Microtus Pinetorum (Le Conte) Woodland Vole
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MAMMALS of OHIO F I E L D G U I D E DIVISION of WILDLIFE Below Are Some Helpful Symbols for Quick Comparisons and Identfication
MAMMALS OF OHIO f i e l d g u i d e DIVISION OF WILDLIFE Below are some helpful symbols for quick comparisons and identfication. They are located in the same place for each species throughout this publication. Definitions for About this Book the scientific terms used in this publication can be found at the end in the glossary. Activity Method of Feeding Diurnal • Most active during the day Carnivore • Feeds primarily on meat Nocturnal • Most active at night Herbivore • Feeds primarily on plants Crepuscular • Most active at dawn and dusk Insectivore • Feeds primarily on insects A word about diurnal and nocturnal classifications. Omnivore • Feeds on both plants and meat In nature, it is virtually impossible to apply hard and fast categories. There can be a large amount of overlap among species, and for individuals within species, in terms of daily and/or seasonal behavior habits. It is possible for the activity patterns of mammals to change due to variations in weather, food availability or human disturbances. The Raccoon designation of diurnal or nocturnal represent the description Gray or black in color with a pale most common activity patterns of each species. gray underneath. The black mask is rimmed on top and bottom with CARNIVORA white. The raccoon’s tail has four to six black or dark brown rings. habitat Raccoons live in wooded areas with Tracks & Skulls big trees and water close by. reproduction Many mammals can be elusive to sighting, leaving Raccoons mate from February through March in Ohio. Typically only one litter is produced each year, only a trail of clues that they were present. -
Mammalia: Rodentia) Around Amasya, Turkey
Z. ATLI ŞEKEROĞLU, H. KEFELİOĞLU, V. ŞEKEROĞLU Turk J Zool 2011; 35(4): 593-598 © TÜBİTAK Research Article doi:10.3906/zoo-0910-4 Cytogenetic characteristics of Microtus dogramacii (Mammalia: Rodentia) around Amasya, Turkey Zülal ATLI ŞEKEROĞLU1,*, Haluk KEFELİOĞLU2, Vedat ŞEKEROĞLU1 1Ordu University, Faculty of Arts and Sciences, Department of Biology, 52200 Ordu - TURKEY 2Ondokuz Mayıs University, Faculty of Arts and Sciences, Department of Biology, 55139 Kurupelit, Samsun - TURKEY Received: 02.10.2009 Abstract: Th e banding patterns of chromosomes of Microtus dogramacii, a recently described vole species endemic to Turkey, were studied. G-, C-, and Ag-NOR-banded patterns of this species are reported here for the fi rst time. In this study, 2 karyotypical forms were determined. Each form had the same diploid chromosome numbers (2n = 48), but possessed diff erent autosomal morphologies. For this reason, the samples collected from the research area were karyologically separated into 2 groups, cytotype-1 (NF = 50) and cytotype-2 (NF = 52). All chromosomes possessed centromeric/pericentromeric heterochromatin bands in both karyotypical forms. It was shown that the acrocentric chromosomes of pair 8 in cytotype-1 have been transformed into metacentric chromosomes in cytotype-2 through pericentric inversion. Variation in the number of active NORs was also observed, but the modal number of active NORs was 8. Due to the chromosomal variation found in M. dogramacii, the cytogenetic results presented in this study may represent a process of chromosomal speciation. Key words: Microtus dogramacii, karyology, pericentric inversion, Turkey Amasya (Türkiye) çevresindeki Microtus dogramacii (Mammalia: Rodentia)’nin sitogenetik özellikleri Özet: Türkiye için endemik olan yeni tanımlanmış bir tarla faresi, Microtus dogramacii’nin kromozomlarının bantlı örnekleri çalışıldı. -
Taxonomic Status and Biogeography of the Southern Bog Lemming, Synaptomys Cooperi, on the Central Great Plains Author(S): Gregory M
American Society of Mammalogists Taxonomic Status and Biogeography of the Southern Bog Lemming, Synaptomys cooperi, on the Central Great Plains Author(s): Gregory M. Wilson and Jerry R. Choate Source: Journal of Mammalogy, Vol. 78, No. 2 (May, 1997), pp. 444-458 Published by: American Society of Mammalogists Stable URL: http://www.jstor.org/stable/1382897 . Accessed: 11/08/2011 18:26 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Society of Mammalogists is collaborating with JSTOR to digitize, preserve and extend access to Journal of Mammalogy. http://www.jstor.org TAXONOMIC STATUS AND BIOGEOGRAPHY OF THE SOUTHERN BOG LEMMING, SYNAPTOMYS COOPERI, ON THE CENTRAL GREAT PLAINS GREGORY M. WILSON AND JERRY R. CHOATE Present address of GMW: Department of Zoology, 430 Life Sciences West, Oklahoma State University, Stillwater, OK 74078 Sternberg Museum of Natural History, Fort Hays State University, Hays, KS 67601 We assessed geographic and nongeographic variation among populations of the southern bog lemming (Synaptomys cooperi) in Arkansas, Iowa, Illinois, Kansas, Missouri, Nebraska, and South Dakota based on morphological data. Univariate and multivariate analyses of 15 cranial characters revealed no consistent sexual dimorphism. Geographic variation in cra- nial morphology of adults varied clinally, with individuals increasing in size from north to south and east to west. -
Likely to Have Habitat Within Iras That ALLOW Road
Item 3a - Sensitive Species National Master List By Region and Species Group Not likely to have habitat within IRAs Not likely to have Federal Likely to have habitat that DO NOT ALLOW habitat within IRAs Candidate within IRAs that DO Likely to have habitat road (re)construction that ALLOW road Forest Service Species Under NOT ALLOW road within IRAs that ALLOW but could be (re)construction but Species Scientific Name Common Name Species Group Region ESA (re)construction? road (re)construction? affected? could be affected? Bufo boreas boreas Boreal Western Toad Amphibian 1 No Yes Yes No No Plethodon vandykei idahoensis Coeur D'Alene Salamander Amphibian 1 No Yes Yes No No Rana pipiens Northern Leopard Frog Amphibian 1 No Yes Yes No No Accipiter gentilis Northern Goshawk Bird 1 No Yes Yes No No Ammodramus bairdii Baird's Sparrow Bird 1 No No Yes No No Anthus spragueii Sprague's Pipit Bird 1 No No Yes No No Centrocercus urophasianus Sage Grouse Bird 1 No Yes Yes No No Cygnus buccinator Trumpeter Swan Bird 1 No Yes Yes No No Falco peregrinus anatum American Peregrine Falcon Bird 1 No Yes Yes No No Gavia immer Common Loon Bird 1 No Yes Yes No No Histrionicus histrionicus Harlequin Duck Bird 1 No Yes Yes No No Lanius ludovicianus Loggerhead Shrike Bird 1 No Yes Yes No No Oreortyx pictus Mountain Quail Bird 1 No Yes Yes No No Otus flammeolus Flammulated Owl Bird 1 No Yes Yes No No Picoides albolarvatus White-Headed Woodpecker Bird 1 No Yes Yes No No Picoides arcticus Black-Backed Woodpecker Bird 1 No Yes Yes No No Speotyto cunicularia Burrowing -
Woodland Vole Microtus Pinetorum
woodland vole Microtus pinetorum Kingdom: Animalia FEATURES Phylum: Chordata The woodland vole has red-brown body fur with Class: Mammalia light red-brown fur on the belly. The head-body Order: Rodentia length is about three to four inches. The claws on the front feet are larger than the ones on the back Family: Cricetidae feet. The tail is very short, and the eyes are tiny. ILLINOIS STATUS common, native BEHAVIORS The woodland vole may be found statewide in Illinois. This rodent lives on the forest floor in dry woods with oaks, hickories and maples. It also lives in roadside vegetation, orchards, pastures and weedy fields. The woodland vole eats berries, roots, nuts, seeds, wild onions and a variety of green vegetation. It is active day and night. This vole uses burrows under the soil that it digs or that were dug by other small mammals. It digs with the front feet, using the hind feet to push the loose soil behind it. representative specimen The head is used to push loose dirt out of the burrow. The nest is built in a burrow or under an object on the ground that can be reached by a branch of the burrow. Several woodland voles may use the same nest. Two mating seasons occur in a year with young born from March through April and August through November. A litter contains two or three young. Young are helpless at birth but develop rapidly, living on their own at about three weeks of ILLINOIS RANGE age. Sexual maturity is attained between two and three months of age. -
Controlled Animals
Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3. -
Ecological Niche Evolution and Its Relation To
514 G. Shenbrot Сборник трудов Зоологического музея МГУ им. М.В. Ломоносова Archives of Zoological Museum of Lomonosov Moscow State University Том / Vol. 54 Cтр. / Pр. 514–540 ECOLOGICAL NICHE EVOLUTION AND ITS RELATION TO PHYLOGENY AND GEOGRAPHY: A CASE STUDY OF ARVICOLINE VOLES (RODENTIA: ARVICOLINI) Georgy Shenbrot Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev; [email protected] Relations between ecological niches, genetic distances and geographic ranges were analyzed by pair-wise comparisons of 43 species and 38 intra- specifi c phylogenetic lineages of arvicoline voles (genera Alexandromys, Chi onomys, Lasiopodomys, Microtus). The level of niche divergence was found to be positively correlated with the level of genetic divergence and negatively correlated with the level of differences in position of geographic ranges of species and intraspecifi c forms. Frequency of different types of niche evolution (divergence, convergence, equivalence) was found to depend on genetic and geographic relations of compared forms. Among the latter with allopatric distribution, divergence was less frequent and convergence more frequent between intra-specifi c genetic lineages than between either clo sely-related or distant species. Among the forms with parapatric dis- tri bution, frequency of divergence gradually increased and frequencies of both convergence and equivalence gradually decreased from intra-specifi c genetic lineages via closely related to distant species. Among species with allopatric distribution, frequencies of niche divergence, con vergence and equivalence in closely related and distant species were si milar. The results obtained allowed suggesting that the main direction of the niche evolution was their divergence that gradually increased with ti me since population split. -
Rock Vole (Microtus Chrotorrhinus)
Rock Vole (Microtus chrotorrhinus) RANGE: Cape Breton Island and e. Quebec w. tone. Min- HOMERANGE: Unknown. nesota. The mountains of n. New England, s, in the Ap- palachians to North Carolina. FOOD HABITS:Bunchberry, wavy-leafed thread moss, blackberry seeds (Martin 1971). May browse on RELATIVEABUNDANCE IN NEW ENGLAND:Unknown, possi- blueberry bushes (twigs and leaves), mushrooms, and bly rare, but may be locally common in appropriate hab- Clinton's lily. A captive subadult ate insects (Timm et al. itat. 1977). Seems to be diurnal with greatest feeding activity taking place in morning (Martin 1971). Less active in HABITAT:Coniferous and mixed forests at higher eleva- afternoon in northern Minnesota (Timm et al. 1977). tions. Favors cool, damp, moss-covered rocks and talus slopes in vicinity of streams. Kirkland (1977a) captured COMMENTS:Occurs locally in small colonies throughout rock voles in clearcuts in West Virginia, habitat not pre- its range. Natural history information is lacking for this viously reported for this species. Timm and others (1977) species. Habitat preferences seem to vary geographi- found voles using edge between boulder field and ma- cally. ture forest in Minnesota. They have been taken at a new low elevation (1,509 feet, 460 m) in the Adirondacks KEY REFERENCES:Banfield 1974, Burt 1957, Kirkland (Kirkland and Knipe 1979). l97?a, Martin 1971, Timm et al. 1977. SPECIALHABITAT REQUIREMENTS: Cool, moist, rocky woodlands with herbaceous groundcover and flowing water. REPRODUCTION: Age at sexual maturity: Females and males are mature when body length exceeds 140 mm and 150 mm, respectively, and total body weight exceeds 30 g for both sexes (Martin 1971). -
Non-Target Species Hazard Or Brodifacoum Use in Orchards for Meadow Vole Control
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Wildlife Damage Management, Internet Center Eastern Pine and Meadow Vole Symposia for March 1981 NON-TARGET SPECIES HAZARD OR BRODIFACOUM USE IN ORCHARDS FOR MEADOW VOLE CONTROL Mark H. Merson Virginia Polytechnic Institute and State University, Winchester, Virginia Ross E. Byers Virginia Polytechnic Institute and State University, Winchester, Virginia Follow this and additional works at: https://digitalcommons.unl.edu/voles Part of the Environmental Health and Protection Commons Merson, Mark H. and Byers, Ross E., "NON-TARGET SPECIES HAZARD OR BRODIFACOUM USE IN ORCHARDS FOR MEADOW VOLE CONTROL" (1981). Eastern Pine and Meadow Vole Symposia. 58. https://digitalcommons.unl.edu/voles/58 This Article is brought to you for free and open access by the Wildlife Damage Management, Internet Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Eastern Pine and Meadow Vole Symposia by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. NON-TARGET SPECIES HAZARD OF BRODIFACOUM USE IN ORCHARDS FOR MEADOW VOLE CONTROL Mark H. Merson and Ross E. Byers Winchester Fruit Research Laboratory Virginia Polytechnic Institute and State University Winchester, Virginia 22601 This year we entered into our second year of non-target species hazard assessment of Brodifacoum used (BFC; ICI Americas, Inc.) as an orchard rodenticide. The primary emphasis of this work has been to in- vestigate the effects of BFC on birds of prey through secondary poison- ing. The hazard level of BFC to raptors should be dependent on the levels found in post-treatment collections of meadow voles (Microtus pennsylvanicus). -
Microtus Duodecimcostatus) in Southern France G
Capture-recapture study of a population of the Mediterranean Pine vole (Microtus duodecimcostatus) in Southern France G. Guédon, E. Paradis, H Croset To cite this version: G. Guédon, E. Paradis, H Croset. Capture-recapture study of a population of the Mediterranean Pine vole (Microtus duodecimcostatus) in Southern France. Mammalian Biology, Elsevier, 1992, 57 (6), pp.364-372. ird-02061421 HAL Id: ird-02061421 https://hal.ird.fr/ird-02061421 Submitted on 8 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Capture-recapture study of a population of the Mediterranean Pine vole (Microtus duodecimcostatus) in Southern France By G. GUEDON, E. PARADIS, and H. CROSET Laboratoire d'Eco-éthologie, Institut des Sciences de l'Evolution, Université de Montpellier II, Montpellier, France Abstract Investigated the population dynamics of a Microtus duodecimcostatus population by capture- recapture in Southern France during two years. The study was carried out in an apple orchard every three months on an 1 ha area. Numbers varied between 100 and 400 (minimum in summer). Reproduction occurred over the year and was lowest in winter. Renewal of the population occurred mainly in autumn. -
Recovery Plan for the Amargosa Vole
Recovery Plan for the Amargosa Vole (Microtus californicus scirpensis) ( As the Nation’s principal conservation agency, the ~ Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use ofour land and water resources, protecting our fish and wildlife, preserving the environ mental and cultural values of our national parks ~, and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energyand mineral resourcesand works toassure that ~‘ theirdevelopment is in the best interests ofall our people. ~4 The Department also has a major responsibility for American Indian reservation communities and for people ~<‘ who live in island Territories under U.S. administration. AMARGOSA VOLE (Microtus cahfornicus scirpensis) RECOVERY PLAN September, 1997 7— U.S. Department ofthe Interior Fish and Wildlife Service Region One, Portland, Oregon DISCLAIMER PAGE Recovery plans delineate reasonable actions that are believed to be required to recover and/or protect listed species. Plans are published by the U.S. Fish and Wildlife Service, sometimes prepared with the assistance ofrecovery teams, contractors, State agencies, and others. Objectives will be attained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Recovery plans do not necessarily represent the views nor the official positions or approval of any individuals or agencies involved in the plan formulation, other than the U.S. Fish and Wildlife Service. They represent the official position of the U.S. Fish and Wildlife Service only after they have been signed by the Regional Director or Director as approved. -
Mather Field Vernal Pools California Vole
Mather Field Vernal Pools common name California Vole scientific name Microtus californicus phylum Chordata class Mammalia order Rodentia family Muridae habitat common in grasslands, wetlands Jack Kelly Clark, © University of California Regents and wet meadows size up to 14 cm long excluding tail description The California Vole is covered with grayish-brown fur. Its ears and legs are short and it has pale feet. It has a cylindrical shape (like a toilet paper roll) with a tail that is 1/3 the length of the body. fun facts California Voles make paths through the grasslands leading to the mouths of their underground burrows. These surface "runways" are worn into the grass by daily travel. When chased by a predator, a vole can make a fast dash for the safety of its underground burrow using these cleared runways. If you walk quickly across the grassland you will often surprise a California Vole and see it scurry to its burrow. life cycle California Voles reach maturity in one month. Female voles have litters of four to eight young. In areas with abundant food and mild weather, each female can have up to five litters in a year. ecology The California Vole can dig its own underground burrow system but it often begins by using Pocket Gopher burrows. The tunnels are usually 1 to 5 meters long and up to one half meter below ground, with a nesting den somewhere inside. The ends of the burrows are left open. Many insects, spiders, centipedes, and other animals live in their burrows. Thus, the California Vole creates habitat for other species and the Pocket Gopher improves habitat for the vole.