
Leonhard Euler: His Life, the Man, and His Works∗
SIAM REVIEW c 2008 Walter Gautschi Vol. 50, No. 1, pp. 3–33 Leonhard Euler: His Life, the Man, and His Works∗ Walter Gautschi† Abstract. On the occasion of the 300th anniversary (on April 15, 2007) of Euler’s birth, an attempt is made to bring Euler’s genius to the attention of a broad segment of the educated public. The three stations of his life—Basel, St. Petersburg, andBerlin—are sketchedandthe principal works identified in more or less chronological order. To convey a flavor of his work andits impact on modernscience, a few of Euler’s memorable contributions are selected anddiscussedinmore detail. Remarks on Euler’s personality, intellect, andcraftsmanship roundout the presentation. Key words. LeonhardEuler, sketch of Euler’s life, works, andpersonality AMS subject classification. 01A50 DOI. 10.1137/070702710 Seh ich die Werke der Meister an, So sehe ich, was sie getan; Betracht ich meine Siebensachen, Seh ich, was ich h¨att sollen machen. –Goethe, Weimar 1814/1815 1. Introduction. It is a virtually impossible task to do justice, in a short span of time and space, to the great genius of Leonhard Euler. All we can do, in this lecture, is to bring across some glimpses of Euler’s incredibly voluminous and diverse work, which today fills 74 massive volumes of the Opera omnia (with two more to come). Nine additional volumes of correspondence are planned and have already appeared in part, and about seven volumes of notebooks and diaries still await editing! We begin in section 2 with a brief outline of Euler’s life, going through the three stations of his life: Basel, St. -
Upwind Summation by Parts Finite Difference Methods for Large Scale
Upwind summation by parts finite difference methods for large scale elastic wave simulations in 3D complex geometries ? Kenneth Durua,∗, Frederick Funga, Christopher Williamsa aMathematical Sciences Institute, Australian National University, Australia. Abstract High-order accurate summation-by-parts (SBP) finite difference (FD) methods constitute efficient numerical methods for simulating large-scale hyperbolic wave propagation problems. Traditional SBP FD operators that approximate first-order spatial derivatives with central-difference stencils often have spurious unresolved numerical wave-modes in their computed solutions. Recently derived high order accurate upwind SBP operators based non-central (upwind) FD stencils have the potential to suppress these poisonous spurious wave-modes on marginally resolved computational grids. In this paper, we demonstrate that not all high order upwind SBP FD operators are applicable. Numerical dispersion relation analysis shows that odd-order upwind SBP FD operators also support spurious unresolved high-frequencies on marginally resolved meshes. Meanwhile, even-order upwind SBP FD operators (of order 2; 4; 6) do not support spurious unresolved high frequency wave modes and also have better numerical dispersion properties. For all the upwind SBP FD operators we discretise the three space dimensional (3D) elastic wave equation on boundary-conforming curvilinear meshes. Using the energy method we prove that the semi-discrete ap- proximation is stable and energy-conserving. We derive a priori error estimate and prove the convergence of the numerical error. Numerical experiments for the 3D elastic wave equation in complex geometries corrobo- rate the theoretical analysis. Numerical simulations of the 3D elastic wave equation in heterogeneous media with complex non-planar free surface topography are given, including numerical simulations of community developed seismological benchmark problems. -
High Order Gradient, Curl and Divergence Conforming Spaces, with an Application to NURBS-Based Isogeometric Analysis
High order gradient, curl and divergence conforming spaces, with an application to compatible NURBS-based IsoGeometric Analysis R.R. Hiemstraa, R.H.M. Huijsmansa, M.I.Gerritsmab aDepartment of Marine Technology, Mekelweg 2, 2628CD Delft bDepartment of Aerospace Technology, Kluyverweg 2, 2629HT Delft Abstract Conservation laws, in for example, electromagnetism, solid and fluid mechanics, allow an exact discrete representation in terms of line, surface and volume integrals. We develop high order interpolants, from any basis that is a partition of unity, that satisfy these integral relations exactly, at cell level. The resulting gradient, curl and divergence conforming spaces have the propertythat the conservationlaws become completely independent of the basis functions. This means that the conservation laws are exactly satisfied even on curved meshes. As an example, we develop high ordergradient, curl and divergence conforming spaces from NURBS - non uniform rational B-splines - and thereby generalize the compatible spaces of B-splines developed in [1]. We give several examples of 2D Stokes flow calculations which result, amongst others, in a point wise divergence free velocity field. Keywords: Compatible numerical methods, Mixed methods, NURBS, IsoGeometric Analyis Be careful of the naive view that a physical law is a mathematical relation between previously defined quantities. The situation is, rather, that a certain mathematical structure represents a given physical structure. Burke [2] 1. Introduction In deriving mathematical models for physical theories, we frequently start with analysis on finite dimensional geometric objects, like a control volume and its bounding surfaces. We assign global, ’measurable’, quantities to these different geometric objects and set up balance statements. -
A Brief Introduction to Numerical Methods for Differential Equations
A Brief Introduction to Numerical Methods for Differential Equations January 10, 2011 This tutorial introduces some basic numerical computation techniques that are useful for the simulation and analysis of complex systems modelled by differential equations. Such differential models, especially those partial differential ones, have been extensively used in various areas from astronomy to biology, from meteorology to finance. However, if we ignore the differences caused by applications and focus on the mathematical equations only, a fundamental question will arise: Can we predict the future state of a system from a known initial state and the rules describing how it changes? If we can, how to make the prediction? This problem, known as Initial Value Problem(IVP), is one of those problems that we are most concerned about in numerical analysis for differential equations. In this tutorial, Euler method is used to solve this problem and a concrete example of differential equations, the heat diffusion equation, is given to demonstrate the techniques talked about. But before introducing Euler method, numerical differentiation is discussed as a prelude to make you more comfortable with numerical methods. 1 Numerical Differentiation 1.1 Basic: Forward Difference Derivatives of some simple functions can be easily computed. However, if the function is too compli- cated, or we only know the values of the function at several discrete points, numerical differentiation is a tool we can rely on. Numerical differentiation follows an intuitive procedure. Recall what we know about the defini- tion of differentiation: df f(x + h) − f(x) = f 0(x) = lim dx h!0 h which means that the derivative of function f(x) at point x is the difference between f(x + h) and f(x) divided by an infinitesimal h. -
The Pascal Matrix Function and Its Applications to Bernoulli Numbers and Bernoulli Polynomials and Euler Numbers and Euler Polynomials
The Pascal Matrix Function and Its Applications to Bernoulli Numbers and Bernoulli Polynomials and Euler Numbers and Euler Polynomials Tian-Xiao He ∗ Jeff H.-C. Liao y and Peter J.-S. Shiue z Dedicated to Professor L. C. Hsu on the occasion of his 95th birthday Abstract A Pascal matrix function is introduced by Call and Velleman in [3]. In this paper, we will use the function to give a unified approach in the study of Bernoulli numbers and Bernoulli poly- nomials. Many well-known and new properties of the Bernoulli numbers and polynomials can be established by using the Pascal matrix function. The approach is also applied to the study of Euler numbers and Euler polynomials. AMS Subject Classification: 05A15, 65B10, 33C45, 39A70, 41A80. Key Words and Phrases: Pascal matrix, Pascal matrix func- tion, Bernoulli number, Bernoulli polynomial, Euler number, Euler polynomial. ∗Department of Mathematics, Illinois Wesleyan University, Bloomington, Illinois 61702 yInstitute of Mathematics, Academia Sinica, Taipei, Taiwan zDepartment of Mathematical Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, 89154-4020. This work is partially supported by the Tzu (?) Tze foundation, Taipei, Taiwan, and the Institute of Mathematics, Academia Sinica, Taipei, Taiwan. The author would also thank to the Institute of Mathematics, Academia Sinica for the hospitality. 1 2 T. X. He, J. H.-C. Liao, and P. J.-S. Shiue 1 Introduction A large literature scatters widely in books and journals on Bernoulli numbers Bn, and Bernoulli polynomials Bn(x). They can be studied by means of the binomial expression connecting them, n X n B (x) = B xn−k; n ≥ 0: (1) n k k k=0 The study brings consistent attention of researchers working in combi- natorics, number theory, etc. -
Numerical Stability & Numerical Smoothness of Ordinary Differential
NUMERICAL STABILITY & NUMERICAL SMOOTHNESS OF ORDINARY DIFFERENTIAL EQUATIONS Kaitlin Reddinger A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF ARTS August 2015 Committee: Tong Sun, Advisor So-Hsiang Chou Kimberly Rogers ii ABSTRACT Tong Sun, Advisor Although numerically stable algorithms can be traced back to the Babylonian period, it is be- lieved that the study of numerical methods for ordinary differential equations was not rigorously developed until the 1700s. Since then the field has expanded - first with Leonhard Euler’s method and then with the works of Augustin Cauchy, Carl Runge and Germund Dahlquist. Now applica- tions involving numerical methods can be found in a myriad of subjects. With several centuries worth of diligent study devoted to the crafting of well-conditioned problems, it is surprising that one issue in particular - numerical stability - continues to cloud the analysis and implementation of numerical approximation. According to professor Paul Glendinning from the University of Cambridge, “The stability of solutions of differential equations can be a very difficult property to pin down. Rigorous mathemat- ical definitions are often too prescriptive and it is not always clear which properties of solutions or equations are most important in the context of any particular problem. In practice, different definitions are used (or defined) according to the problem being considered. The effect of this confusion is that there are more than 57 varieties of stability to choose from” [10]. Although this quote is primarily in reference to nonlinear problems, it can most certainly be applied to the topic of numerical stability in general.