On the Connections Between Thermodynamics and General Relativity

Total Page:16

File Type:pdf, Size:1020Kb

On the Connections Between Thermodynamics and General Relativity On the Connections between Thermodynamics and General Relativity Jessica Santiago VICTORIAUNIVERSITYOFWELLINGTON Te Whare Wananga¯ o te UpokooteIkaaM¯ aui¯ School of Mathematics and Statistics Te Kura Matai¯ Tatauranga A thesis submitted to the Victoria University of Wellington arXiv:1912.04470v1 [gr-qc] 10 Dec 2019 in fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics. Victoria University of Wellington 2019 \H´ametaf´ısica bastante em n~ao pensar em nada. (...) O mist´erio das cousas? Sei l´ao que ´emist´erio! O ´unico mist´erio ´ehaver quem pense no mist´erio. Quem est´aao sol e fecha os olhos, Come¸caa n~ao saber o que ´eo sol E a pensar muitas cousas cheias de calor. Mas abre os olhos e v^eo sol, E j´an~ao pode pensar em nada, Porque a luz do sol vale mais que os pensamentos De todos os fil´osofos e de todos os poetas. A luz do sol n~ao sabe o que faz E por isso n~ao erra e ´ecomum e boa. (...)" Alberto Caeiro O Guardador de Rebanhos | V \There's enough metaphysics in not thinking about anything. (...) The mystery of things? I have no idea what mystery is! The only mystery is there being someone who thinks about mystery. Who is in the sun and shut their eyes, Starts not knowing what the sun is And to think a lot of things full of heat. But they open their eyes and see the sun And can't think about anything anymore, Because the sunlight is worth more than the thoughts Of all philosophers and all poets. The sunlight does not know what it's doing So it's never wrong and it's common and good. (...)" Alberto Caeiro O Guardador de Rebanhos | V i ii Abstract In this thesis, the connections between thermodynamics and general relativity are explored. We introduce some of the history of the interaction between these two the- ories and take some time to individually study important concepts of both of them. Then, we move on to explore the concept of gravitationally induced temperature gradients in equilibrium states, first introduced by Richard Tolman. We explore these Tolman-like temperature gradients, understanding their physical origin and whether they can be generated by other forces or not. We then generalize this con- cept for fluids following generic four-velocities, which are not necessarily generated by Killing vectors, in general stationary space-times. Some examples are given. Driven by the interest of understanding and possibly extending the concept of equilibrium for fluids following trajectories which are not generated by Killing vec- tors, we dedicate ourselves to a more fundamental question: can we still define thermal equilibrium for non-Killing flows? To answer this question we review two of the main theories of relativistic non-perfect fluids: Classical Irreversible Thermo- dynamics and Extended Irreversible Thermodynamics. We also take a tour through the interesting concept of Born-rigid motion, showing some explicit examples of non-Killing rigid flows for Bianchi Type I space-times. These results are impor- tant since they show that the Herglotz{Noether theorem cannot be extended for general curved space-times. We then connect the Born-rigid concept with the re- sults obtained by the relativistic fluid's equilibrium conditions and show that the exact thermodynamic equilibrium can only be achieved along a Killing flow. We do, however, introduce some interesting possibilities which are allowed for non-Killing flows. We then launch into black hole thermodynamics, specifically studying the trans- iii Planckian problem for Hawking radiation. We construct a kinematical model con- sisting of matching two Vaidya spacetimes along a thin shell and show that, as long as the Hawking radiation is emitted only a few Planck lengths (in proper distance) away from the horizon, the trans-Plackian problem can be avoided. We conclude with a brief discussion about what was presented and what can be done in the future. iv Acknowledgments I would firstly like to thank myself, for opening my heart to changes, for facing the challenges with courage and determination (sometimes too much), for committing to learn how to accept what I cannot change, for understanding that the amount I can change around me is not much, and that the first and only possible place to start is inside me. I would also like to thank my supervisor, Matt, for giving me this opportunity, for opening doors in my life and for being present. Thanks for dedicating so much of your time to others and sorry if I asked more than you could give at times. Thanks for having such a big heart with your students. To my office mates and friends Sebastian, Del and Alex. Thanks for all the discussions about physics, life, books, yoga and capitalism. You guys are great. To Finn, who helped me during the moments I most needed. Thanks for helping me to grow, for your company, support, complex food (haha) and, of course, for proofreading my thesis. To Jasmine, Meenu, Susan, Emma and Ellis my beautiful lovely gals. Each one of you is so special and your friendship has nurtured my heart and soul in different and complementary ways. Thank you thank you thank you. You gals are amazing and I really hope to see you around this big world a lot of times. Special shot to Jasmine for proofreading. To my brazilian family in Wellington: Maduro, Gisele, Marina and Andrew. Thanks for the music, the friendship, the parties, and the music again. Parab´ens! To Rosie, Brendan, Hamish, Toni, Teressa and Will. I love living with you guys. Thanks for all the chats, company, introduction to K-pop and delicious food. To Andr´e,who put a lot of effort brainwashing me to meditate and for being a v great friend and a great presence in my life. Thank you. To Cesar and Andr´eLandulfo, who helped with my research. To Ana, Jessica and Natalia. Our friendship is stronger than any distance! You are forever flawless for me. To Matheus, Lucas, Everton, Zanoli, Patricia, Pedro, Otavio and Xin. And to so many others that have inspired joy, peace and love into my heart. Por ultimo, as pessoas que me deram a base para ser quem eu sou e que, mesmo longe, se mantiveram presentes em minha vida e no meu cora¸c~ao. Minha m~ae, diva linda maravilhosa. Voc^e´euma mulher incr´ıvel. Obrigada por me dar colo mesmo pelo whatsapp. Meu pai e meus irm~aos, Adonias, Alan, Alex e Sheila. S´ode pensar em voc^esmeu cora¸c~ao fica mais feliz. Obrigada por estarem presentes. E `aAmanda, minha pequena. Eu amo te ver crescer essa pessoa t~ao sorridente, engra¸cada, cheia de energia e carinhosa. Obrigada por existir na minha vida. I would also like to thank Victoria University of Wellington for the scholarship. vi Contents 1. Introduction1 1.1. Outline...................................6 1.2. Notation and conventions . .7 2. Thermodynamics and General Relativity9 2.1. Thermodynamics . .9 2.1.1. Thermodynamic Equilibrium . 10 2.1.2. The Laws of Thermodynamics . 14 2.2. General Relativity . 19 3. Gravity-induced temperature gradients 31 3.1. The weight of heat . 32 3.2. The physics behind Tolman temperature gradients . 35 3.2.1. The static weak field approximation . 35 3.2.2. Planck's blackbody spectrum . 36 3.2.3. How to measure temperatures . 38 3.3. Electrically induced temperature gradients? . 41 3.3.1. Maxwell's argument . 41 3.3.2. The impossibility of electrically induced temperature gradients 43 3.4. The general case extension . 46 3.5. The rotating universe example . 54 3.6. Black Hole examples . 61 vii Contents 3.7. Covariant Thermodynamics . 67 4. Can we still define thermal equilibrium for non-Killing flows? 73 4.1. RelativisticFluids............................. 75 4.2. Kinematics of fluids and spacetime optics . 76 4.2.1. Shear, expansion and vorticity . 79 4.2.2. The rate of deformation tensor . 82 4.3. Rigidbodymotion ............................ 84 4.3.1. Herglotz-Noether theorem . 85 4.3.2. Killing, conformal Killing and geodesic congruences . 86 4.3.3. Non-geodesic non-Killing congruences: . 91 4.4. Non-Perfect Fluids . 99 4.4.1. Classical Irreversible Thermodynamics . 102 4.4.2. Extended Irreversible Thermodynamics . 107 4.5. The possibility of equilibrium along non Killing flows . 113 5. The trans-Planckian Problem 125 5.1. Introduction . 126 5.2. Static approximation case . 129 5.3. Piecewise Vaidya spacetime . 132 5.3.1. Vaidya spacetime in null coordinates . 133 5.3.2. Matching null coordinates outside/inside . 134 5.3.3. Thin-shell tangent and normal . 135 5.4. Exterior region | outgoing Hawking radiation . 136 5.4.1. Blueshift/redshift . 136 5.4.2. Evading trans-Planckian physics . 138 5.4.3. From Unruh temperature to Hawking temperature . 143 5.5. Interior metric and the final fate of the Vaidya model black hole . 144 5.6. Models for evaporation scenarios . 148 5.6.1. Non equal masses case . 149 5.6.2. Mass matching case . 151 5.6.3. The \time matching" case . 152 viii Contents 5.6.4. The empty-interior massive shell (a consistency check) . 153 5.7. Remarks.................................. 154 6. Famous Last Words 155 A. Some technical results on the Vaidya model 159 Publications related to the PhD 165 Bibliography 167 ix x List of Figures 2.1. Junction conditions . 27 3.1. Temperature gradient caused by a gravitational field . 39 3.2. External observer looking at blackbody radiation from a box . 40 3.3. Gedankenexperiment: Electric heat engine . 45 3.4. Rotating cylinder . 55 3.5.
Recommended publications
  • Resolution of the Ehrenfest Paradox in the Dynamic Interpretation of Lorentz Invariance F
    Resolution of the Ehrenfest Paradox in the Dynamic Interpretation of Lorentz Invariance F. Winterberg University of Nevada, Reno, Nevada 89557-0058, USA Z. Naturforsch. 53a, 751-754 (1998); received July 14, 1998 In the dynamic Lorentz-Poincare interpretation of Lorentz invariance, clocks in absolute motion through a preferred reference system (resp. aether) suffer a true contraction and clocks, as a result of this contraction, go slower by the same amount. With the one-way velocity of light unobservable, there is no way this older pre-Einstein interpretation of special relativity can be tested, except in cases involv- ing rotational motion, where in the Lorentz-Poincare interpretation the interaction symmetry with the aether is broken. In this communication it is shown that Ehrenfest's paradox, the Lorentz contraction of a rotating disk, has a simple resolution in the dynamic Lorentz-Poincare interpretation of Lorentz invariance and can perhaps be tested against the prediction of special relativity. One of the oldest and least understood paradoxes of contraction. With all clocks understood as light clocks special relativity is the Ehrenfest paradox [ 1 ], the Lorentz made up of Lorentz-contraded rods, clocks in absolute contraction of a rotating disk, whereby the ratio of cir- motion go slower by the same amount. For an observer cumference of the disk to its diameter should become less in absolute motion against the preferred reference than n. The paradox gave Einstein the idea that in accel- system, the contraction and time dilation observed on an erated frames of reference the metric is non-euclidean object at rest in this reference system is there explained and that by reason of his principle of equivalence the as an illusion caused by the Lorentz contraction and time same should be true in the presence of gravitational fields.
    [Show full text]
  • Relativistic Rigid Systems and the Cosmic Expansion
    Noname manuscript No. (will be inserted by the editor) Relativistic rigid systems and the cosmic expansion Luciano Combi* · Gustavo E. Romero Received: date / Accepted: date Abstract We analyze the necessary conditions for a body to remain rigid in an expanding cosmological Universe. First, we establish the main theorems and definitions for having a rigid body in a general spacetime as well as the new concept of quasilocal rigidity. We apply the obtained results to a homogeneous universe exploring the differences with flat spacetime. We discuss how the concept of rigid body helps to understand the expansion of space in cosmology. Finally, using a rigid system as a reference frame, we calculate the gravitational energy, and we compare it with previous results in the literature. Keywords Cosmology · Rigidity · Expansion · Gravitational energy 1 Introduction A rigid body is a physical system that cannot be deformed, i.e. a body in which distances between its parts are constant. In Newtonian physics, rigidity is well- defined and essentially non-local; for instance, if we push a rigid body, each part must move in a way that that distances remain invariant. This implies that the interaction between all parts must be instantaneous. In Relativity, this is prohibited by the causal structure of spacetime, i.e. nothing can move faster than light. In 1909, a few years after Einstein's presentation of Special Relativity, Born proposed the first definition of relativistic rigidity [1]. He showed that L. Combi* Instituto Argentino de Radioastronom´ıa,C.C. No. 5, 1894, Villa Elisa, Argentina Tel.: +54-45-678910 E-mail: [email protected] G.E.
    [Show full text]
  • Quantum Optics and Relativistic Motion with Superconducting Circuits
    THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Quantum optics and relativistic motion with superconducting circuits Joel Lindkvist Applied Quantum Physics Laboratory Department of Microtechnology and Nanoscience CHALMERS UNIVERSITY OF TECHNOLOGY G¨oteborg, Sweden 2015 Quantum optics and relativistic motion with superconducting circuits JOEL LINDKVIST ISBN 978-91-7597-300-5 c JOEL LINDKVIST, 2015 Doktorsavhandlingar vid Chalmers tekniska h¨ogskola Ny serie nr 3981 ISSN 0346-718X Applied Quantum Physics Laboratory Department of Microtechnology and Nanoscience - MC2 Chalmers University of Technology SE-412 96 G¨oteborg, Sweden Telephone +46 (0)31 772 1000 www.chalmers.se Author email: [email protected] ISSN 1652-0769 Technical Report MC2-323 Printed by Chalmers Reproservice G¨oteborg, Sweden 2015 Quantum optics and relativistic motion with superconducting circuits JOEL LINDKVIST Applied Quantum Physics Laboratory Department of Microtechnology and Nanoscience Chalmers University of Technology Abstract Superconducting microwave circuits provide a versatile platform for study- ing quantum optics with artificial atoms, mainly motivated by applications in quantum information. In addition, the circuits are promising for simu- lation of relativistic phenomena. This thesis is based on theoretical work along both these lines. Firstly, we consider a transmon coupled to an open transmission line. Using circuit quantization techniques and the master equation formalism, we theoretically describe scattering of coherent microwaves states on the transmon. The results agree with various recent experiments. As an exam- ple, we see a photon number redistribution leading to antibunching in the reflected field and superbunching in the transmitted field. Inspired by these results, we further investigate the possibility of generating single-photon states on demand in the system.
    [Show full text]
  • Talking at Cross-Purposes. How Einstein and Logical Empiricists Never Agreed on What They Were Discussing About
    Talking at Cross-Purposes. How Einstein and Logical Empiricists never Agreed on what they were Discussing about Marco Giovanelli Abstract By inserting the dialogue between Einstein, Schlick and Reichenbach in a wider network of debates about the epistemology of geometry, the paper shows, that not only Einstein and Logical Empiricists came to disagree about the role, principled or provisional, played by rods and clocks in General Relativity, but they actually, in their life-long interchange, never clearly identified the problem they were discussing. Einstein’s reflections on geometry can be understood only in the context of his “measuring rod objection” against Weyl. Logical Empiricists, though carefully analyzing the Einstein-Weyl debate, tried on the contrary to interpret Einstein’s epistemology of geometry as a continuation of the Helmholtz-Poincaré debate by other means. The origin of the misunderstanding, it is argued, should be found in the failed appreciation of the difference between a “Helmhotzian” and a “Riemannian” tradition. The epistemological problems raised by General Relativity are extraneous to the first tradition and can only be understood in the context of the latter, whose philosophical significance, however, still needs to be fully explored. Keywords: Logical Empiricism Moritz Schlick, Hans Reichenbach, Albert Einstein, Hermann Weyl, Epistemology of Geometry 1. Introduction on the notion of rigid bodies in Special Relativity (§2.1) and most of all those between Einstein, Herman Weyl Mara Beller in her classical Quantum dialogue (Beller, and Walter Dellänbach (§3) on the role of rigid rods and 1999) famously suggested a “dialogical” approach to the clocks in General Relativity (§2.2) around the 1920s.
    [Show full text]
  • Visualization of Thomas-Wigner Rotations 2
    Visualization of Thomas-Wigner rotations G. Beyerle Caputh, Germany E-mail: [email protected] Abstract. It is well known that a sequence of two non-collinear pure Lorentz transformations (boosts) is not a boost again, but involves a spatial rotation, the Wigner or Thomas-Wigner rotation. The formation of this rotation is visually illustrated by moving a Born-rigid object on a closed trajectory in several sections. Within each section the boost’s proper time duration is assumed to be the same and the object’s centre accelerates uniformly. Born-rigidity implies that the stern of this object accelerates faster than its bow. It is shown that at least five boosts are required to return the object’s centre to its start position. With these assumptions, the Thomas- Wigner rotation angle depends on a single parameter only, the maximum speed reached within each boost section. The visualization highlights the close relationship between the Thomas-Wigner rotation and the relativity of simultaneity. Furthermore, it is illustrated that accelerated motion implies the formation of an event horizon. The event horizons associated with the five boosts constitute a boundary to the rotated Born-rigid object and ensure its finite size. arXiv:1706.02755v1 [physics.class-ph] 6 Jun 2017 Visualization of Thomas-Wigner rotations 2 1. Introduction In 1926 the British physicist Llewellyn Hilleth Thomas (1903–1992) resolved a discrepancy between observed line splittings of atomic spectra in an external magnetic field (Zeeman effect) and theoretical calculations at that time [see e.g. Tomonaga, 1997]. Thomas’ analysis [Thomas, 1926, 1927] explains the observed deviations in terms of a special relativistic effect [Einstein, 1905].
    [Show full text]
  • Simultaneity and Precise Time in Rotation
    universe Article Simultaneity and Precise Time in Rotation Don Koks Defence Science and Technology Group, CEWD 205 Labs, P.O. Box 1500, Edinburgh SA 5111, Australia; [email protected] Received: 4 October 2019; Accepted: 12 November 2019; Published: 16 December 2019 Abstract: I analyse the role of simultaneity in relativistic rotation by building incrementally on its role in simpler scenarios. Historically, rotation has been analysed in 1+1 dimensions; but my stance is that a 2+1-dimensional treatment is necessary. This treatment requires a discussion of what constitutes a frame, how coordinate choices differ from frame choices, and how poor coordinates can be misleading. I determine how precisely we are able to define a meaningful time coordinate on a gravity-free rotating Earth, and discuss complications due to gravity on our real Earth. I end with a critique of several statements made in relativistic precision-timing literature, that I maintain contradict the tenets of relativity. Those statements tend to be made in the context of satellite-based navigation; but they are independent of that technology, and hence are not validated by its success. I suggest that if relativistic precision-timing adheres to such analyses, our civilian timing is likely to suffer in the near future as clocks become ever more precise. Keywords: rotating disk; clock synchronisation; precise timing; Sagnac effect; accelerated frame; circular twin paradox; Selleri’s paradox PACS: 03.30.+p MSC: 83A05 1. Introduction The analysis of relativistic rotation has evolved from a theoretical problem to a practical one in recent years as clock technology has grown ever more precise, and the question of what constitutes “the best time” on a rotating Earth becomes more urgent to resolve.
    [Show full text]
  • Fritz Hasenöhrl and E=Mc2
    Eur. Phys. J. H DOI: 10.1140/epjh/e2012-30061-5 THE EUROPEAN PHYSICAL JOURNAL H Fritz Hasen¨ohrl and E = mc2 Stephen Boughna Haverford College, 19041 Haverford, PA, USA Received 28 November 2012 / Received in final form 17 December 2012 Published online 21 January 2013 c EDP Sciences, Springer-Verlag 2013 Abstract. In 1904, the year before Einstein’s seminal papers on special relativity, Austrian physicist Fritz Hasen¨ohrl examined the properties of blackbody radiation in a moving cavity. He calculated the work nec- essary to keep the cavity moving at a constant velocity as it fills with radiation and concluded that the radiation energy has associated with E 3 mc2 it an apparent mass such that = 8 . In a subsequent paper, also in 1904, Hasen¨ohrl achieved the same result by computing the force necessary to accelerate a cavity already filled with radiation. In early E 3 mc2 1905, he corrected the latter result to = 4 . This result, i.e., m 4 E/c2 = 3 , has led many to conclude that Hasen¨ohrl fell victim to the same “mistake” made by others who derived this relation between the mass and electrostatic energy of the electron. Some have attributed the mistake to the neglect of stress in the blackbody cavity. In this pa- per, Hasen¨ohrl’s papers are examined from a modern, relativistic point of view in an attempt to understand where he went wrong. The primary mistake in his first paper was, ironically, that he didn’t account for the loss of mass of the blackbody end caps as they radiate energy into the cavity.
    [Show full text]
  • A Modern View of the Classical Herglotz-Noether Theorem
    A modern view of the classical Herglotz-Noether theorem Ziyang Hu∗ D.A.M.T.P. University of Cambridge 13th November 2018 Abstract In this paper we give a new proof, valid for all dimensions, of the classical Herglotz- Noether theorem that all rotational shear-free and expansion-free flows (rotational Born- rigid flows) in Minkowski spacetime are generated by Killing vector fields (isometric flows). This is aimed as an illustration of a general framework for working with problems that can be described as a structure-preserving submersion, which we will describe in a subsequent paper. arXiv:1004.1935v3 [math-ph] 24 Aug 2010 ∗[email protected] 1 Contents 1 Introduction 3 1.1 Historyandpreviousresults . .... 3 1.2 Relation to the AdS/CFT correspondence . ..... 6 1.3 Newresultsanddevelopment . 6 2 Riemannian geometry 6 2.1 Coframes ..................................... 6 2.2 Covariantderivatives. ... 9 3 Flow in an orthonormal frame 10 3.1 Rigidflow..................................... 12 3.2 Conditions for isometric rigid flow . ..... 14 3.3 Relationstofluidmechanics . 15 4 Intrinsic geometry and integrability of rigid flow 15 4.1 GaussandCodazziequations . 16 4.2 (Non-)integrability of the base space . ....... 16 4.3 Connection and curvature for the base space . ....... 18 5 Generalisations to the Herglotz-Noether theorem 20 6 Conclusion 21 References 22 2 1 Introduction 1.1 History and previous results Man has studied rigid motion since antiquity. The concept of rigid motion relevant to us, though, begins only within the framework of Newtonian mechanics. Using modern language, the way of defining such a motion is by considering a body B as a Riemannian manifold (possibly with boundary), the ambient space M also as a Riemannian manifold (usually just Euclidean space) and a map i depending on a parameter t “time” taken values in R, for which the map i(t) : B → M (1.1) obtained by fixing the first argument in i : R × B → M is an isometric embedding for all t in a relevant domain.
    [Show full text]
  • Rigid Motion in Special Relativity
    SCIREA Journal of Physics ISSN: 2706-8862 http://www.scirea.org/journal/Physics April 19, 2021 Volume 6, Issue 1, February 2021 Rigid Motion in Special Relativity Stuart Boehmer Wichita, Kansas, United States Email: [email protected]; [email protected] Abstract We solve the problem of rigid motion in special relativity in completeness, forswearing the use of the 4-D geometrical methods usually associated with relativity, for pedagogical reasons. We eventually reduce the problem to a system of coupled linear nonhomogeneous ordinary differential equations. We find that any rotation of the rigid reference frame must be independent of time. We clarify the issues associated with Bell’s notorious rocket paradox and we discuss the problem of hyperbolic motion from multiple viewpoints. We conjecture that any rigid accelerated body must experience regions of shock in which there is a transition to fluid motion, and we discuss the hypothesis that the Schwarzchild surface of a black hole is just such a shock front. Keywords : rigid body; rigid motion; born rigidity; rotation; acceleration; revolution; Ehrenfest’s paradox; Bell’s rocket paradox; relativity; hyperbolic motion; Schwarzchild solution; black holes 1 1. Introduction In 1910, Born [1] posed the problem of finding the most general rigid motion in special relativity. That is, he wanted to find the relativistic analogue of the classical, , (1) where is the translational velocityand istherotational velocity of the moving rigid reference frame and is the local velocity of the moving rigid frame with respect to the “absolute” frame of reference of Newton, and where and are the Cartesian coordinates and time of the absolute frame.
    [Show full text]
  • Table of Contents
    Contents 1 Minkowski Spacetime .......................................... 1 1.1 Introduction ............................................... 1 1.2 The Four Dimensions ....................................... 2 1.2.1 Spacetime as an Affine Space .......................... 2 1.2.2 A Few Notations ..................................... 3 1.2.3 Affine Coordinate System ............................. 4 1.2.4 Constant c .......................................... 4 1.2.5 Newtonian Spacetime ................................ 5 1.3 Metric Tensor .............................................. 6 1.3.1 Scalar Product on Spacetime ........................... 7 1.3.2 Matrix of the Metric Tensor ........................... 9 1.3.3 Orthonormal Bases ................................... 10 1.3.4 Classification of Vectors with Respect to g ............... 11 1.3.5 Norm of a Vector .................................... 11 1.3.6 Spacetime Diagrams ................................. 12 1.4 Null Cone and Time Arrow .................................. 15 1.4.1 Definitions .......................................... 15 1.4.2 Two Useful Lemmas ................................. 15 1.4.3 Classification of Unit Vectors .......................... 16 1.5 Spacetime Orientation....................................... 19 1.6 Vector / Linear Form Duality ................................. 21 1.6.1 Linear Forms and Dual Space .......................... 21 1.6.2 Metric Duality....................................... 22 1.7 Minkowski Spacetime ....................................... 23 1.8
    [Show full text]
  • Inertial System and Special Relativity Finite Geometrical Field
    Inertial System and Special Relativity Finite Geometrical Field Theory of Matter Motion Part One Xiao Jianhua Natural Science Foundation Research Group, Shanghai Jiaotong University Shanghai, P.R.C Abstract: Special relativity theory is well established and confirmed by experiments. This research establishes an operational measurement way to express the great theory in a geometrical form. This may be valuable for understanding the underlying concepts of relativity theory. In four-dimensional spacetime continuum, the displacement field of matter motion is measurable quantities. Based on these measurements, a finite geometrical field can be established. On this sense, the matter motion in physics is viewed as the deformation of spacetime continuum. Suppose the spacetime continuum is isotropic, based on the least action principle, the general motion equations can be established. In this part, Newton motion and special relativity are discussed. Based on the finite geometrical field theory of matter motion, the Newton motion equation and the special relativity can be derived simply based on the isotropy of spacetime continuum and the definition of inertial system. This research shows that the Lorentz transformation is required by both of the inertial system definition and the time gauge invariance for inertial systems. Hence, the special relativity is the logic conclusion of time invariance in inertial system. The source independent of light velocity supports the isotropy of inertial system rather than the concept of proper time, which not only causes many paradox, such as the twin-paradox, but also causes many misunderstanding and controversial arguments. The singularity of Lorentz transformation is removed in other parts of finite geometrical field theory, where the gravity field, electromagnetic field, and quantum field will be discussed with the time displacement field.
    [Show full text]
  • Proper-Time Measurement in Accelerated Relativistic Systems
    Proper-time measurement in accelerated relativistic systems Uri Ben-Ya'acov School of Engineering, Kinneret Academic College on the Sea of Galilee, D.N. Emek Ha'Yarden 15132, Israel E-mail: [email protected] Abstract. Separate constituents of extended systems measure proper-times on different world-lines. Relating and comparing proper-time measurements along any two such world-lines requires that common simultaneity be possible, which in turn implies that the system is linearly-rigidly moving so that momentary rest frames are identifiable at any stage of the system's journey in space-time. Once momentary rest-frames have been identified, clocks moving on separate world- lines are synchronizable by light-signal communication. The synchronization relations for two clocks are explicitly computed using light-signals exchanged between them. Implications for the clock hypothesis are included. Also, since simultaneity is frame- dependent, incorrect usage of it leads to pseudo-paradoxes. Counter-examples are discussed. Keywords : proper-time; extended relativistic systems; relativistic rigid motion; rapidity; clock hypothesis; relativistic age. 1. Introduction In classical Newtonian mechanics any set of particles may be grouped to form a \system". arXiv:1907.05975v1 [physics.class-ph] 12 Jul 2019 Time is absolute, independent of the referenc-frame, therefore common to all the chosen constituents, and a centre-of-mass (CM) may be unambiguously defined. Relativity theory is closer to reality than Newtonian mechanics, telling us that time measurement is reference-frame-dependent. Then, except for the trivial case of a system whose constituents all move inertially with the same velocity, there is no common time for the system as a whole.
    [Show full text]