Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations

2007 Neuroprotective effect of phytic acid in Parkinson's disease Qi Xu Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Veterinary Toxicology and Pharmacology Commons

Recommended Citation Xu, Qi, "Neuroprotective effect of phytic acid in Parkinson's disease" (2007). Retrospective Theses and Dissertations. 14629. https://lib.dr.iastate.edu/rtd/14629

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Neuroprotective effect of phytic acid in Parkinson’s disease by Qi Xu

Athesissubmittedtothegraduatefaculty inpartialfulfillmentoftherequirementsforthedegreeof MASTEROFSCIENCE Major:Toxicology ProgramofStudyCommittee: ManjuB.Reddy,ComajorProfessor AnumanthaG.Kanthasamy,ComajorProfessor ChadH.Stahl IowaStateUniversity Ames,Iowa 2007 Copyright©QiXu,2007.Allrightsreserved. UMI Number: 1447478

UMI Microform 1447478 Copyright 2008 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 ii

TABLE OF CONTENTS

CHAPTER 1. GENERAL INTRODUCTION ...... 1 Introduction...... 1 Thesisorganization ...... 2 Literaturereview...... 3 Parkinson’sdisease(PD)andanimalmodelsofPD...... 3 PathogenesisandriskfactorsofPD...... 9 TheroleofinPD ...... 13 TreatmentofPD...... 18 Alternatetherapeuticstrategies...... 19 NutritionalapproachestoPD...... 21 References...... 25

CHAPTER 2. NEUROPROTECTIVE EFFECT OF THE NATURAL IRON CHELATOR PHYTIC ACID IN A CELL CULTURE MODEL OF PARKINSON’S DISEASE ...... 33 Abstract...... 33 Introduction...... 34 Materialsandmethods ...... 36 Results...... 39 Discussion...... 42 References...... 45

CHAPTER 3. PHYTIC ACID PROTECTS AGAINST 6- HYDROXYDOPAMINE AND IRON INDUCED APOPTOSIS IN A CELL CULTURE MODEL OF PARKINSON'S DISEASE ...... 54 Abstract...... 54 Introduction...... 55 Materialsandmethods ...... 57 Results...... 60 Discussion...... 61 References...... 64

CHAPTER 4. GENERAL CONCLUSION ...... 72 Generaldiscussion ...... 72 References...... 74

APPENDIX. PHYTIC ACID DOES NOT HAVE A NEUROPROTECTIVE EFFECT IN AN ANIMAL MODEL OF PARKINSON'S DISEASE ...... 75 Abstract...... 75 Introduction...... 75 Materialsandmethods ...... 77 Results...... 81 Discussion...... 83 References...... 86

ACKNOWLEDGEMENTS ...... 96

1

CHAPTER 1. GENERAL INTRODUCTION

Introduction

Parkinson’sdisease(PD)isthesecondmostcommonneurodegenerativedisease, affectingmorethan1%oftheUSpopulationover50yearsofageandcausinganestimated economicobligationof$25billionannually(Scheifeetal.2000).TheclinicalfeaturesofPD includerestingtremor,bradykinesia,rigidity,andposturalinstability.Thesesymptomsresult fromselectivedegenerationofdopamineneuronsarisinginthesubstantianigraand terminatinginthestriatum.

Recentresearchinteresthasbeendirectedtowardunderstandingthepathogenesisandthe neuroprotectivetherapyofthedisease.Therehavebeenmanydopaminereplacement strategiestoneutralizethemotordeficitsresultingfromPD.Thesestrategies,however,are limitedtosymptomaticrelief.Otherlimitationsoftheseapproachesincludedrugtolerance anddruginducedinvoluntarymovements,andmostimportantly,suchdopaminetherapy doesnotattenuatetheprogressionoftheillness.Therefore,novelneuroprotectiveagentsthat effectivelypreventtheprogressionoftheneurodegenerativeprocessareneeded.

Sinceexcessiveironaccumulationinsubstantianigrawasfoundinpostmortembrainsof

PDpatients,theroleofironinthisdiseasehasrecentlygainedattention.Selectivecelldeath insubstantianigraofthebrainregionisassociatedwithoxidativestress,whichmaybe exacerbatedbythepresenceofexcessiron,becauseofitsprooxidativenature.Iron metabolismisdisruptedinPD,suchthatironaccumulatesinlewybodiesanddistributionof irontransportandstorageproteinsisaltered.Increasedironlevelswithoutanincreasein ferritin(anironstorageprotein)levelshasbeensuggestedtoprovide“freeiron”forfree

2 radicalgeneration(Bergetal.2001;Bishopetal.2002),thuscausingoxidativedamage.

Studiesshowingtheeffectivenessofandironchelatorsinpreventingand treatingPDclearlysupporttheinvolvementofoxidativestressandironinthedisease(Kaur etal.2003;Zhangetal.2005).

Phyticacidispresentinhighconcentrationincerealsandandisgenerally consideredanbyvirtueofitsabilitytochelatedivalentmineralsandprevent theirabsorption(Reddyetal.1996).Itsuniquechelatingactionwithironhasbeenshownto inhibithydroxide( •OH)formationanddecreaselipidperoxidationinvivo(Raoetal.1991).

Phyticacidmayalsoinfluenceoxidativestressbyalteringcellsignalingpathwaysor influencingtheactivityandexpressionofkeyinthedefensesystem

(Shamsuddinetal.1997).

BasedonthepositiveeffectofironchelatorsinPDandtheantioxidantpropertyandiron chelatingabilityofphyticacid,theobjectiveofthisstudyistodeterminetheneuroprotective effectofphyticacidinthecellculturemodelofPD.

Thesis organization

Thisdissertationiswritteninanalternativethesisformat.Itcontainsageneral introduction,tworesearchpapers,ageneralconclusionandanappendixoftheresearch report.Thelistofreferencescitedisincludedattheendofeachchapter.Chapter1,the generalintroduction,includestheresearchobjectivesandthebackgroundinformationrelated tothestudiespresented:(1)Parkinson’sdisease(PD)andanimalmodelsofPD(2)

PathogenesisandriskfactorsofPD(3)TheroleofironinPD(4)TreatmentofPD(5)

Alternatetherapeuticstrategies(6)NutritionalapproachestoPD.Chapter2isthemanuscript

3

“Neuroprotectiveeffectofthenaturalironchelatorphyticacidinacellculturemodelof

Parkinson'sdisease”whichwillbesubmittedtoTheJournalofNutrition.Chapter3isthe secondmanuscript“Phyticacidprotectsagainst6hydroxydopamineandironinduced apoptosisinacellculturemodelofParkinson'sdisease”whichwillbesubmittedfor publicationinNeuroscienceletters.Chapter4isthegeneralconclusion.Theappendix summarizestheexperimentalresultsontheeffectofphyticacidinananimalmodelofPD.

Thethesiscontainstheexperimentalresultsobtainedbytheauthorduringhergraduate studyunderthesupervisionofhermajorprofessors,Dr.ManjuB.ReddyandDr.Anumantha

G.Kanthasamy.

Literature review

Parkinson’s disease (PD) and animal models of PD

Parkinson’sdiseasewasfirstdescribedin1817byaBritishphysician,JamesParkinson, asaneurologicalillnessconsistingofrestingtremorandapeculiarformofprogressivemotor disability(Samiietal.2004).Currently,thisdebilitatingneurodegenerativedisorderisthe secondmostcommonneurodegenerativedisorderintheUSandisexpectedtoimposean increasingeconomicburdenonsocieties.IntheUS,PDaffectsmorethan1%ofthe populationover50yearsofage,andcausesanestimatedeconomicobligationof$25billion annually(Scheifeetal.2000).ThecardinalsymptomsofPDincluderestingtremor, bradykinesia,andrigidity.Therestingtremorisconsideredtobethemostcommonsymptom andisshownasthefirstsignin70%ofpatients.Asymmetricatfirst,thistremoroccursin hands,arms,legs,jaw,andface.Itusuallyoccursatrestbutmayalsobepresentwhenthe armsareraised.Bradykinesiareferstoslowedmovementincludingbothnonvolitionaland

4 volitionalmovements.ItisthemostdisablingsymptomofearlyPDandinitiallymanifests withdifficultieswithfinemotortaskssuchasdoingupbuttonsorhandwritingandreduced armswingwhilewalking(Samiietal.2004).ThemaskedfaceofPDisanexampleof slowednonvolitionalmovement.Rigidityproducesaresistancetopassivemovementthatis uniformthroughouttherangeofmotionofthelimbsandjoints.Variousnonmotorfeatures inPDhavealsobeenrecognizedinthepasttenyears,includingautonomicdysfunction, sensorysymptoms,sleepdisturbance,anxiety,depression,anddementia(Samiietal.2004).

Thebasicanatomyofthebasalgangliawillbereviewed,sinceitissoimportantfor understandingPDpathology.Motor,cognitive,andaffectiveactivitiesareinfluencedbytwo majorsubcorticalstructures:thebasalgangliaandcerebellum(Hoshietal.2005).Thebasal gangliareferstothemajoranatomicaltelencephalicsubcorticalnucleiatthebaseofthe forebrainandconsistsofstriatum,globuspallidus,substantianigra,andsubthalamicnucleus.

Thebasalgangliaandthecerebellumreceiveinformationfromcerebralcortexprojectsand sendtheiroutputrightbacktothecortexviathethalamusordirectlytothemotorsystemsin themidbrainandhindbrain.Theoutputofthecerebellumisexcitatory,whereasthebasal gangliaoutputisinhibitory.Thebalancebetweenthesetwosystemsallowsforsmoothand coordinatedmovement,andadisturbanceineithersystemwillcausemovementdisorders.

ThepathologicalhallmarkofPDisthedegenerationofdopaminergicneuronswhosecell bodiesarelocatedinthesubstantianigraparscompacta(SNpc)andwhoseprojectingaxons andnerveterminalsarefoundinthestriatum(Przedborski2005).Thelossofnigralneurons inthesubstantianigraresultsinseveredopaminedepletioninthestriatum,affectingthe motorsymptoms(Fig.1.1).Thediseaseisalsoconsideredasatyrosinehydroxylase(TH) deficiencysyndrome(Fig.1.2),sinceTHcatalyzestheformationofL3,4

5 dihydroxyphenylalanine(levodopa),theratelimitingstepinthebiosynthesisofdopaminein thestriatum(Haavik&Toska1998).Ingeneral,theappearanceofdiseasesymptomsis observedafterlossof80%ofstriataldopamineand50%ofTHimmunoreactive dopaminergicneuronsinthesubstantianigra(Samiietal.2004).

Figure 1.1 Schematicdiagramofnigrostriataldopaminergicpathway(Betarbetetal.2002).

Figure 1.2 Mainpathwaysofsynthesisandmetabolismofdopamine.Themainenzymes involvedaretyrosinehydroxylase(TH),aromaticaminoaciddecarboxylase(AADC),and catecholOmethyltransferase(COMT).DA,dopamine;DOPAC,3,4dihydroxyphenylacetic acid;HVA,homovanillicacid;levodopa,L3,4dihydroxyphenylalanine.

ThemechanismresponsibleforcelldeathinPDisstillunknown.However,increasing

6 evidencesuggeststhatneuronaldeathintheSNpcmaybeapoptotic(Lang&Lozano1998).

Apoptoticcelldeathisamorphologicallyandbiochemicallydefinedmodeofcelldeath characterizedbychromatincondensationandaggregationtothenuclearmargin,cytoplasmic shrinkage,DNAfragmentation,andmembraneblebbing.Blebbingofthemembraneresults inthecellbuddingofffromitselfintomembranebound“apoptoticbodies”,whichare phagocytizedbyneighboringcellswithoutaninflammatoryresponse(Andersen2001).In vitrostudieswithisolatedneuronsandinvivostudiesinanimalstreatedwithneurotoxin haveprovidedstrongevidencethatsubstantianigracelldeathispredominantlyfrom apoptosis(Kauletal.2003;Kostrzewa2000).Inaddition,postmortemstudieshavealso reportedthatdyingneuronsintheParkinsonianbrainsdisplayedmorphological characteristicsofapoptosisincludingcellshrinkage,chromatincondensation,andDNA fragmentation(Andersen2001;Angladeetal.1997;Mochizukietal.1996).

AnotherimportantcharacteristicpathologyofPDarelewybodies,theintraneuronal inclusionsofabnormalproteinaggregation(Emborg2004).Thelewybodiesaresmall sphericalinclusionsthatconsistofneurofilamentsandubiquitin(Blumetal.2001).Though thedetailedmechanismsarestillunderinvestigation,theproductionofexcessivemisfolded proteinsandthecompromisedubiquitinproteasomesystemarethoughttoplayimportant rolesintheformationoflewybodies.ThepresenceoflewybodiesisnotrestrictedtoPD;the inclusionsarealsoobservedinAlzheimer’sdisease,suggestingtheabnormalprotein aggregationinneuronsisubiquitouslyinvolvedinthepathogenesisofneurodegenerative diseases.

7

NeurotoxinsinducedPD

SincethecauseandmechanismofPDremainunknownandinvestigatingtheetiology andpathogenesisofthediseaseinhumansisdifficult,neurotoxinsareusedtoinduce experimentalmodelsofPD.Themostcommonneurotoxinsusedare6hydroxydopamine(6

OHDA),rotenone,lactacystin,and1methyl4phenyl1,2,3,6tetrahydropyridine(MPTP)

(Beal2001;Zhangetal.2005).

NeurotoxicityinducedbyMPTP,atoxicbyproductintheclandestinesynthesisofa pethidineanalogue,maybemostusefulforunderstandingPDindevelopingstrategies.

NumerousstudieshaveinvestigatedthemechanismofMPTPinducedParkinsonism.MPTP administrationselectivelydamagesdopaminergicneuronsarisingintheSNpcandcausesthe lossofdopaminergicnerveterminalsinthestriatum,whichleadstoimpaireddopaminergic neurotransmission(Burnsetal.1983;Kalivendietal.2003).MPTPinducedParkinsonismin primatesreplicatesalltheclinicalsignsofPD,includingtremor,rigidity,andbradykinesia.

Inaddition,primatestreatedwithMPTPshowanexcellentresponsetothedopamine precursorlevodopaandtodopamineagoniststreatment.Whenadministeredto animals,MPTPcrossesthebloodbrainbarrierandisconvertedintoitsactivemetabolite,1 methyl4phenylpyridinium(MPP +),bymonoamineoxidasetypeB.MPP +istakenupby theplasmamembranedopaminetransporterandaccumulatesinthedopaminergicneuronsin theSNpcduetoitssimilarstructuretodopamine(Fig.1.3).IntracellularMPP +istakenup andaccumulatesinthemitochondria,whereitinhibitstherespiratorychainbyinhibiting

NADHdehydrogenase(Beal2001).Sincethetransportofelectronsdowntheelectron transportchain(ETC)willreleaseenergytocreateaprotonandelectrochemicalgradientfor

ATPformation,disruptionoftheETCmayleadtothedecreaseinATPwhichcouldaffect

8 manyprocessesintheneurons.Meanwhile,MPP +inducedinhibitionofthecomplexIcould increasethesuperoxideradicalformation,asNADHcouldnolongertransferreduced equivalentstooxidizedubiquinone,andthehighenergyelectronswillreactwithoxygento formsuperoxide(Fonck&Baudry2003;Shults2005).MPTPisthusconsideredapowerful compoundtoinduceneurodegenerationinanimals,andMPP +isusedincellularmodelsof

PDtoexertoxidativestressandinduceapoptosis.

Figure 1.3 SchematicdiagramofMPP +intracellularpathway(Dauer&Przedborski2003). 6hydroxydopamineisalsooneofthemostcommonneurotoxinsusedtoinduce experimentalnigraldegenerationinvitroaswellasinvivo.6hydroxydopamineisa hydroxylatedanalogueofthenaturaldopamineneurotransmitter,exhibitingahighaffinity forseveralcatecholaminergicplasmamembranetransportersincludingthedopamine transporters(DAT)andnorepinephrinetransporters.Consequently,6OHDAcouldenterboth dopaminergicandnoradrenergicneuronsanddamageboththeperipheralandthecentral nervoussystems(Boveetal.2005).However,6OHDAcouldnotcrossthebloodbrain barrier(Schober2004).IntheexperimentalmodelsofPD,6OHDAisinjecteddirectlyinto thestriatum,thesubstantianigra,ortheascendingmedialforebrainbundletodamagethe nigrostriataldopaminergicpathway.6hydroxydopamineselectivelyaccumulatesin

9 dopamineneurons,destroysnigraldopaminergicneurons,anddepletesthedopamine neurotransmitterinthestriatum.6hydroxydopamineissuggestedtoinducenigrostriatal dopaminergiclesionsviathegenerationofhydrogenperoxidederivedhydroxylradicals sinceitcouldbeoxidativelydeaminatedbymonoamineoxidasetoproducehydrogen peroxide(Blumetal.2001).Furthermore,6OHDAhasbeenshowntoreducestriatal glutathione(GSH)andsuperoxidedismutase(SOD)activityandincreaselevelsof lipidperoxidationproducts(Schober2004).

Pathogenesis and risk factors of PD

AlthoughtheetiologyofPDremainsobscure,thediseasemayresultfrommultifactorial effectsofage,geneticsusceptibility,environmentalexposure,infection,andoxidativestress.

Age

AgehasbeenconsideredasapotentialriskfactorofPDbecausemostpatientsdevelop

PDafter50yearsofage.TheprevalenceofPDincreaseswithage,from20/100,000overall to100/100,000atage70(Dauer&Przedborski2003;Tanner&Goldman1996).

Pathologically,agingisassociatedwithadeclineofpigmentedneuronsintheSNpc.Itisalso suggestedthattheagingnigrostriatalsystemmaybemorevulnerabletodamagecausedby exogenousandendogenoustoxinssincetheneurotoxinMPTPcausesmoresevere pathologicalandneurochemicalinjuryinoldermice(McCormacketal.2004).

Geneticsusceptibility

AlthoughmostPDissporadic,thegeneticcomponentissuggestedtobeanimportant riskfactor.EpidemiologicalstudieshaveidentifiedapositivefamilyhistoryofParkinson

10 diseaseasoneofthemostimportantriskfactorsforthedisease(Allametal.2005).Results ofonestudyamong20,000maletwinssuggestthatgeneticfactorsappeartobeanimportant factorinPDwithonsetbeforeage50years(Tanneretal.1999).Discoveryofatleastnine genelociinfamilialPDfurtherdemonstratesthegeneticcontributiontothisdisorder(Samii etal.2004).TheidentificationoftheseresponsiblegenesforfamilialPDwillprovide importantcluesforunderstandingthemolecularpathogenesisofthedisease(Kuboetal.

2006).

Environment

TheenvironmentalfactorhypothesisforPDemergedfollowingthediscoveryofthe

ParkinsoniantoxinMPTP.MPTPwasrecognizedasaneurotoxinearlyin1982,whenseveral youngdrugaddictsmysteriouslydevelopedaparkinsoniansyndromeaftertheintravenous useofsyntheticheroinanaloguecontaminatedbyitsbyproduct,MPTP(Przedborskietal.

2001).ThisepisodesupportedtheconceptthatexogenouschemicalscaninducePD symptoms.Sincethen,severalepidemiologicalstudieshavesuggestedthatexposureto differentenvironmentalagentsincludingpesticides,insecticides,metals,andmicrobialtoxins mayincreasetheriskofPD(DiMonte2003;Kanthasamyetal.2005).Dieldrin,oneofthe mostpersistentbioaccumulativeandtoxicchemicals,isassociatedwithincreasedincidence ofPD(Kanthasamyetal.2005).Metalslikemanganese,,iron,lead,andaluminum havebeenlinkedtoPDinvariousetiologicalstudies(Gorelletal.2004;Tanner&Goldman

1996).Conversely,tobacco,,andteaseemtoprotectagainstdevelopmentofPDdue totheirantioxidantproperties,basedoncasecontrolstudies(Checkowayetal.2002;deLau

&Breteler2006;Gorelletal.2004;Hellenbrandetal.1997;Rossetal.2000).

11

Inflammation

InflammationhasalsobeenimplicatedinthepathogenesisofPD.Studieshaveshown thatmanycasesofPDareaccompaniedbybraininflammationwithadramaticproliferation ofreactivemicroglialcells(Araietal.2006;McGeeretal.1988a;McGeeretal.1988b).Pro inflammatorycytokinessuchasinterleukin1β(IL1β)andtumornecrosisfactorα(TNFα) mayinducemicrogliaactivationandcausemicrogliarelatedinjurytoneurons.Cytokines couldalsobindtothereceptorsonthedopaminergicneuronsandtriggerintracellulardeath insignalingpathways(Araietal.2006).AnassociationbetweenthelowriskofPDandthe useofthenonsteroidalantiinflammatorydrugibuprofenhasalsobeenreported.Compared withnonusers,thePDriskswere0.73foribuprofenusersoffewerthan2tablets/week,0.72 for2to6.9tablets/week,and0.62for1ormoretablets/day,suggestingtheroleof inflammationinPD(Chenetal.2005).

Oxidativestress

Oxidativestressinducedcelldamage,includingapoptosis,mayplayaprominentrolein neurologicaldegenerationassociatedwithPD.Itiswidelyknownthatageisamajorrisk factorforPDandoxidativestressincreaseswithage.Braintissuesaresusceptibleto oxidativestresssincethebrainisrichinpolyunsaturatedfattyacids,whichcaneasily undergolipidperoxidation.Inaddition,highlevelsofATPconsumptioninthebraincould causehighoxidativemetabolismsincethemitochondrialETCisthemainsourceofATPin themammaliancellsandelectronscouldleaktoformoxygenfreeradicalsduringenergy transduction(Valkoetal.2007).Itisalsosuggestedthatbraincellshavelowantioxidant capability(Crichtonetal.2002).Forexample,theantioxidantenzymesSODandcatalase

12 concentrationswere7and140foldlowerinthebrainthanintheliver(Crichtonetal.2002;

Reddy&Clark2004).Nigraldopaminergicneuronsareparticularlyexposedtooxidative stressbecausedopamineisinactivatedbytheenzymemonoamineoxidase(MAO),areaction yieldinghydrogenperoxide(H 2O2)andotherreactiveoxygenspecies(ROS),whichcould causeincreasedformationofoxidizedGSHandimpairthemajorantioxidantsysteminthe body(Jenner2003;Olanow&Tatton1999;Yoritakaetal.1996).Hydrogenperoxidecould alsoreactwithironinthesubstantianigratoproducehighlytoxichydroxylradicals.In addition,dopaminecouldbedecomposedbyautooxidationandformquininesand semiquinones,whichmayleadtogenerationofROS(Koutsilierietal.2002).Levodopa,the majortherapeuticagentforthetreatmentofPD,increasesoxidativestressandplaysarolein diseaseprogressionduetoitsincreasedproductionoffreeradicalsduringoxidative metabolismoflevodopaanditsproductdopamine(Jenner2003;Mayoetal.2005;Shulman

2000).

TheoccurrenceofoxidativestressinPDisalsosupportedbyhumanpostmortemstudies.

Thereisevidencethatlevelsofbasaloxidativestressinthesubstantianigrainthebrainare increasedinPD.ThedeletionofreducedGSHandimpairmentoftheantioxidantsystem werealsofoundinsubstantianigrainPDcases,whichwasassociatedwithasignificant increaseinoxidizedGSH(Soficetal.1992).

Oxidativestresscausesdamagetoproteins,DNA,andlipidsandinducesapoptoticdeath indopaminergicneurons(Fig.1.4).Proteincarbonylswerefoundtobetwofoldhigherinthe

SNpccomparedtootherregionsinnormalpostmortembrains,suggestingsusceptibilityto oxidativedamage(Floor&Wetzel1998).Furthermore,proteincarbonylconcentrationwas higherinPDpatientscomparedtoagematchedcontrols(Alametal.1997a;Floor&Wetzel

13

1998).Similarly,increasedlevelsofthelipidperoxidationproductsmalondialdehydesand lipidhydroperoxideswerefoundinthesubstantianigrainthePDpatients(Olanow&Tatton

1999;Yoritakaetal.1996).Inaddition,indicatorsofDNAdamage,suchas8 hydroxyguanine,werealsoincreasedinthesubstantianigraaswellassomeotherbrain regionsinthePDpatients(Alametal.1997b;Jenner2003).Alltheseresultssuggestthat oxidativedamageisinvolvedinPD.

Figure 1.4 PathwayofROSformation,theroleofantioxidantandoxidativedamage.CAT, catalase;GPX,glutathioneperoxidase;SOD,superoxidedismutase;MAO,monoamine oxidase.

The role of iron in PD

MetalsmaycontributetothepathogenesisofPDbyinvolvementinproteinaggregation andoxidativestress(Gaeta&Hider2005).CoppermediatedROSproductionmayplaya roleinincreasedoxidativestressburdeninagingandneurodegeneration(Sayreetal.1999).

Copperandironwerealsofoundtostimulateαsynucleinfibrilformation,themajor constituentofintracellularproteininclusionsinPD(Uverskyetal.2001).Theinvolvement ofmetalsintheetiologyofPDwasalsodemonstratedfromepidemiologicalstudy.Long

14 termoccupationalexposuretocertainmetalssuchascopper,manganese,lead,mercury,, aluminum,andironmayincreasetheriskofPD(Gorelletal.1999;Gorelletal.2004;

Uverskyetal.2001).Exposuretohighlevelsofmanganesecouldcauseneurotoxicityand induceaParkinson’slikesyndromeknownasmanganism(Latchoumycandaneetal.2005;

Olanow2004).

Ironisanessentialforalllivingorganismssinceitplaysmanyimportantrolesin thebody,includingelectrontransport,activationofmolecularoxygen,oxygentransport, collagensynthesis,tissuegrowth,neurotransmittersynthesis,andmanycatabolicprocesses

(Pollitt&Leibel1976).Irondeficiencycancausechangesinmanymetabolicprocesses,such asglucosemetabolism,neurotransmittersynthesis,andproteinsynthesis(Beard1990;Beard etal.1990;Brooksetal.1987).

Ironalsoplaysadeleteriousroleduetoitsabilitytocatalyzetheproductionofhighly reactivehydroxylradicalsthroughtheHaberWeissandFentonreactions(Braughleretal.

1986),whichcouldcauseoxidativedamagetomembranes,,andproteins(Fig.

1.7A).

−• − • Haber-Weiss reaction H 2O2+O 2 →O2+OH +OH 2+ 3+ • Fenton reaction Fe +H 2O2→Fe +OH +OH

Underphysiologicalconditionsinvivo,ironisintheformofironproteincomplexand maynotparticipateintheabovereactions.However,underironoverloadorother pathologicalconditions,ironmaybeinvolvedinthefreeradicalgenerationandcanbetoxic tocellsurvival.Forexample,ironfromtransferrinmaybereleasedatpHvaluesthatcanbe seeninatheroscleroticlesions(slightlylowerthanphysiologicpH)toinducelipidoxidation

(Reddy&Clark2004).

15

Ironplaysanimportantroleinbrainfunctionsinceitisinvolvedinelectrontransportin productionofATP.Itisanessentialcomponentofcytochromesa,b,andc,cytochrome oxidase,andtheironsulfurcomplexesoftheoxidativechain(Connoretal.2001).Ironis alsoinvolvedinribonucleosidereductase,theratelimitingenzymeofthefirstmetabolic reactioninDNAsynthesis,andsuccinatedehydrogenaseandaconitaseoftheTCAcycle

(DomingoJ.Pinero2000).

IronrequirementishighinthebrainsincethebrainconsumeshighlevelsofATPto maintainmembraneionicgradients,synaptictransmissionandaxonaltransport.Ironisalso anessentialcofactorformanyproteinsthatplayessentialrolesinthenormalfunctionof neuronaltissues(Connoretal.1992;Zeccaetal.2004).Ironisacofactorfortheenzymes

THandtryptophanhydroxylase,whichareinvolvedinneurotransmittersynthesisand catabolism,respectively(Beard&Connor2003).

Therearetwocategoriesofironinthebrain:hemeironasapartofand enzymeslikeperoxidases,andnonhemeironassociatedwithproteins(Haackeetal.2005).

Forthenonhemeiron,transferrinandferritinareconsideredkeyproteinsinironhomeostasis

(Fig.1.5).Transferrinisasinglechain,80KDaproteinthatcontainstwoironbindingmotifs andisresponsiblefordeliveryofironfrom/toperipheraltissues(DomingoJ.Pinero2000).

Transferrin(Tf)carriesironfromthebloodintobraintissueviatransferrinreceptors(Tfr) locatedinthebrain’smicrovasculature(Haackeetal.2005).TfTfrcomplexcouldbetaken upbycellsviaendocytosisandironisreleasedandexportedintothecytoplasmbydivalent mentaltransporter1(DMT1)(DomingoJ.Pinero2000).Inthecytoplasm,ironisavailable fornecessarymetabolicprocessesorisincorporatedintothestoragepoolwithferritinfor futureneed.Inmostcells,themainregulatorofironhomeostasisisironregulatoryprotein

16

(IRP)/ironregulatoryelement(IRE)system.Changesinironstatussuchasironoverloador irondepletionleadtocompensatingchangesinthissystem(Fig.1.6).Whenironisinexcess,

IRPsareintheirinactiveformanddonotbindtheIREsonthemRNAsofferritinandTfR.

Asaresult,theferritinissynthesizedandtheTfRmRNAisdegradedbynucleases.However, inconditionsofirondepletion,IRPsbindstoIREsonthemRNAs,preventingferritinbut allowingthesynthesisofTfRbyprotectingthemRNAfromdegradation(Zeccaetal.2004).

Figure 1.5 Cellularironuptake(DomingoJ.Pinero2000).

Figure 1.6 Translationalregulationofthetransferrinreceptorandferritinproduction(Zecca etal.2004).

17

Thebrainishighlysusceptibletoexcessironsinceitisrichinpolyunsaturatedfatty acids(Schaferetal.2000).Thesubstantianigrahasthehighestconcentrationofironinthe mammalianbrain.Thesubstantianigrahas20ng/mgironduringthefirstyearoflife,which increasesto200ng/mgbythefourthdecade(Zeccaetal.2001).Excessironcouldinteract withneuromelanin,adarkcoloredpigmentinthedopaminergicneurons,toinduceoxidative stressandinduceneurodegeneration(Doubleetal.2000).

Sinceexcessiveironaccumulationinsubstantianigrawasfoundinpostmortembrains fromParkinson'spatients,theroleofironinPDhasrecentlygainedattention(Bergetal.

2002;Bergetal.2001).AdisruptionintheironmetabolismoccursinPD,suchthatthereis anaccumulationofironinlewybodiesandaltereddistributionofirontransportandstorage proteins(Fig.1.7B).Recentstudiesalsosuggestthatmisregulationofironmetabolism,iron inducedoxidativestress,andfreeradicalformationaremajorpathogenicfactorsinPD

(Jellinger1999).FerritinisreportedlydecreasedinthesubstantianigraofthePDbrain comparedtoelderlycontrols.HferritinandLferritinlevelsarereportedtobe75%and37% ofnormalinthesubstantianigra,respectively(DomingoJ.Pinero2000).Increasediron levelsandlowlevelsofferritinallowsfor“freeiron”thatmaybeinvolvedinfreeradical generation(Bergetal.2001;Bishopetal.2002).TheneurotoxinsMPTPand6OHDA releaseferritinboundiron(Fig.1.7C)inbothinvitroandinvivoconditions(Grunblattetal.

2000).Althoughthemechanismisnotclear,MPTPdisruptsironmetabolismthroughiron regulatoryproteinsbyincreasingtransferrinreceptors,andthuscausingincreasedironuptake bythebrain(Blumetal.2001;LaVauteetal.2001).

18

Figure 1.7 HypothesizedmechanismfortheroleofironinPD.

Treatment of PD

CurrenttherapeuticstrategiesforPDfocusprimarilyonminimizingthedisease associatedmotordeficitsusingdopaminergicmedications.Thedopamineprecursorlevodopa wasfirstdemonstratedtobeeffectiveinreducingthesemotordeficits30yearsagoand remainsthemostpotentantiparkinsondrug(Hubble1999;Samiietal.2004).Thistreatment cansignificantlyattenuatetheparkinsoniansymptomsandimprovethequalityoflifeof parkinsonianpatients.However,whilelevodopatherapyimprovesPDsymptoms,butdoes notinhibittheprogressivedegenerationofdopaminergicneuronsinthesubstantianigra.

Moreover,themajorityofpatientsreceiving5yearsoflevodopamonotherapywilldevelop fluctuationsand/orinvoluntarymovementscalleddyskinesias(Schelosky&Poewe1993).

Patientsfeellevodopaeffectivenessdeclineswithtime,andtheybecomeslowerandmore tremulousafterlongtermtreatmentwithlevodopa(Samiietal.2004).Furthermore,thereis an“onoff”phenomenainthepatients,withsuddenfluctuationsbetweenmobilityand immobility,withthe“off”periodsmarkedwithsevereakinesiathatcanextendoverseveral hours(Singhetal.2007).Asaresult,avarietyofdopaminereceptoragonistssuchas cabergoline,pramipexole,andropiniroleareusedasadjuvanttherapiestolevodopato

19 enhancetheeffectivenessoflevodopaandreducemotorfluctuationsinparkinsonianpatients

(Rinne1981).Dopaminereceptoragonistsmimicendogenousdopamineanddirectly stimulatethepresynapticandpostsynapticdopaminereceptors(Radadetal.2005).Inthe earlystagesofPD,dopamineagonistsareaseffectiveaslevodopabutdelaytheoccurrence ofmotorcomplicationsassociatedwithlongtermadministrationoflevodopa.However, dopamineagonistsloseefficacyovertime(Bonuccelli&Pavese2006).Mostimportant,all thesetreatmentsarelimitedtosymptomaticreliefanddonotattenuatetheprogressofthe underlyingpathologyandthenaturalcourseofthedisease.

Alternate therapeutic strategies

Alternatetherapeuticstrategiesmustbeconsideredtoidentifynovelneuroprotective agentsthateffectivelypreventtheprogressionoftheneurodegenerativeprocess.Basedon thecurrentknowledgeregardingtheetiologyandpathogenesisofPD,researchontheuseof antioxidants,freeradicalscavengers,andinducersofcellularantioxidantsystemsas therapeuticadjunctsinthetreatmentofPDprovideshopethatmoreeffectivetherapieswill bedevelopedthatnotonlyattenuatesymptoms,butalsoslowtheprocessof neurodegeneration.Indeed,anumberofstudieshaveexaminedwhetherantioxidantsprevent orreducetheprogressionofPD.Inaratstudy,dietarysupplementationwithvitaminEand vitaminCwerefoundtoprotectagainst6OHDAinducedstriataldamage(Prasadetal.

1999).CoenzymeQ10,awellknownelectronacceptorforcomplexIandIIandanimportant antioxidantwithregardtoitsfunctioninthereducedform(ubiquinol),couldattenuatethe

MPTPinducedlossofstriataldopaminergicneuronsandhasaprotectiveeffectonPD(Ebadi etal.2001;Ernster&Dallner1995).Inaddition,estrogen,whichactsasanantiapoptotic

20 agentaswellasanantioxidant,offersneuroprotectioninanMPTPmousemodel

(Tripanichkuletal.2006).AlthoughtherearemanydisputesabouttheefficacyofvitaminE inthepreventionortreatmentofPD,bothmoderateandhighintakeofdietaryvitaminEmay haveaneuroprotectiveeffectandattenuatetheriskofPD(deRijketal.1997;Etminanetal.

2005).Longterm,highdosevitaminEdietarysupplementation(e.g.16002000IUdα tocopherylsuccinate)beginninginthethirddecadeoflifemayserveasasuccessful therapeuticstrategyforthepreventionofPD(Fariss&Zhang2003).Inaddition, combinationof αtocopherolandascorbateinpatientswithearlyPDmightdelaythe progressionofthediseasebyanaverageof2.5years(Fahn1992;Ricciarellietal.2007).

Ironchelationhasalsobeensuggestedtobeaneffectivetherapyforpreventionor treatmentofPDduetotheassociationbetweenironandneurotoxinmediated neurodegeneration.Ironchelationviaeithertransgenicexpressionoftheironbindingprotein ferritinororaladministrationofthemetalchelatorclioquinol(CQ)reducedsusceptibilityto

MPTPforinducingPDinanimals,suggestingthatironchelationmaybeaneffectivetherapy forpreventionandtreatmentofthedisease(Kauretal.2003).Pretreatmentwiththeiron chelator,desferrioxamine(DFO),significantlyprotected(approximately60%)against6

OHDAinducedreductioninstriataldopaminecontentandresultedinanormalizationof dopaminereleaseinaratstudy(BenShacharetal.1991;Zhangetal.2005).Inanotherstudy,

DFOreducedabnormalproteinaggregationandattenuatedthelactacystininduceddopamine neuronloss(Zhangetal.2005).Desferrioxaminealsosignificantlyinhibitediron accumulationinthebrainanddecreasedtheformationofreactivehydroxylradicalsandlipid peroxidationinducedbyexcessironandMPTP,thusresultinginasignificantreversionof thereductionofstriataldopaminelevels(Lan&Jiang1997).

21

However,thecurrentlyusedironchelatorsmaycausesomesideeffectsinpatients.For example,DFOisthemostpotentironchelator,butitmustbeadministeredathighdosageto overcomeitslowabilitytocrossthebloodbrainbarrierandcausessometoxiceffects(Zhang etal.2005).CQhasbeendemonstratedtochelatebothferrousandferricironanddecrease totalbrainironlevels(Kaur&Andersen2002).OraladministrationofCQmayprotect againstlossofstriataldopamineinducedbyMPTP(Kauretal.2003).However,CQ administrationmayreducethebrainandserumvitaminB12levelsandcausesB12deficiency, whichmaycauseperniciousanemiaanddamagethenervoussystem(Kaur&Andersen2002;

Yassinetal.2000).

Nutritional approaches to PD

StudiesofnutritionalapproachestopreventtheonsetofPDarelimited.Variousfood groupsandspecifichavebeeninvestigatedfortheirabilitytoreducetheriskofPD.

Nutritionalapproacheshavefocusedonantioxidantsduetoinvolvementofoxidativestress inthepathogenesisofPD.HighdosevitaminEdietarysupplementation,suchas16002000

IUdαtocopherylsuccinatebeginninginthethirddecadeoflife,maypreventPD(Fariss&

Zhang2003).AcombinationofvitaminEandvitaminCmaybebeneficialinpatientswith earlyPD(Prasadetal.1999).Teaisanancientbeverageandgreenteaarenow thoughttobetherapeuticinPDsinceflavonoidspossessironchelating,antioxidant,andanti inflammatoryactivities(Mandeletal.2006;Weinrebetal.2004).Greenteaextractandits major,(±)epigallocatechin3gallate(EGCG),canprotectagainstMPTPinduced neurodegenerationinanimalstudies(Choietal.2002;Levitesetal.2001).Basedontheiron chelatingability,theeffectofphyticacid(IP6,myohexakisphosphate)inPDwas

22 underinvestigationinonestudy(Obata2003).

Phyticacidwasfirstdescribedasanabundantformofinand otherplanttissuesandispresentat2%ofthewetweightinwhole,nuts,seeds,cereals, andlegumes(Raboy2003).Phyticacidwasfoundtobeacommonconstituentofeukaryotic cellsandservesanumberoffunctionssuchassignaltransduction,cellproliferationand differentiation(Raboy2003;Sasakawaetal.1995;Shamsuddinetal.1997).

Phyticacidisgenerallyconsideredasanantinutrientbyvirtueofitsabilitytochelate divalentmineralsandreducetheirabsorption(Reddyetal.1996).Itcanformchelating conjugateswithessentialmetalcationssuchascopper,zinc,iron,andmanganese,andits affinitytobindthesemetalsisasfollows:Cu 2+ >Zn 2+ >Co 2+ >Mn2+ >Fe 2+ >Ca 2+ .Afunctionof

IP6asanaturalantioxidantwasdescribedin1984(Grafetal.1984).Itsuniquechelating actionwithironinhibits•OHformationanddecreaseslipidperoxidationcatalyzedbyiron andascorbateinhumanerythrocytes(Raoetal.1991).Thissuppressionofironcatalyzed oxidativereactionswassuggestedtoresultfromtheabilityofIP6toformauniquechelate withFe(III)occupyingallofthecoordinatingsites(Grafetal.1984).Phyticacidisoneof themosteffectiveagentsforinhibitingoxidationinfoodmaterials.Largeamountsofphytate inplantseedscouldofferprotectionfromoxidationcausedbyhighunsaturatedfattyacidsin (Grafetal.1987).TheantioxidantabilityofIP6invivoisnotclear,butina previousstudyitreducedby60%lipidperoxidationandreducedliverironstoresby48%ina geneticallyironoverloadedmousemodel.ConsumptionofIP6containingsoyproteinfor6 weekstopostmenopausalwomenreducedbodyironstoressignificantlycomparedwitha lowIP6soyprotein(Hansonetal.2006).However,IP6mayinfluenceoxidativestress independentofironinvolvedhydroxylradicalformation.Itmayaltercellsignalingpathways

23 ormayinfluencetheactivityandexpressionofkeyenzymesintheantioxidantdefense system,whichdetoxifiestheROS(Shamsuddinetal.1997).

Incontrasttootherironchelators,IP6issafeasatherapeuticandpreventiveagentandis nontoxicoverlongtermadministration(Vuceniketal.1992).AlthoughIP6intakemay suppresstheabsorptionofmetalsuchaszincand(Zhou&Erdman1995), severalstudiesindicateingestionoflargequantitiesofIP6withadietpoorinoligoelements mayresultinpoorofminerals(Graf&Eaton1993;Vucenik&Shamsuddin

2003).Thelackoftoxicityassociatedwithlongtermadministrationinanimalmodelsmakes

IP6appealingforpreventionofironassociatedpathogenesis(Vuceniketal.1992).

Phyticacidispartiallydephosphorylatedtolowerforms(IP15)inthegastrointestinal tractbyphytatesfromthreedifferentsourcesincludingthediet,theintestinalwall,andthe bacterialfloraofthegutcontents(Williams&Taylor1985).TheabsorptionofIP6in humansisnotwellstudied,butaveryrecentstudyhasshown28%absorptionofIP6(Agteet al.2005).However,inrodentsitiswellabsorbedandisdistributedtovariousorgansasearly as1hafteradministrationsincerodentshaveenzymeinthegastrointestinal(GI) tracttohydrolyzeIP6(Vucenik&Shamsuddin2003).ThehighestconcentrationofIP6was foundinthebrainofratsfedanIPdeficientdiet,suggestingIP6maycrossthebloodbrain barrier.AlthoughIP6isahighlychargedmolecule,IP6couldbetransportedinsidethecells bypinocytosis,endocytosis,orbyinterferingwiththePLCcoupledreceptorandtyrosine kinasereceptors(Shamsuddinetal.1997).

Phyticacidhasmanybeneficialeffectsrelatedtochelationofvariousmetalionsand reducingoxidativestress.Phyticacidattenuatedmyocardialreperfusioninjuryandreduced theriskofkidneystoneformation(Curhanetal.2004;Raoetal.1991).Andstrikinganti

24 cancerpropertiesofIP6havebeendemonstratedinbothinvivoandinvitrostudies.Phytic acidhadantitumoractivityincoloniccancer,mammarycarcinoma,murinetransplantedand metastaticfibrosarcoma,andchronicmyeloidleukaemias(Deliliersetal.2002;Shamsuddin

&Vucenik1999;Vuceniketal.1993;Vucenik&Shamsuddin2003;Vuceniketal.1992).

AlthoughtheexactmechanismsofIP6antitumoractivityarenotknown,itmayexertits anticancerfunctionbydecreasingoxidativestressoftransitionmetalsorthroughthe intracellularpoolandsignaltransductionpathways(Graf&Eaton1993;

Shamsuddin&Vucenik1999).ThoughextensiveworkrelatedtotheanticancereffectofIP6 hasbeenconducted,theutilityofIP6inPDtreatmenthasnotbeendetermined.Toour knowledge,suppressionofMPP +inducedhydroxylradicalsgenerationbychelatingironin ratstriatumwithIP6wasreportedrecentlyinonestudy(Obata2003).Inthatstudy,MPP +

(75nmol/L)andiron(10mol/L)wereinfusedintotherats’striatumand100mol/LofIP6 significantlysuppressedMPP +andironinducedhydroxylradicalformationtrappedas2,3 dihydroxybenzoicacid(DHBA).

Inconclusion,currentmedicaltreatmentsofPDonlyprovidesymptomaticreliefof motorandnonmotorsymptoms.Nodrughasbeenidentifiedtosloworreversethe progressionofthedisease.Thus,developmentofalternatetherapeuticstrategiesthatcan preventtheprogressionofthediseasehavebecomeaprimarygoalofPDresearch.Nutrients withnatural,antioxidant,brainpermeable,andnontoxicpropertiesprovideapromising approachforthetreatmentofPD.Forexample,teaflavonoidswithpotentironchelating, radicalscavenging,andantiinflammatoryactivitiesareneuroprotectiveinbothinvivoand invitroPDmodels(Guoetal.2005;Levitesetal.2001;Mandeletal.2006).However,the studiesinvestigatingnutritionaltreatmentsforPDarelimited.Phyticacidisanatural

25 antioxidantwithironchelatingaswellasantioxidantability.Basedonitsantioxidant propertyandironchelatingability,theobjectiveofthisstudywastodeterminethe neuroprotectiveeffectofphyticacidinthecellculturemodelofPD.

References

Agte,V.,M.Jahagirdar&S.Chiplonkar:Apparentabsorptionofeightand phyticacidfromvegetarianmealsinileostomizedhumanvolunteers.Nutrition2005, 21,67885. Alam,Z.I.,S.E.Daniel,A.J.Lees,D.C.Marsden,P.Jenner&B.Halliwell:Ageneralised increaseinproteincarbonylsinthebraininParkinson'sbutnotincidentalLewybody disease.JNeurochem1997a,69,13269. Alam,Z.I.,A.Jenner,S.E.Daniel,A.J.Lees,N.Cairns,C.D.Marsden,P.Jenner&B. Halliwell:OxidativeDNAdamageintheparkinsonianbrain:anapparentselective increasein8hydroxyguaninelevelsinsubstantianigra.JNeurochem1997b,69, 1196203. Allam,M.F.,A.S.DelCastillo&R.F.Navajas:Parkinson'sdiseaseriskfactors:genetic, environmental,orboth?NeurolRes2005,27,2068. Andersen,J.K.:DoesneuronallossinParkinson'sdiseaseinvolveprogrammedcelldeath? Bioessays2001,23,6406. Anglade,P.,S.Vyas,F.JavoyAgid,M.T.Herrero,P.P.Michel,J.Marquez,A.Mouatt Prigent,M.Ruberg,E.C.Hirsch&Y.Agid:Apoptosisandautophagyinnigral neuronsofpatientswithParkinson'sdisease.HistolHistopathol1997,12,2531. Arai,H.,T.Furuya,Y.Mizuno&H.Mochizuki:InflammationandinfectioninParkinson's disease.HistolHistopathol2006,21,6738. Beal,M.F.:ExperimentalmodelsofParkinson'sdisease.NatRevNeurosci2001,2,32534. Beard,J.L.:Neuroendocrinealterationsinirondeficiency.ProgFoodNutrSci1990,14,45 82. Beard,J.L.,M.J.Borel&J.Derr:Impairedthermoregulationandthyroidfunctioniniron deficiencyanemia.AmJClinNutr1990,52,8139. Beard,J.L.&J.R.Connor:Ironstatusandneuralfunctioning.AnnuRevNutr2003,23,41 58. BenShachar,D.,G.Eshel,J.P.Finberg&M.B.Youdim:Theironchelatordesferrioxamine (Desferal)retards6hydroxydopamineinduceddegenerationofnigrostriatal dopamineneurons.JNeurochem1991,56,14414. Berg,D.,G.Becker,P.Riederer&O.Riess:Ironinneurodegenerativedisorders.Neurotox Res2002,4,637653. Berg,D.,M.Gerlach,M.B.Youdim,K.L.Double,L.Zecca,P.Riederer&G.Becker: BrainironpathwaysandtheirrelevancetoParkinson'sdisease.JNeurochem2001, 79,22536. Betarbet,R.,T.B.Sherer&J.T.Greenamyre:AnimalmodelsofParkinson'sdisease. Bioessays2002,24,30818.

26

Bishop,G.M.,S.R.Robinson,Q.Liu,G.Perry,C.S.Atwood&M.A.Smith:Iron:a pathologicalmediatorofAlzheimerdisease?DevNeurosci2002,24,1847. Blum,D.,S.Torch,N.Lambeng,M.Nissou,A.L.Benabid,R.Sadoul&J.M.Verna: Molecularpathwaysinvolvedintheneurotoxicityof6OHDA,dopamineandMPTP: contributiontotheapoptotictheoryinParkinson'sdisease.ProgNeurobiol2001,65, 13572. Bonuccelli,U.&N.Pavese:DopamineagonistsinthetreatmentofParkinson'sdisease. ExpertRevNeurother2006,6,819. Bove,J.,D.Prou,C.Perier&S.Przedborski:ToxininducedmodelsofParkinson'sdisease. NeuroRx2005,2,48494. Braughler,J.M.,L.A.Duncan&R.L.Chase:Theinvolvementofironinlipidperoxidation. Importanceofferrictoferrousratiosininitiation.JBiolChem1986,261,102829. Brooks,G.A.,S.A.Henderson&P.R.Dallman:Increasedglucosedependenceinresting, irondeficientrats.AmJPhysiol1987,253,E4616. Burns,R.S.,C.C.Chiueh,S.P.Markey,M.H.Ebert,D.M.Jacobowitz&I.J.Kopin:A primatemodelofparkinsonism:selectivedestructionofdopaminergicneuronsinthe parscompactaofthesubstantianigrabyNmethyl4phenyl1,2,3,6 tetrahydropyridine.ProcNatlAcadSciUSA1983,80,454650. Checkoway,H.,K.Powers,T.SmithWeller,G.M.Franklin,W.T.Longstreth,Jr.&P.D. Swanson:Parkinson'sdiseaserisksassociatedwithcigarettesmoking, consumption,andcaffeineintake.AmJEpidemiol2002,155,7328. Chen,H.,E.Jacobs,M.A.Schwarzschild,M.L.McCullough,E.E.Calle,M.J.Thun&A. Ascherio:NonsteroidalantiinflammatorydruguseandtheriskforParkinson'sdisease. AnnNeurol2005,58,9637. Choi,J.Y.,C.S.Park,D.J.Kim,M.H.Cho,B.K.Jin,J.E.Pie&W.G.Chung:Prevention ofnitricoxidemediated1methyl4phenyl1,2,3,6tetrahydropyridineinduced Parkinson'sdiseaseinmicebyteaphenolicepigallocatechin3gallate. Neurotoxicology2002,23,36774. Connor,J.R.,S.L.Menzies,J.R.Burdo&P.J.Boyer:Ironandironmanagementproteins inneurobiology.PediatrNeurol2001,25,11829. Connor,J.R.,B.S.Snyder,J.L.Beard,R.E.Fine&E.J.Mufson:Regionaldistributionof ironandironregulatoryproteinsinthebraininagingandAlzheimer'sdisease.J NeurosciRes1992,31,32735. Crichton,R.R.,S.Wilmet,R.Legssyer&R.J.Ward:Molecularandcellularmechanismsof ironhomeostasisandtoxicityinmammaliancells.JInorgBiochem2002,91,918. Curhan,G.C.,W.C.Willett,E.L.Knight&M.J.Stampfer:Dietaryfactorsandtheriskof incidentkidneystonesinyoungerwomen:Nurses'HealthStudyII.ArchInternMed 2004,164,88591. Dauer,W.&S.Przedborski:Parkinson'sdisease:mechanismsandmodels.Neuron2003,39, 889909. deLau,L.M.&M.M.Breteler:EpidemiologyofParkinson'sdisease.LancetNeurol2006, 5,52535. deRijk,M.C.,M.M.Breteler,J.H.denBreeijen,L.J.Launer,D.E.Grobbee,F.G.vander Meche&A.Hofman:DietaryantioxidantsandParkinsondisease.TheRotterdam Study.ArchNeurol1997,54,7625.

27

Deliliers,G.L.,F.Servida,N.S.Fracchiolla,C.Ricci,C.Borsotti,G.Colombo&D.Soligo: Effectofinositolhexaphosphate(IP(6))onhumannormalandleukaemic haematopoieticcells.BrJHaematol2002,117,57787. DiMonte,D.A.:TheenvironmentandParkinson'sdisease:isthenigrostriatalsystem preferentiallytargetedbyneurotoxins?LancetNeurol2003,2,5318. DomingoJ.Pinero,J.R.C.:IronintheBrain:AnImportantContributorinNormaland DiseasedStates.TheNeuroscientist2000,6,435453. Double,K.L.,M.Gerlach,M.B.Youdim&P.Riederer:Impairedironhomeostasisin Parkinson'sdisease.JNeuralTransmSuppl2000,3758. Ebadi,M.,P.Govitrapong,S.Sharma,D.Muralikrishnan,S.Shavali,L.Pellett,R.Schafer, C.Albano&J.Eken:Ubiquinone(coenzymeq10)andmitochondriainoxidative stressofparkinson'sdisease.BiolSignalsRecept2001,10,22453. Emborg,M.E.:EvaluationofanimalmodelsofParkinson'sdiseaseforneuroprotective strategies.JNeurosciMethods2004,139,12143. Ernster,L.&G.Dallner:Biochemical,physiologicalandmedicalaspectsofubiquinone function.BiochimBiophysActa1995,1271,195204. Etminan,M.,S.S.Gill&A.Samii:IntakeofvitaminE,vitaminC,andcarotenoidsandthe riskofParkinson'sdisease:ametaanalysis.LancetNeurol2005,4,3625. Fahn,S.:ApilottrialofhighdosealphatocopherolandascorbateinearlyParkinson's disease.AnnNeurol1992,32Suppl,S12832. Fariss,M.W.&J.G.Zhang:VitaminEtherapyinParkinson'sdisease.Toxicology2003, 189,12946. Floor,E.&M.G.Wetzel:Increasedproteinoxidationinhumansubstantianigrapars compactaincomparisonwithbasalgangliaandprefrontalcortexmeasuredwithan improveddinitrophenylhydrazineassay.JNeurochem1998,70,26875. Fonck,C.&M.Baudry:RapidreductionofATPsynthesisandlackoffreeradicalformation byMPP +inratbrainsynaptosomesandmitochondria.BrainRes2003,975,21421. Gaeta,A.&R.C.Hider:Thecrucialroleofmetalionsinneurodegeneration:thebasisfora promisingtherapeuticstrategy.BrJPharmacol2005,146,104159. Gorell,J.M.,C.C.Johnson,B.A.Rybicki,E.L.Peterson,G.X.Kortsha,G.G.Brown&R. J.Richardson:Occupationalexposuretomanganese,copper,lead,iron,mercuryand zincandtheriskofParkinson'sdisease.Neurotoxicology1999,20,23947. Gorell,J.M.,E.L.Peterson,B.A.Rybicki&C.C.Johnson:Multipleriskfactorsfor Parkinson'sdisease.JNeurolSci2004,217,16974. Graf,E.&J.W.Eaton:Suppressionofcoloniccancerbydietaryphyticacid.NutrCancer 1993,19,119. Graf,E.,K.L.Empson&J.W.Eaton:Phyticacid.Anaturalantioxidant.JBiolChem1987, 262,1164750. Graf,E.,J.R.Mahoney,R.G.Bryant&J.W.Eaton:Ironcatalyzedhydroxylradical formation.Stringentrequirementforfreeironcoordinationsite.JBiolChem1984, 259,36204. Grunblatt,E.,S.Mandel&M.B.Youdim:NeuroprotectivestrategiesinParkinson'sdisease usingthemodelsof6hydroxydopamineandMPTP.AnnNYAcadSci2000,899, 26273.

28

Guo,S.,E.Bezard&B.Zhao:ProtectiveeffectofgreenteapolyphenolsontheSHSY5Y cellsagainst6OHDAinducedapoptosisthroughROSNOpathway.FreeRadicBiol Med2005,39,68295. Haacke,E.M.,N.Y.Cheng,M.J.House,Q.Liu,J.Neelavalli,R.J.Ogg,A.Khan,M.Ayaz, W.Kirsch&A.Obenaus:Imagingironstoresinthebrainusingmagneticresonance imaging.MagnResonImaging2005,23,125. Haavik,J.&K.Toska:TyrosinehydroxylaseandParkinson'sdisease.MolNeurobiol1998, 16,285309. Hanson,L.N.,H.M.Engelman,D.L.Alekel,K.L.Schalinske,M.L.Kohut&M.B.Reddy: Effectsofsoyisoflavonesandphytateonhomocysteine,Creactiveprotein,andiron statusinpostmenopausalwomen.AmJClinNutr2006,84,77480. Hellenbrand,W.,A.Seidler,B.P.Robra,P.Vieregge,W.H.Oertel,J.Joerg,P.Nischan,E. Schneider&G.Ulm:SmokingandParkinson'sdisease:acasecontrolstudyin Germany.IntJEpidemiol1997,26,32839. Hoshi,E.,L.Tremblay,J.Feger,P.L.Carras&P.L.Strick:Thecerebellumcommunicates withthebasalganglia.NatNeurosci2005,8,14913. Hubble,J.P.:NoveldrugsforParkinson'sdisease.MedClinNorthAm1999,83,52536. Jellinger,K.A.:Theroleofironinneurodegeneration:prospectsforpharmacotherapyof Parkinson'sdisease.DrugsAging1999,14,11540. Jenner,P.:OxidativestressinParkinson'sdisease.AnnNeurol2003,53Suppl3,S2636; discussionS368. Kalivendi,S.V.,S.Kotamraju,S.Cunningham,T.Shang,C.J.Hillard&B.Kalyanaraman: 1Methyl4phenylpyridinium(MPP +)inducedapoptosisandmitochondrialoxidant generation:roleoftransferrinreceptordependentironandhydrogenperoxide. BiochemJ2003,371,15164. Kanthasamy,A.G.,M.Kitazawa,A.Kanthasamy&V.Anantharam:Dieldrininduced neurotoxicity:relevancetoParkinson'sdiseasepathogenesis.Neurotoxicology2005, 26,70119. Kaul,S.,A.Kanthasamy,M.Kitazawa,V.Anantharam&A.G.Kanthasamy:Caspase3 dependentproteolyticactivationofproteinkinaseCdeltamediatesandregulates1 methyl4phenylpyridinium(MPP +)inducedapoptoticcelldeathindopaminergic cells:relevancetooxidativestressindopaminergicdegeneration.EurJNeurosci 2003,18,1387401. Kaur,D.&J.K.Andersen:IroningoutParkinson'sdisease:istherapeutictreatmentwithiron chelatorsarealpossibility?AgingCell2002,1,1721. Kaur,D.,F.Yantiri,S.Rajagopalan,J.Kumar,J.Q.Mo,R.Boonplueang,V.Viswanath,R. Jacobs,L.Yang,M.F.Beal,D.DiMonte,I.Volitaskis,L.Ellerby,R.A.Cherny,A.I. Bush&J.K.Andersen:GeneticorpharmacologicalironchelationpreventsMPTP inducedneurotoxicityinvivo:anoveltherapyforParkinson'sdisease.Neuron2003, 37,899909. Kostrzewa,R.M.:Reviewofapoptosisvs.necrosisofsubstantianigraparscompactain Parkinson'sdisease.NeurotoxRes2000,2,23950. Koutsilieri,E.,C.Scheller,E.Grunblatt,K.Nara,J.Li&P.Riederer:Freeradicalsin Parkinson'sdisease.JNeurol2002,249Suppl2,II15. Kubo,S.I.,N.Hattori&Y.Mizuno:RecessiveParkinson'sdisease.MovDisord2006.

29

Lan,J.&D.H.Jiang:DesferrioxamineandvitaminEprotectagainstironandMPTP inducedneurodegenerationinmice.JNeuralTransm1997,104,46981. Lang,A.E.&A.M.Lozano:Parkinson'sdisease.Firstoftwoparts.NEnglJMed1998,339, 104453. Latchoumycandane,C.,V.Anantharam,M.Kitazawa,Y.Yang,A.Kanthasamy&A.G. Kanthasamy:ProteinkinaseCdeltaisakeydownstreammediatorofmanganese inducedapoptosisindopaminergicneuronalcells.JPharmacolExpTher2005,313, 4655. LaVaute,T.,S.Smith,S.Cooperman,K.Iwai,W.Land,E.MeyronHoltz,S.K.Drake,G. Miller,M.AbuAsab,M.Tsokos,R.Switzer,3rd,A.Grinberg,P.Love,N.Tresser& T.A.Rouault:Targeteddeletionofthegeneencodingironregulatoryprotein2 causesmisregulationofironmetabolismandneurodegenerativediseaseinmice.Nat Genet2001,27,20914. Levites,Y.,O.Weinreb,G.Maor,M.B.Youdim&S.Mandel:Greenteapolyphenol() epigallocatechin3gallatepreventsNmethyl4phenyl1,2,3,6tetrahydropyridine induceddopaminergicneurodegeneration.JNeurochem2001,78,107382. Mandel,S.,T.Amit,L.Reznichenko,O.Weinreb&M.B.Youdim:Greenteacatechinsas brainpermeable,naturalironchelatorsantioxidantsforthetreatmentof neurodegenerativedisorders.MolNutrFoodRes2006,50,22934. Mayo,J.C.,R.M.Sainz,D.X.Tan,I.Antolin,C.Rodriguez&R.J.Reiter:Melatoninand Parkinson'sdisease.Endocrine2005,27,16978. McCormack,A.L.,D.A.DiMonte,K.Delfani,I.Irwin,L.E.DeLanney,W.J.Langston& A.M.Janson:Agingofthenigrostriatalsysteminthesquirrelmonkey.JComp Neurol2004,471,38795. McGeer,P.L.,S.Itagaki,H.Akiyama&E.G.McGeer:Rateofcelldeathinparkinsonism indicatesactiveneuropathologicalprocess.AnnNeurol1988a,24,5746. McGeer,P.L.,S.Itagaki,B.E.Boyes&E.G.McGeer:Reactivemicrogliaarepositivefor HLADRinthesubstantianigraofParkinson'sandAlzheimer'sdiseasebrains. Neurology1988b,38,128591. Mochizuki,H.,K.Goto,H.Mori&Y.Mizuno:Histochemicaldetectionofapoptosisin Parkinson'sdisease.JNeurolSci1996,137,1203. Obata,T.:Phyticacidsuppresses1methyl4phenylpyridiniuminducedhydroxylradical generationinratstriatum.BrainRes2003,978,2414. Olanow,C.W.:ManganeseinducedparkinsonismandParkinson'sdisease.AnnNYAcad Sci2004,1012,20923. Olanow,C.W.&W.G.Tatton:EtiologyandpathogenesisofParkinson'sdisease.AnnuRev Neurosci1999,22,12344. Pollitt,E.&R.L.Leibel:Irondeficiencyandbehavior.JPediatr1976,88,37281. Prasad,K.N.,W.C.Cole&B.Kumar:Multipleantioxidantsinthepreventionandtreatment ofParkinson'sdisease.JAmCollNutr1999,18,41323. Przedborski,S.:PathogenesisofnigralcelldeathinParkinson'sdisease.ParkinsonismRelat Disord2005,11Suppl1,S37. Przedborski,S.,V.JacksonLewis,A.B.Naini,M.Jakowec,G.Petzinger,R.Miller&M. Akram:Theparkinsoniantoxin1methyl4phenyl1,2,3,6tetrahydropyridine (MPTP):atechnicalreviewofitsutilityandsafety.JNeurochem2001,76,126574.

30

Raboy,V.:myoInositol1,2,3,4,5,6hexakisphosphate.Phytochemistry2003,64,103343. Radad,K.,G.Gille&W.D.Rausch:Shortreviewondopamineagonists:insightinto clinicalandresearchstudiesrelevanttoParkinson'sdisease.PharmacolRep2005,57, 70112. Rao,P.S.,X.K.Liu,D.K.Das,G.S.Weinstein&D.H.Tyras:Protectionofischemicheart fromreperfusioninjurybymyoinositolhexaphosphate,anaturalantioxidant.Ann ThoracSurg1991,52,90812. Reddy,M.B.&L.Clark:Iron,oxidativestress,anddiseaserisk.NutrRev2004,62,1204. Reddy,M.B.,R.F.Hurrell,M.A.Juillerat&J.D.Cook:Theinfluenceofdifferentprotein sourcesonphytateinhibitionofnonhemeironabsorptioninhumans.AmJClinNutr 1996,63,2037. Ricciarelli,R.,F.Argellati,M.A.Pronzato&C.Domenicotti:VitaminEand neurodegenerativediseases.MolAspectsMed2007. Rinne,U.K.:TreatmentofParkinson'sdisease:problemswithaprogressingdisease.J NeuralTransm1981,51,16174. Ross,G.W.,R.D.Abbott,H.Petrovitch,D.M.Morens,A.Grandinetti,K.H.Tung,C.M. Tanner,K.H.Masaki,P.L.Blanchette,J.D.Curb,J.S.Popper&L.R.White: AssociationofcoffeeandcaffeineintakewiththeriskofParkinsondisease.Jama 2000,283,26749. Samii,A.,J.G.Nutt&B.R.Ransom:Parkinson'sdisease.Lancet2004,363,178393. Sasakawa,N.,M.Sharif&M.R.Hanley:Metabolismandbiologicalactivitiesofinositol pentakisphosphateandinositolhexakisphosphate.BiochemPharmacol1995,50,137 46. Sayre,L.M.,G.Perry&M.A.Smith:Redoxmetalsandneurodegenerativedisease.Curr OpinChemBiol1999,3,2205. Schafer,F.Q.,S.Y.Qian&G.R.Buettner:Ironandfreeradicaloxidationsincell membranes.CellMolBiol(Noisylegrand)2000,46,65762. Scheife,R.T.,G.T.Schumock,A.Burstein,M.D.Gottwald&M.S.Luer:Impactof Parkinson'sdiseaseanditspharmacologictreatmentonqualityoflifeandeconomic outcomes.AmJHealthSystPharm2000,57,95362. Schelosky,L.&W.Poewe:CurrentstrategiesinthedrugtreatmentofadvancedParkinson's diseasenewmodesofdopaminesubstitution.ActaNeurolScandSuppl1993,146, 469. Schober,A.:ClassictoxininducedanimalmodelsofParkinson'sdisease:6OHDAand MPTP.CellTissueRes2004,318,21524. Shamsuddin,A.M.&I.Vucenik:MammarytumorinhibitionbyIP6:areview.Anticancer Res1999,19,36714. Shamsuddin,A.M.,I.Vucenik&K.E.Cole:IP6:anovelanticanceragent.LifeSci1997, 61,34354. Shulman,L.M.:LevodopatoxicityinParkinsondisease:realityormyth?Realitypractice patternsshouldchange.ArchNeurol2000,57,4067;discussion410. Shults,C.W.:TherapeuticroleofcoenzymeQ(10)inParkinson'sdisease.PharmacolTher 2005,107,12030. Singh,N.,V.Pillay&Y.E.Choonara:AdvancesinthetreatmentofParkinson'sdisease. ProgNeurobiol2007,81,2944.

31

Sofic,E.,K.W.Lange,K.Jellinger&P.Riederer:Reducedandoxidizedglutathioneinthe substantianigraofpatientswithParkinson'sdisease.NeurosciLett1992,142,12830. Tanner,C.M.&S.M.Goldman:EpidemiologyofParkinson'sdisease.NeurolClin1996,14, 31735. Tanner,C.M.,R.Ottman,S.M.Goldman,J.Ellenberg,P.Chan,R.Mayeux&J.W. Langston:Parkinsondiseaseintwins:anetiologicstudy.Jama1999,281,3416. Tripanichkul,W.,K.Sripanichkulchai&D.I.Finkelstein:Estrogendownregulatesglial activationinmalemicefollowing1methyl4phenyl1,2,3,6tetrahydropyridine intoxication.BrainRes2006,1084,2837. Uversky,V.N.,J.Li&A.L.Fink:Metaltriggeredstructuraltransformations,aggregation, andfibrillationofhumanalphasynuclein.ApossiblemolecularNKbetween Parkinson'sdiseaseandheavymetalexposure.JBiolChem2001,276,4428496. Valko,M.,D.Leibfritz,J.Moncol,M.T.Cronin,M.Mazur&J.Telser:Freeradicalsand antioxidantsinnormalphysiologicalfunctionsandhumandisease.IntJBiochemCell Biol2007,39,4484. Vucenik,I.,K.Sakamoto,M.Bansal&A.M.Shamsuddin:Inhibitionofratmammary carcinogenesisbyinositolhexaphosphate(phyticacid).Apilotstudy.CancerLett 1993,75,95102. Vucenik,I.&A.M.Shamsuddin:Cancerinhibitionbyinositolhexaphosphate(IP6)and inositol:fromlaboratorytoclinic.JNutr2003,133,3778S3784S. Vucenik,I.,V.J.Tomazic,D.Fabian&A.M.Shamsuddin:Antitumoractivityofphytic acid(inositolhexaphosphate)inmurinetransplantedandmetastaticfibrosarcoma,a pilotstudy.CancerLett1992,65,913. Weinreb,O.,S.Mandel,T.Amit&M.B.Youdim:Neurologicalmechanismsofgreentea polyphenolsinAlzheimer'sandParkinson'sdiseases.JNutrBiochem2004,15,506 16. Williams,P.J.&T.G.Taylor:Acomparativestudyofphytatehydrolysisinthe gastrointestinaltractofthegoldenhamster(Mesocricetusauratus)andthelaboratory rat.BrJNutr1985,54,42935. Yassin,M.S.,J.Ekblom,M.Xilinas,C.G.Gottfries&L.Oreland:Changesinuptakeof vitaminB(12)andtracemetalsinbrainsofmicetreatedwithclioquinol.JNeurolSci 2000,173,404. Yoritaka,A.,N.Hattori,K.Uchida,M.Tanaka,E.R.Stadtman&Y.Mizuno: Immunohistochemicaldetectionof4hydroxynonenalproteinadductsinParkinson disease.ProcNatlAcadSciUSA1996,93,2696701. Zecca,L.,M.Gallorini,V.Schunemann,A.X.Trautwein,M.Gerlach,P.Riederer,P. Vezzoni&D.Tampellini:Iron,neuromelaninandferritincontentinthesubstantia nigraofnormalsubjectsatdifferentages:consequencesforironstorageand neurodegenerativeprocesses.JNeurochem2001,76,176673. Zecca,L.,M.B.Youdim,P.Riederer,J.R.Connor&R.R.Crichton:Iron,brainageingand neurodegenerativedisorders.NatRevNeurosci2004,5,86373. Zhang,X.,W.Xie,S.Qu,T.Pan,X.Wang&W.Le:Neuroprotectionbyironchelator againstproteasomeinhibitorinducednigraldegeneration.BiochemBiophysRes Commun2005,333,5449.

32

Zhou,J.R.&J.W.Erdman,Jr.:Phyticacidinhealthanddisease.CritRevFoodSciNutr 1995,35,495508.

33

CHAPTER 2. NEUROPROTECTIVE EFFECT OF THE NATURAL

IRON CHELATOR PHYTIC ACID IN A CELL CULTURE MODEL OF

PARKINSON’S DISEASE

Manuscripttobesubmittedto The Journal of Nutrition

QiXu,AnumanthaG.KanthasamyandManjuB.Reddy

Abstract

Disruptedironmetabolismandexcessironaccumulationhasbeenreportedinthebrains ofParkinson’sdisease(PD)patients.Becauseexcessiveironcaninduceoxidativestress subsequentlycausingdegradationofnigraldopaminergicneuronsinPD,wedeterminedthe protectiveeffectofanaturallyoccurringironchelator,phyticacid(IP6),on1methyl4 phenylpyridinium(MPP +)inducedcelldeathinimmortalizedrat mesencephalic/dopaminergiccells(N27cells).CelldeathwasinducedwithMPP +innormal andironexcessconditionsandcytotoxicitywasmeasuredbythiazolylbluetetrazolium bromide(MTTassay)andtrypanbluestaining.Apoptoticcelldeathwasalsomeasuredwith caspase3activity,DNAfragmentation,andHoechstnuclearstaining.IP6(30mol/L) increasedcellviabilityby19%(p<0.05)anddecreasedcelldeathby22%(p<0.05), comparedtoMPP +treatment.A3foldincreaseincaspase3activity(P<0.001)anda2fold increaseinDNAfragmentation(P<0.05)withMPP +treatmentwasdecreasedby55%

(P<0.01)and52%(P<0.05),respectivelywithIP6.IP6(30and100mol/L)increasedcell survivalby18%(p<0.05)and42%(p<0.001),respectivelyinironexcessconditions.Based oncaspase3activity,a40%and52%(P<0.001)protectionwith30mol/Land100mol/L

34

IP6,respectivelywasobservedinironexcess.Similarly,a45%reduction(P<0.001)inDNA fragmentationwasfound.Inaddition,Hoechstnuclearstainingresultsconfirmedthe protectiveeffectofIP6againstapoptosis.Collectively,ourresultsdemonstrateasignificant neuroprotectiveeffectofphytateinacellculturemodelofPD.

Key Words: Parkinson’sdisease,IP6,Iron,MPP +

Introduction

Parkinson’sdiseaseischaracterizedbyaselectivedegenerationofdopaminergicneurons inthesubstantianigra,resultinginirreversiblemotordysfunction.Thecardinalsymptomsof

PDincluderestingtremor,bradykinesia,andrigidity.Thisdebilitatingneurodegenerative disorderaffectsmorethan1%oftheUSpopulationover50yearsofage,andcausesan estimatedeconomicobligationof$25billionannually(1).Recentresearchhasbeenfocused onunderstandingthepathogenesisaswellasneuroprotectivetherapyofthedisease.There havebeenmanydopaminereplacementtherapiesdevelopedtominimizethePDassociated motordeficits.Thesetherapies,however,arelimitedtosymptomaticrelief.Otherlimitations oftheseapproachesincludedrugtolerance,druginducedinvoluntarymovements,andmost importantly,dopaminetherapyisineffectiveinattenuatingtheprogressionoftheillness(2).

Therefore,alternatetherapeuticagentsthateffectivelypreventtheprogressionof neurodegenerativeprocessesareneeded.

Totalbodyironconcentrationgenerallyincreaseswithage,asdoestheconcentrationin thebrain.Thesubstantianigrahas20ngFe/mgtissueduringthefirstyearoflifeand increasesto200ng/mgbythefourthdecadeoflife(3).Sinceexcessiveironaccumulationin substantianigrawasfoundinpostmortembrainsfromParkinson'spatients,theroleofironin

35

PDhasrecentlygainedattention(4,5).AlthoughtherelevanceofbrainironpathwaystoPD hasbeenconsidered,acauseoreffectrelationshiphasnotyetbeendetermined(5).Brain tissueisrichinpolyunsaturatedfattyacids,andhencemaybemoresusceptibletofree radicalmediatedlipidperoxidation(6).IronmetabolismisdisruptedinPD;ironaccumulates inlewybodies,anddistributionofirontransportandstorageproteinsisaltered(7,8).Arise inironlevelswithoutconcomitantchangeinferritinprovidesfreeironwhichcanbeinvolved inradicalgeneration(5,9).ItiswellknownthatironisinvolvedintheFentontoproduce hydroxide( •OH),themostreactiveoxygenspecies(ROS)thatcandamagetissues.

Oxidativestressinducedcelldamage,includingapoptosis,mayplayaprominentrolein neurodegenerationassociatedwithPD(1013).Researchontheuseofantioxidants,free radicalscavengers,andinducersofcellularantioxidantsystemsastherapeuticadjunctsinthe treatmentofPDcontinuestoprovidehopethatmoreeffectivetherapiesthatnotonlytreat symptoms,butalsoslowtheprocessofneurodegenerationwillbedeveloped.CoenzymeQ10, awellknownelectronacceptorforcomplexIandIIaswellasanimportantantioxidantwith regardtoitsfunctioninthereducedform(ubiquinol),couldattenuatethe1methyl4phenyl

1,2,3,6tetrahydropyridine(MPTP)inducedlossofstriataldopaminergicneuronsandhasa protectiveeffectonPD(1417).Inaddition,ironchelationviaeithertransgenicexpressionof theironbindingproteinferritinororaladministrationofthemetalchelatorclioquinol(CQ) reducedsusceptibilitytoMPTPinducedPDinanimals,suggestingthatironchelationmay alsobeaneffectivetherapyforpreventionandtreatmentofthedisease(18).Basedonthis evidence,antioxidantsorironchelatorsarethoughttohavegreatpotentialastherapeutic agentsfortheearlystagesofPD.

Phyticacid(IP6,myoinositolhexakisphosphate)isgenerallyconsideredasan

36 antinutrientbecauseofitsabilitytochelatedivalentmineralsandreducetheirabsorption(19).

Itisalsoconsideredasanantioxidantduetothesamemetalchelatingproperty.Phyticacid wasshowntoinhibit •OHformationanddecreaselipidperoxidationcatalyzedbyironand ascorbateinhumanerythrocytes(20).Thissuppressionofironcatalyzedoxidativereactions wassuggestedtobeduetoIP6’sabilitytoformauniquechelatewithFe(III)occupyingall ofthecoordinatingsites(21).Recently,wealsoshowedinahumanstudythatfeedingIP6 containingsoyproteinfor6weekstopostmenopausalwomenreducedbodyironstores significantlycomparedwithalowIP6soyprotein(22).Cellsignalingpathways(23)or antioxidantenzymesthatdetoxifytheROSmayalsobeeffectedbyIP6.Protectiveeffectof

IP6incancerwasstudiedextensively(2325),however,studiesarelimitedinPDtreatment

(26).BasedonthepositiveeffectofironchelatorsandantioxidantsinPD,aswellasthe antioxidantpropertyandironchelatingabilityofIP6,ourobjectivewastodeterminethe protectiveeffectofIP6against1methyl4phenylpyridinium(MPP +)induced neurodegenerationinacellculturemodel.

Materials and methods

Chemicals

Phyticacid(sodiumsalt),MPP +,ferroussulfate,nitrilotriaceticacid(NTA),and thiazolylbluetetrazoliumbromide(MTT)werepurchasedfromSigmaAldrich(St.Louis,

MO).Substrateforcaspase3,AcetylAspGluValAspAFC(AcDEVDAFC),was obtainedfromMPBiomedicals(Solon,OH).CellDeathDetection(enzymelinked immunosorbentassay)PluskitandHoechst33342werepurchasedfromRocheDiagnostics

(Indianapolis,IN)andMolecularProbes(Eugene,OR),respectively.Trypanbluestain,

37

RPMI1640medium,fetalbovineserum,Lglutamine,penicillinandstreptomycinwere obtainedfromInvitrogen(Carlsbad,CA).Allthesolutionswerepreparedimmediatelybefore use.

Cell culture

Theimmortalizedratmesencephalicdopaminergicneuronalcellline(1RB3AN27, generallyreferredasN27)wasobtainedasakindofgiftfromDr.KedarN.Prasad,

UniversityofColoradoHealthSciencesCenter(Denver,CO).CellsweregrowninRPMI

1640mediumcontaining10%fetalbovineserum,2mmol/LLglutamine,50unitspenicillin and50g/mLstreptomycinandmaintainedat37 oCinahumidifiedatmospherecontaining

5%CO 2asdescribedinpreviousstudies(13,27).Cellsgrownfor24hwereusedforthe followingexperiments.

Treatment

InitiallythecellswereincubatedwithvariousconcentrationsofIP6(30,100,300,600, and1000mol/L)orwithiron(Fe:NTA1:2molarratio;20,50,and100mol/L)for24hto determinethecytotoxicityofIP6andironseparately.Fordeterminingtheprotectiveeffectof

IP6innormalironconditions,cellswerepretreatedwith30mol/LIP6for24h,followed bya300mol/LMPP +treatment,aneurotoxinthatproducesROS,priortomeasuring apoptoticcelldeath.Ironexcessconditioninthecellswasinducedbytreatingthecellswith

50mol/Lironfor24hpriortoIP6(30or100mol/L)andMPP +treatmentforanother24 h.

Cell viability

CellviabilitywasmeasuredusingMTTassayasdescribedearlier(27).Aftereach treatment,cellswerewashedoncewithPBSbufferandfurtherincubatedwithserumfree

38

RPMImediumcontaining0.25mg/mLMTTsolutionfor3hat37 oC.IsopropanolHCL(200

l)solutionwasaddedtodissolveintracellularpurpleformazanandabsorbancewasreadat

570nmwithareferencewavelengthof630nmusingamicroplatereader(MolecularDevices,

Sunnyvale,CA).Cellviabilitywasalsodeterminedusingtrypanbluestain.Aftereach treatment,cellswereharvestedusingtrypsinEDTAandwashedoncewithPBS.Trypanblue stain(0.4%)wasaddedtocountthedeadcellsandthepercentageofcelldeathwas calculatedbasedonthefractionofdeadcellswithrespecttothetotalcellcount.

Caspase-3 activity

Sincecaspase3playsavitalroleintheregulationandexecutionofapoptoticcelldeath, wemeasureditsactivityasdescribedpreviously(28).Aftereachtreatment,thecellpellet aftercentrifugationwaslysedwithTrisbuffer(50mol/LTrisHCL,1mmol/LEDTA,and10 mmol/LEGTAatpH7.4)containing10mol/Ldigitoninfor20minat37 oC.Lysateswere subjectedtoaquickcentrifugationat20,000xgandcellfreesupernatantwascollected.

Afterincubatingwithaspecificfluorogeniccaspase3substrate(AcDEVDAFC,50mol/L) for1hat37 oC,thecaspase3activitywasmeasuredbymicroplatereader(Model:GeminiXS,

MolecularDevices)withexcitationat380nmandemissionat469nm.Theactivityis expressedasfluorescentunits(FU)/mgprotein.

DNA fragmentation

ChromatincondensationandDNAfragmentationarehallmarksofapoptosis(27).DNA fragmentationassayswereperformedusingCellDeathDetectionELISAPluskit.Aftereach treatment,thecellpelletobtainedfromcentrifugationwasincubatedwith40loflysis bufferfor20min.Thelysateswerethencentrifugedand80limmunoreagentcontaining antihistonebiotinandantiDNAPODwereaddedto20lsupernatantinstreptavidin

39 coated96wellmicrotiterplates.Theplateswereincubatedatroomtemperaturefor2hand thenwashedtwicewithincubationbuffer.Afteradding100lof2,2’azinodi[3 ethylbenzthiazolinesulfonate](ABTS)solutiontoeachwell,theabsorbancewasmeasuredat

490nmand405nmusingamicroplatereader.TheDNAfragmentationwasmeasuredbythe differenceinabsorbanceat405and490nmandexpressedasabsorbanceunits(AU)/mg protein.

Hoechst nuclear staining

AfluorescentDNAbindingdye,Hoechst33342,wasusedtomeasurenuclear morphologyandapoptosis.Cellsweregrownonpolyllysinecoatedcoverslipfor24hand thensubjectedtotreatmentsfollowedbyfixingwith4%paraformaldehyde.Thenucleiwere stainedwithHoechst33342(10g/ml)dyefor5mininthedark.Cellswereexaminedunder fluorescencemicroscope(Nikon,Tokyo,Japan)toperformimageanalysis.Nucleiof apoptoticcellsexhibitedstrongstaininginaheterogeneouspatchymannerduetochromatin condensation,whilenucleiofthenonapoptoticcellswerestainedinadiffused,homogenous mannerwhenobservedundermicroscope(13).

Statistics

DatawereanalyzedwithPrism4.0software(GraphSoftware,SanDiego,CA).Allthe measurementswerenormalizedtotherespectivecontrolsineachexperiment.The differencesamongthetreatmentswerecomparedwithANOVAwithTukey'sMultiple

ComparisontestandconsideredsignificantatP<0.05.

Results

Cytotoxic effect of iron and IP6 alone

40

TodeterminetheoptimaldoseofIP6andironforlaterexperiments,thedoseresponse cytotoxiceffectofIP6andironwasassessedseparatelyusingtheMTTassay(Table2.1).No significantcytotoxicitywasfoundwith30,100,300,and600mol/LIP6treatments,with only25%reductionsincellviabilitycomparedtocontrol.However,1mmol/LofIP6 decreasedcellviabilitysignificantly(P<0.05)by13%comparedtothecontrol.Withiron treatmentaloneat20,50,100mol/L,asmallbutsignificantcytotoxiceffectwasobserved witha92%(P<0.01),89%(P<0.001),and91%(P<0.01)reduction,respectively,compared tothecontrol.Basedontheseresults,30and100mol/LIP6and50mol/Lironwere chosenfortheexperimentstodeterminetheneuroprotectiveeffectofIP6.

Protection of IP6 against MPP + induced cell death

ProtectionofIP6againstMPP + inducedcelldeathwasdeterminedusingtheMTTassay andtrypanbluestaining.Cellviabilitywasdecreasedto53%(P<0.001)aftertreatingwith

300mol/LMPP +,but30mol/LIP6pretreatmentpartiallyprotectedagainstthistoxicity by19%(P<0.05)asmeasuredwithMTTassay(Fig.2.1A).Similarly,celldeathwas3.4fold

(P<0.001)higherwithMPP +and2.6fold(P<0.001)higherwithMPP +plusIP6ascompared tothecontrol,showinga22%protection(P<0.05)withIP6(Fig.2.1B).

Protection of IP6 against MPP + induced apoptosis

TheprotectiveeffectofIP6againstMPP +inducedapoptosismeasuredascaspase3 activity(A)andDNAfragmentation(B)andHoechstnuclearstaining(C)isshowninFig.

2.2.Caspase3activitywasnotaffectedwhencellswereexposedto30mol/LIP6for48h.

However,MPP +treatmentincreasedcaspase3activityby3.3fold(P<0.001),butitwas reducedsignificantlyby55%(P<0.01)withIP6.Similarly,DNAfragmentationwas2fold

(P<0.05)higherwithMPP +treatment;however,IP6counteractedtheeffect(P<0.05).The

41

HoechstnuclearstainingclearlyshowsapoptosisfollowingMPP+treatment,andsupportsthe dataonprotectiveeffectofIP6againstcaspase3andDNAfragmentation.

Protection of IP6 against MPP + induced cell death in iron-excess condition

ProtectionofIP6againstMPP +inducedcelldeathwasfurtherevaluatedintheiron excesscondition(Fig.2.3).Cellviabilitywasdecreasedto87%(P<0.001)and53%

(P<0.001)with50mol/Lironand300mol/LMPP +treatments,respectively.Cellviability wasfurtherdecreasedto37%(P<0.001)withthecombinedMPP +andirontreatments.

CytotoxicitywithironandMPP +cotreatmentwassignificantlyhigherthanwithironalone

(57%,P<0.001)orMPP +alone(30%,P<0.001).An18%protection(P<0.05)with30

mol/LIP6wasobservedfortheiron+MPP +treatment.However,ahigherprotection(42%) wasfoundwith100mol/LIP6(P<0.001).

Protection of IP6 against MPP + induced apoptosis in iron-excess condition

Caspase3activity,DNAfragmentationandHoechstnuclearstainingintheironexcess conditionandtheprotectiveeffectof30and100mol/LIP6wasshowninFig.2.4.

Caspase3activity(A)wasnotaffectedwhencellsweretreatedwith50mol/Lironor100

mol/LIP6aloneorironplusIP6for48h.A6.2fold(P<0.001)increasewasfoundwith

MPP +andfurtherincreasedto8.4fold(P<0.001)byaddingiron.A40%(P<0.001)anda

52%(P<0.001)reductionofMPP +inducedcaspase3activitywasfoundwith30and100

mol/LIP6inthepresenceofexcessiron.ForDNAfragmentation(B)andHoechstnuclear staining(C)experiments,only100mol/L IP6wastested.DNAfragmentationwas increasedto2.1fold(P<0.001)afterMPP +plusirontreatment,butIP6treatmentshoweda completeprotection.Again,HoechstnuclearstainingsupportstheprotectionofIP6against

MPP +inducedapoptosisevenintheironexcesscondition.

42

Discussion

Parkinson’sdiseaseisaprogressiveneurodegenerativedisorderwhichischaracterized byselectivelossofdopaminergicneurons.SeveralanimalstudiesonPDwereperformedby inducingneurotoxicitywith6hydroxydopamine(6OHDA),rotenone,lactacystin,and

MPTP(29,30).MPTPinducedneurotoxicityisthebestavailableapproachfortesting neuroprotectiveandneurorestorativestrategiesforPD(29).SinceMPTPisconvertedintoits activemetabolite,MPP +,bymonoamineoxidasetypeBinthebrainandaccumulatesinthe dopaminergicneurons,weusedMPP +toinduceoxidativestressandapoptosisinourcell culturestudy(13,31).

Oxidativestresscausingdamagetoproteins,lipidsandDNA,playsanimportantrolein

PD.Proteincarbonylswerefoundtobetwofoldhigherinthesubstantianigraparscompacta comparedtootherregionsinnormalpostmortembrains.Further,higherproteincarbonyl concentrationswerefoundinPDpatientscomparedtoagematchedcontrols(32,33).

IncreasedlevelsoflipidhydroperoxidesandDNAdamage,suchas8hydroxyguanine,were alsofoundinthesubstantianigrainPDpatients(34,35).Basedontherelationshipwith oxidativestressandPD,studieshavelookedattheeffectofantioxidantsonreducingthe progressionofPD.VitaminCandvitaminEwerefoundtoprotectagainstintrastriatal6

OHDAinjectioninducedstriataldamageinrats(36,37).AlthoughtheefficacyofvitaminE inthepreventionortreatmentofPDishighlydisputed,highdosedietarysupplementationor parenteraladministrationofvitaminEmaybeausefultherapeuticstrategyfortheprevention ortreatmentofPD(38).

IronisbelievedtobeanimportantcontributorinPDpathology,possiblybyincreasing oxidativestress.Freeironcanbeinvolvedinhydroxylradicalformationandcausesoxidative

43 damagetothecellsthroughtheFentonreaction.Thesubstantianigrahasthehighest concentrationofironinthemammalianbrain.Ironboundtoproteinsisnotinvolvedinfree radicalgeneration,butfreeironcanbecytotoxic.However,bothMPTPand6OHDAwere showntoreleaseferritinboundironinbothinvitroandinvivoconditions(39).MPTP disruptsironmetabolismbyincreasingtransferrinreceptor2whichmaycauseincreasediron uptakebythebrain(40),orpossiblyalteringironregulatoryproteinregulation(41).Since evidenceforanassociationbetweenironandneurotoxinmediatedneurodegenerationis strong,ironchelationhasbeensuggestedtobeaneffectivetherapyforpreventionor treatmentofPD.Theironchelator,desferrioxamine(DFO),wasreportedtoprotectagainst6

OHDAandlactacystininduceddegenerationindopaminergicneurons(30,42).Inaddition, anotherironchelator,CQ,wasalsoshowntoprotectagainstMPTPinduced neurodegeneration(18).

However,thecurrentlyusedironchelatorsmaycausesomesideeffectsinpatients.For example,DFOisthemostpotentironchelator,butitmustbeadministeredatahighdosage, tocompensateforitslowabilitytocrossthebloodbrainbarrier,andconsequentlymaycause sometoxiceffects(30).Hence,ourstudyaimedtodeterminetheprotectiveeffectofthe naturalironchelator,IP6,whichisanaturalfoodcomponent.

Phyticacidisastrongantioxidantthatinhibitsirondrivenhydroxylradicalsand decreaseslipidperoxidation(43).AlthoughIP6isgenerallyconsideredasanantinutrient duetoitsnegativeeffectonbioavailability(44),anumberofstudieshaveshown beneficialeffects,suchasanticancereffectsandloweringbloodlipids(4549).Lackof toxicityfollowinglongtermadministrationinanimalmodelsmakesIP6appealingforuse againstironassociatedpathogenesis(49).TheabsorptionofIP6inhumansisnotwell

44 studied,butaveryrecentstudydemonstrateda28%absorptionofIP6(50).However,IP6is wellabsorbedinrodentsandwasdistributedtovariousorgansasearlyas1hafter administration(25).WhenratswerefedanIPsufficientdiet,thehighestconcentrationofIP6 wasfoundinthebrainsuggestingtheabilityofIP6tocrossthebloodbrainbarrier.

ManypreviousstudieswithIP6mainlyfocusedonanticancereffects,butdataonits effectonneurodegenerativediseasesarelimited.Toourknowledge,onlyonestudyreported thesuppressionofMPP +inducedhydroxylradicalgenerationinratstriatumwithIP6 administration(26).Inthatstudy,MPP +(totaldose75nmol)withorwithoutiron(10mol/L) wasinfuseddirectlyintotherats’striatumtoinducehydroxylradicals,measuredas2,3 dihydroxybenzoicacid(DHBA).Similartotheratstudy,weshowedincreasedcaspase3 activity,DNAfragmentation,anddecreasedcellviabilitywith300mol/LMPP +treatmentin ourstudy.Onthecontrary,30mol/LIP6pretreatmentpartiallyprotectedagainstMPP + inducedneurotoxicityinourstudycomparedtonosignificantdecreaseofthelevelsof2,3

DHBAproductswith100mol/L(26).Thedifferencemaybeexplainedbytheuseof differentmodelstostudyneurotoxicity.

Whentheanimalstudywasperformedintheironexcesscondition(26),2,3DHBA productsweresignificantlyincreasedinironplusMPP +comparedwiththeMPP +alone treatedanimalsbutasignificantsuppressionwasfoundwithIP6.Similarly,wefoundinour studythatcytotoxicityresultingfromironandMPP+cotreatmentwassignificantlyhigher thanwithMPP +alone.Althoughboth30mol/Land100mol/LIP6showedasignificant protection,thelatterdosewasmoreeffective.OurresultssuggestthatahigherdoseofIP6is neededtoprotectN27cellsagainstMPP +inducedcellapoptosisintheironexcesscondition.

Thehigherdoseisstillwithinthephysiologicalrange,sincenosignificantIP6cytotoxicity

45 below600mol/Lwasfound(Table2.1).

Severalstudieswithanimalmodelshavesuggestedironchelatorsmaybepotential therapeuticagentstoslowtheprogressionofneurodegeneration.Inamicestudy,theiron chelatorcoenzymeQ10causedasignificantattenuationofthelossofstriataldopamineand dopaminergicaxonscausedbyMPTP(51).Theironchelator,DFO,alsosignificantly inhibitedironaccumulationinthebrainbyinhibitingthegenerationofreactivehydroxyl radicalsandlipidperoxidationinducedbyexcessironandMPTP,thusresultingina significantreversionofthereductionofstriataldopaminelevels(52).SinceIP6isalsoan ironchelator,itmaybeaseffectiveasotherchelatorsdiscussedabovebasedonourcell culturestudyresults.However,futureinvivostudiesareneededtoconfirmitsprotective effect.

Insummary,inourcellculturestudy,IP6protecteddopaminergicneuronsagainstMPP + inducedapoptosis,evenintheironexcesscondition.OurfindingssuggestthatIP6mayoffer protectivetherapy,alongwithtraditionaldrugtherapy,toslowtheprogressionandlimitthe extentofneuronalcelldeathinPD.Futureanimalandhumanstudieswouldbeusefulto confirmourresults.

References

1.ScheifeRT,SchumockGT,BursteinA,GottwaldMD,LuerMS.ImpactofParkinson's diseaseanditspharmacologictreatmentonqualityoflifeandeconomicoutcomes.AmJ HealthSystPharm.2000May15;57:95362. 2.SamiiA,NuttJG,RansomBR.Parkinson'sdisease.Lancet.2004May29;363:178393. 3.ZeccaL,GalloriniM,SchunemannV,TrautweinAX,GerlachM,RiedererP,VezzoniP, TampelliniD.Iron,neuromelaninandferritincontentinthesubstantianigraofnormal subjectsatdifferentages:consequencesforironstorageandneurodegenerativeprocesses. JNeurochem.2001Mar;76:176673. 4.BergD,BeckerG,RiedererP,RiessO.Ironinneurodegenerativedisorders.NeurotoxRes. 2002Nov;4:63753.

46

5.BergD,GerlachM,YoudimMB,DoubleKL,ZeccaL,RiedererP,BeckerG.Brainiron pathwaysandtheirrelevancetoParkinson'sdisease.JNeurochem.2001Oct;79:22536. 6.SchaferFQ,QianSY,BuettnerGR.Ironandfreeradicaloxidationsincellmembranes. CellMolBiol(Noisylegrand).2000May;46:65762. 7.KaurD,AndersenJK.IroningoutParkinson'sdisease:istherapeutictreatmentwithiron chelatorsarealpossibility?Agingcell.2002Oct;1:1721. 8.LeeDW,AndersenJK,KaurD.Irondysregulationandneurodegeneration:themolecular connection.Molecularinterventions.2006Apr;6:8997. 9.BishopGM,RobinsonSR,LiuQ,PerryG,AtwoodCS,SmithMA.Iron:apathological mediatorofAlzheimerdisease?DevNeurosci.2002;24:1847. 10.BurkeRE,KholodilovNG.Programmedcelldeath:doesitplayaroleinParkinson's disease?AnnNeurol.1998Sep;44:S12633. 11.FahnS.Islevodopatoxic?Neurology.1996Dec;47:S18495. 12.JennerP,OlanowCW.OxidativestressandthepathogenesisofParkinson'sdisease. Neurology.1996Dec;47:S16170. 13.KaulS,KanthasamyA,KitazawaM,AnantharamV,KanthasamyAG.Caspase3 dependentproteolyticactivationofproteinkinaseCdeltamediatesandregulates1 methyl4phenylpyridinium(MPP+)inducedapoptoticcelldeathindopaminergiccells: relevancetooxidativestressindopaminergicdegeneration.EurJNeurosci.2003 Sep;18:1387401. 14.EbadiM,GovitrapongP,SharmaS,MuralikrishnanD,ShavaliS,PellettL,SchaferR, AlbanoC,EkenJ.Ubiquinone(coenzymeq10)andmitochondriainoxidativestressof parkinson'sdisease.BiolSignalsRecept.2001MayAug;10:22453. 15.ErnsterL,DallnerG.Biochemical,physiologicalandmedicalaspectsofubiquinone function.BiochimBiophysActa.1995May24;1271:195204. 16.KanthasamyAG,Sharma,N.,Kirby,M.L.,andSchwarzschild,M.A.Neuroprotective strategiesinParkinson'sdisease.In:Neuroprotection:Basic&ClinicalAspects, prominentpress.2001:60440. 17.MoonY,LeeKH,ParkJH,GeumD,KimK.Mitochondrialmembranedepolarization andtheselectivedeathofdopaminergicneuronsbyrotenone:protectiveeffectof coenzymeQ10.JNeurochem.2005Jun;93:1199208. 18.KaurD,YantiriF,RajagopalanS,KumarJ,MoJQ,BoonplueangR,ViswanathV, JacobsR,YangL,etal.GeneticorpharmacologicalironchelationpreventsMPTP inducedneurotoxicityinvivo:anoveltherapyforParkinson'sdisease.Neuron.2003Mar 27;37:899909. 19.ReddyMB,HurrellRF,JuilleratMA,CookJD.Theinfluenceofdifferentprotein sourcesonphytateinhibitionofnonhemeironabsorptioninhumans.AmJClinNutr. 1996Feb;63:2037. 20.GrafE,EatonJW.Antioxidantfunctionsofphyticacid.FreeRadicBiolMed.1990;8:61 9. 21.GrafE,MahoneyJR,BryantRG,EatonJW.Ironcatalyzedhydroxylradicalformation. Stringentrequirementforfreeironcoordinationsite.JBiolChem.1984Mar 25;259:36204. 22.HansonHM,Clark,L.N.,Alekel,D.L.andReddy,M.B.Phyticacidrichsoyprotein isolatemayprotectagainstoxidativestressbyreducingironstoresinpostmenopausal

47

women.5thInternationalsumposiumontheroleofsoyinpreventingandtreatingchronic disease.AJCN(Inpr.2003. 23.ShamsuddinAM,VucenikI,ColeKE.IP6:anovelanticanceragent.LifeSci. 1997;61:34354. 24.ShamsuddinAM,VucenikI.MammarytumorinhibitionbyIP6:areview.Anticancer Res.1999SepOct;19:36714. 25.VucenikI,ShamsuddinAM.Cancerinhibitionbyinositolhexaphosphate(IP6)and inositol:fromlaboratorytoclinic.JNutr.2003Nov;133:3778S84S. 26.ObataT.Phyticacidsuppresses1methyl4phenylpyridiniumioninducedhydroxyl radicalgenerationinratstriatum.BrainRes.2003Jul18;978:2414. 27.LatchoumycandaneC,AnantharamV,KitazawaM,YangY,KanthasamyA, KanthasamyAG.ProteinkinaseCdeltaisakeydownstreammediatorofmanganese inducedapoptosisindopaminergicneuronalcells.JPharmacolExpTher.2005 Apr;313:4655. 28.YangY,KaulS,ZhangD,AnantharamV,KanthasamyAG.Suppressionofcaspase3 dependentproteolyticactivationofproteinkinaseCdeltabysmallinterferingRNA preventsMPP+induceddopaminergicdegeneration.MolCellNeurosci.2004 Mar;25:40621. 29.BealMF.ExperimentalmodelsofParkinson'sdisease.NatRevNeurosci.2001 May;2:32534. 30.ZhangX,XieW,QuS,PanT,WangX,LeW.Neuroprotectionbyironchelatoragainst proteasomeinhibitorinducednigraldegeneration.BiochemBiophysResCommun.2005 Jul29;333:5449. 31.KalivendiSV,KotamrajuS,CunninghamS,ShangT,HillardCJ,KalyanaramanB.1 Methyl4phenylpyridinium(MPP+)inducedapoptosisandmitochondrialoxidant generation:roleoftransferrinreceptordependentironandhydrogenperoxide.BiochemJ. 2003Apr1;371:15164. 32.FloorE,WetzelMG.Increasedproteinoxidationinhumansubstantianigrapars compactaincomparisonwithbasalgangliaandprefrontalcortexmeasuredwithan improveddinitrophenylhydrazineassay.JNeurochem.1998Jan;70:26875. 33.AlamZI,DanielSE,LeesAJ,MarsdenDC,JennerP,HalliwellB.Ageneralisedincrease inproteincarbonylsinthebraininParkinson'sbutnotincidentalLewybodydisease.J Neurochem.1997Sep;69:13269. 34.AlamZI,JennerA,DanielSE,LeesAJ,CairnsN,MarsdenCD,JennerP,HalliwellB. OxidativeDNAdamageintheparkinsonianbrain:anapparentselectiveincreasein8 hydroxyguaninelevelsinsubstantianigra.JNeurochem.1997Sep;69:1196203. 35.JennerP.OxidativestressinParkinson'sdisease.AnnNeurol.2003;53Suppl3:S2636; discussionS8. 36.CadetJL,KatzM,JacksonLewisV,FahnS.VitaminEattenuatesthetoxiceffectsof intrastriatalinjectionof6hydroxydopamine(6OHDA)inrats:behavioraland biochemicalevidence.BrainRes.1989Jan2;476:105. 37.PrasadKN,ColeWC,KumarB.Multipleantioxidantsinthepreventionandtreatmentof Parkinson'sdisease.JAmCollNutr.1999Oct;18:41323.

48

38.ZhangSM,HernanMA,ChenH,SpiegelmanD,WillettWC,AscherioA.Intakesof vitaminsEandC,carotenoids,vitaminsupplements,andPDrisk.Neurology.2002Oct 22;59:11619. 39.GrunblattE,MandelS,YoudimMB.NeuroprotectivestrategiesinParkinson'sdisease usingthemodelsof6hydroxydopamineandMPTP.AnnNYAcadSci.2000;899:262 73. 40.BlumD,TorchS,LambengN,NissouM,BenabidAL,SadoulR,VernaJM.Molecular pathwaysinvolvedintheneurotoxicityof6OHDA,dopamineandMPTP:contribution totheapoptotictheoryinParkinson'sdisease.ProgNeurobiol.2001Oct;65:13572. 41.LaVauteT,SmithS,CoopermanS,IwaiK,LandW,MeyronHoltzE,DrakeSK,Miller G,AbuAsabM,etal.Targeteddeletionofthegeneencodingironregulatoryprotein2 causesmisregulationofironmetabolismandneurodegenerativediseaseinmice.Nat Genet.2001Feb;27:20914. 42.BenShacharD,EshelG,FinbergJP,YoudimMB.Theironchelatordesferrioxamine (Desferal)retards6hydroxydopamineinduceddegenerationofnigrostriataldopamine neurons.JNeurochem.1991Apr;56:14414. 43.GrafE,EmpsonKL,EatonJW.Phyticacid.Anaturalantioxidant.JBiolChem.1987 Aug25;262:1164750. 44.ZhouJR,ErdmanJW,Jr.Phyticacidinhealthanddisease.CritRevFoodSciNutr.1995 Nov;35:495508. 45.DeliliersGL,ServidaF,FracchiollaNS,RicciC,BorsottiC,ColomboG,SoligoD. Effectofinositolhexaphosphate(IP(6))onhumannormalandleukaemichaematopoietic cells.BrJHaematol.2002Jun;117:57787. 46.JariwallaRJ.Inositolhexaphosphate(IP6)asanantineoplasticandlipidloweringagent. AnticancerRes.1999SepOct;19:3699702. 47.OnomiS,OkazakiY,KatayamaT.Effectofdietarylevelofphyticacidonhepaticand serumlipidstatusinratsfedahighsucrosediet.BiosciBiotechnolBiochem.2004 Jun;68:137981. 48.VucenikI,SakamotoK,BansalM,ShamsuddinAM.Inhibitionofratmammary carcinogenesisbyinositolhexaphosphate(phyticacid).Apilotstudy.CancerLett.1993 Dec10;75:95102. 49.VucenikI,TomazicVJ,FabianD,ShamsuddinAM.Antitumoractivityofphyticacid (inositolhexaphosphate)inmurinetransplantedandmetastaticfibrosarcoma,apilot study.CancerLett.1992Jul31;65:913. 50.AgteV,JahagirdarM,ChiplonkarS.Apparentabsorptionofeightmicronutrientsand phyticacidfromvegetarianmealsinileostomizedhumanvolunteers.Nutrition.2005 Jun;21:67885. 51.BealMF,MatthewsRT,TielemanA,ShultsCW.CoenzymeQ10attenuatesthe1 methyl4phenyl1,2,3,tetrahydropyridine(MPTP)inducedlossofstriataldopamineand dopaminergicaxonsinagedmice.BrainRes.1998Feb2;783:10914. 52.LanJ,JiangDH.DesferrioxamineandvitaminEprotectagainstironandMPTPinduced neurodegenerationinmice.JNeuralTransm.1997;104:46981.

49

TABLE 2.1DoseresponseeffectofIP6andironaloneoncellviability CellViability(%) #

IP6 ( µmol/L )

0 100 30 98

100 95

300 103 600 101

1000 87*

Iron ( µmol/L ) 0 100

20 92**

50 89***

100 91** #CellviabilitywasmeasuredusingMTTassayasdescribedinMaterialsandMethodssection. Thevalues(Mean+SEM,n=46)representpercentageofthecontrol(0concentrationof respectivetreatments).ANOVAwithTukey'sMultipleComparisontestwasusedtodetect thedifferencesamongthetreatments.*P<0.05;**P<0.01;***P<0.001.

50

A B *

a 100 400 b 90 b # * 300 80 # 70 b 200

60 b Cell death a

Cell viability 100 50

40 0 + + 6 rol P P + +IP + +IP6 M MPP ont P control c P PP M M

Figure 2.1 ProtectiveeffectofIP6againstMPP +inducedcelldeath.Celldeathwas measuredwithMTT(A;n=1213)andtrypanblue(B;n=56). #Thevalues(Mean+SEM) representpercentageoftherespectivecontrols(notreatment).ANOVAwithTukey's MultipleComparisontestwasusedtodetectthedifferencesamongthetreatments.Means withlettersindicatecomparisonwithcontroltreatment.Symbolsrepresentthecomparison betweentreatments.*P<0.05; bP<0.001.

51

A B

** *

500 250 b c # # 400 200

300 150 a a 200 a 100 a a 100 50 DNA Fragmentation DNA Caspase-3 activity Caspase-3 0 0 + + ol l IP6 ntr + + IP6 MPP ntro + +IP6 co o MPP c P MPP P M

C ControlMPP +MPP ++IP6 Magnification

20x

60x

Apoptosis Figure 2.2 ProtectiveeffectofIP6againstMPP +inducedapoptosis.Cellapoptosiswas measuredwithcaspase3activity(A;n=48)andDNAfragmentation(B;n=3). # Thevalues (Mean+SEM)representpercentageoftherespectivecontrols(notreatment).ANOVAwith Tukey'sMultipleComparisontestwasusedtodetectthedifferencesamongthetreatments. Meanswithlettersindicatecomparisonwithcontroltreatment.Symbolsrepresentthe comparisonbetweentreatments.*P<0.05;**P<0.01; bP<0.05; cP<0.001.HoechstNuclear Staining(C)wasusedtoidentifythelivecells.Theapoptoticcellnucleiwereshowninthe 20Xand60XmagnificationwithMPP +treatment.

52

** a 100 b ** ** * # 75 b b b 50 b

25 Cell viability Cell

0 + + e rol F 00) 1 MPP cont + +IP6(30) Fe+MPP P + + IP6( P M PP M Fe+ e+ F

Figure 2.3 ProtectiveeffectofIP6at30mol/Land100mol/Lconcentrationsagainst MPP +inducedcelldeathintheironexcesscondition.Cellviability(n=34)wasmeasured withMTTassay.IP6(30);30mol/LIP6andIP6(100);100mol/LIP6.#Thevalues (Mean+SEM)representpercentageoftherespectivecontrols(notreatment).ANOVAwith Tukey'sMultipleComparisontestwasusedtodetectthedifferencesamongthetreatments. Meanswithlettersindicatecomparisonwithcontroltreatment.Symbolsrepresentthe comparisonbetweentreatments.*P<0.05;**P<0.001;bP<0.001.

53

A B

** * ** **

b 250 b #

# 800 b 200 b 600 150 a b a 400 100

200 a 50

Caspase-3 activity Caspase-3 a a a Fragmentation DNA 0 0 + e ) ) l F P + 00 00 + +Fe IP6 trol +Fe ntro n MP (1 (1 P e+ o F co P6 P6 c P + + MPP I I M + e+ PP +Fe+IP6(30)+ F Fe+IP6(100) P + M P MP MP

C Fe+MPP +Fe+MPP ++IP6Magnification 20X

60X Apoptosis Figure 2.4 ProtectiveeffectofIP6againstMPP +inducedapoptosisintheironexcess condition.Cellapoptosiswasmeasuredwithcaspase3activity(A;n=410)andDNA fragmentation(B;n=4).IP6(30);30mol/LIP6andIP6(100);100mol/LIP6. #Thevalues (Mean+SEM)representpercentageoftherespectivecontrols(notreatment).ANOVAwith Tukey'sMultipleComparisontestwasusedtodetectthedifferencesamongthetreatments. Meanswithlettersindicatecomparisonwithcontroltreatment.Symbolsrepresentthe comparisonbetweentreatments.*P<0.05;**P<0.001;bP<0.001.HoechstNuclearStaining (C)wasusedtoidentifythelivecells.Theapoptoticcellnucleiwereshowninthe20Xand 60XmagnificationwithironplusMPP +treatment.

54

CHAPTER 3. PHYTIC ACID PROTECTS AGAINST 6-

HYDROXYDOPAMINE AND IRON INDUCED APOPTOSIS IN A CELL

CULTURE MODEL OF PARKINSON'S DISEASE

Manuscripttobesubmittedto Neuroscience letters

QiXu,AnumanthaG.KanthasamyandManjuB.Reddy

Abstract

IronisthoughttoplayanimportantroleinParkinson’sdisease(PD)sinceitcould induceoxidativestressdependentneurodegeneration.Inthisstudy,wedeterminedwhether theironchelator,phyticacid,protectsagainst6hydroxydopamine(6OHDA)induced apoptosisinimmortalizedratmesencephalic/dopaminergiccells(N27cells).Cellswere growninnormalandironexcessconditionsandneurotoxicitywasinducedwith6OHDAby

6htreatment.Caspase3activityandDNAfragmentationweremeasuredtodeterminethe neurodegeneration.Caspase3activitywasincreasedabout6foldafter6OHDAtreatment

(comparedtocontrol;p<0.001)and30mol/LIP6pretreatmentdecreaseditby38%

(p<0.05).Similarly,a63%protection(p<0.001)against6OHDAinducedapoptosiswas foundwithIP6pretreatmentasmeasuredbyDNAfragmentation.Evenintheironexcess condition,caspase3activitywasincreasedabout6fold(p<0.001)with6OHDA.However, a41%(p<0.01)decreasewasobservedwith30mol/LIP6treatments,butnofurther significantdecreasewasobservedwith100mol/LIP6.Similarly,DNAfragmentationwas increasedby42%with6OHDAanditwasreducedby27%(P<0.05)withIP6treatment.

OurdatasuggestthatIP6protectsagainst6OHDAinducedcellapoptosisinbothnormal

55 andironexcessconditions,andIP6maypreventtheprogressionofPD.However,future animalstudiesareneededtostudythemechanismofprotectioninvivo.

Key Words :Parkinson’sdisease,IP6,Iron,6OHDA

Introduction

Parkinson’sdisease(PD)isaprogressiveneurodegenerativediseaseaffectingmorethan

1%oftheUSpopulationover50yearsofageandcausinganapproximateeconomiclossof

$25billionannually[39].TheclinicalsymptomsofPD,restingtremor,bradykinesia,rigidity, andposturalinstability,resultfromselectivedegenerationofdopamineneuronsarisinginthe substantianigraandterminatinginthestriatum.Thelossofnigralneuronsinthesubstantia nigraresultsinseveredopaminedepletioninthestriatum,andclinicalsignsofPDappear whenstriataldopamineisreducedby80%[6].

OxidativestresshasbeenimplicatedintheneurologicaldegenerationassociatedwithPD sinceoxidativestresscancausedamagetotheproteins,DNA,andlipidsandconsequently induceapoptosis[9,10,19,22,31].Oxidativestressresultsfromincreasedproductionof reactivefreeradicalssuchasreactiveoxygenspecies(ROS).Braintissueishighly susceptibletooxidativestressbecauseofitshighpolyunsaturatedfattyacidscontent.In addition,basedonlowantioxidantconcentrationinbraincomparabletoothertissues,brain mayhaveahighoxidativestressenvironment.Forexample,theantioxidantenzymes superoxidedismutaseandcatalaseconcentrationswerereportedtobe7and140foldlower inthebrainthanintheliver[11,37].ThehighoxidativestressinPDissupportedbyhuman postmortemstudies,whichshowhigherlevelsofproteincarbonyls,lipidhydroperoxides, andDNAdamage,suchas8hydroxyguanine,inPDbrainscomparedtonormalbrains[2,17,

56

22].Furthermore,thedeletionofglutathioneandimpairmentoftheantioxidantsystem, foundinpostmortembraintissuesofPD,clearlysuggesttheinvolvementofoxidativestress inPD[43].

Amajorroleofironinthepathogenesisofthediseasehasgainedattentionrecently becauseofitsinvolvementinoxidativestress[4,5].Ironisanessentialnutrientforallliving organismssinceironplaysanimportantroleinaseriesofbiologicalprocessessuchas electrontransportandoxygentransport[33].Ontheotherhand,ifnotappropriatelyshielded, excessironcanbeinvolvedinHaberWeissandFentonreactionstoproducehydroxyl radicals,whicharehighlydamagingtotissues.Inthebrain,excessironcaninteractwith neuromelanin(NM),adarkcoloredpigmentinthedopaminergicneurons,toincrease oxidativestressandcauseneurodegeneration[15].Undernormalconditions,NMdecreases freeradicaldamagebydirectlyinactivatingfreeradicalspeciesorbindingtransitionmetals suchasiron[14,16].However,increasedironcontentmaysaturateironchelatingsiteson

NMandresultinincreasedoxidativedamage[14].Totalironlevelsinthesubstantianigraof

PDpatientsarehigherthanagematchedhealthycontrols[7].Alterationsinironmetabolism, suchasaltereddistributionofirontransportandstorageproteins,havealsobeenreportedin

PD[49].Ferritin,themajorironstorageprotein,isdecreasedinthesubstantianigraofthe

PDbraincomparedtoelderlycontrols[13].Ariseinironlevelsconcomitantwithlowlevels offerritinmayprovide“freeiron”forROSproduction[5,8].Althoughitisstillnotclear whetherironaccumulationisacauseoraneffect,theuseofantioxidantironchelatorsas therapeuticadjunctsinthetreatmentofPDprovideshopethattheprocessof neurodegenerationinPDpatientscanbeslowed.

Phyticacid(IP6,myoinositolhexakisphosphate)isafoodcomponentthatisconsidered

57 asanantinutrientduetoitsabilitytochelatedivalentmineralsandpreventtheirabsorption

[38].Phyticacidisalsorecognizedasaphysiologicalantioxidantduetoitsuniquechelating abilitywithironandcompleteinhibitionofironcatalyzedhydroxylradicalsformation[46].

Phyticacidmayalsoinfluenceoxidativestressbyalteringcellsignalingpathwaysor influencingtheactivityandexpressionofantioxidantenzymes[42].Studieshave demonstratedthatIP6couldpreventavarietyofmalignanciesincludingbreast,colon,liver, leukemia,prostate,sarcomas,andskincancer[18,41,42,45].However,itsrolein neurodegenerativediseaseisnotwellknown.Toourknowledge,IP6wasreportedtoprotect againstneurotoxin1methyl4phenyl1,2,3,6tetrahydropyridine(MPTP)inducedhydroxyl radicalgenerationbychelatingironinratstriatuminonlyonestudy[30].Althoughour previousstudy(unpublished)showedtheprotectionofIP6against1methyl4 phenylpyridinium(MPP +)inducedapoptosisinacellculturemodelofPD,thecurrentstudy wasdesignedtodetermineIP6’sneuroprotectiveeffecton6hydroxydopamine(6OHDA) inducedPDinacellculturemodel,sinceMPP +and6OHDAinduceneurotoxicityby differentmechanisms.

Materials and methods

Chemicals

Theimmortalizedratmesencephalicdopaminergicneuronalcellline(1RB32AN27, generallyreferredtoasN27)wasakindgiftfromDr.KedarN.Prasad,Universityof

ColoradoHealthSciencesCenter(Denver,CO).Ferroussulfate,6OHDA,IP6,and nitrilotriaceticacid(NTA)werepurchasedfromSigmaAldrich(St.Louis,MO).Substrate forcaspase3,AcetylAspGluValAspAFC(AcDEVDAFC),wasobtainedfromMP

58

Biomedicals(Solon,OH).CellDeathDetection(enzymelinkedimmunosorbentassay)Plus kitandHoechst33342werepurchasedfromRocheDiagnostics(Indianapolis,IN)and

MolecularProbes(Eugene,OR),respectively.RPMI1640medium,fetalbovineserum,L glutamine,penicillin,andstreptomycinwereobtainedfromInvitrogen(Carlsbad,CA).All thesolutionswerepreparedfreshpriortoassay.

Cell culture

CellsweregrowninRPMI1640mediumcontaining10%fetalbovineserum,2mmol/L

Lglutamine,50unitspenicillin,and50g/mlstreptomycinandmaintainedat37 oCina humidifiedatmospherecontaining5%CO 2asdescribedinpreviousstudies[24,26].Cells grownfor24hwereusedforthefollowingexperiments.

Treatment

Basedonthecytotoxiceffectsofphyticacidandironinthepreviousstudy

(unpublished),30and100mol/LIP6and50mol/Lironwereselectedintheexperiments.

FordeterminingtheprotectiveeffectofIP6innormalironconditions,cellswerepretreated with30mol/LofIP6for24h,followedbya100mol/L6OHDAtreatmentfor6h.Iron excessconditioninthecellswasinducedbytreatingthecellswith50mol/Lironfor24h priortoIP6(30or100mol/L)followedby6OHDAtreatmentforanother6h.Treatments withoutiron,IP6and6OHDAservedascontrolsforalltheexperiments.

Caspase-3 activity

Caspase3wasmeasuredasdescribedpreviously[48].Aftereachtreatment,thecell pelletaftercentrifugationwaslysedwithTrisbuffer(50mol/LTrisHCL,1mmol/LEDTA, and10mmol/LEGTAatpH=7.4)containing10mol/Ldigitoninfor20minat37 oC.

Lysatesweresubjectedtoaquickcentrifugationat20,000xgandcellfreesupernatantwas

59 collected.Afterincubatingwithaspecificfluorogeniccaspase3substrate(AcDEVDAFC,

50mol/L)for1hat37 oC,thecaspase3activitywasmeasuredbymicroplatereader

(Model:GeminiXS,MolecularDevices)withexcitationat380nmandemissionat469nm.

Thecaspase3activitywasexpressedasfluorescentunits(FU)/mgprotein.

DNA fragmentation

DNAfragmentationassayswereperformedusingCellDeathDetectionELISAPlusKit asdescribedpreviously[26].Aftereachtreatment,cellpelletwasincubatedwith40lof lysisbufferfor20minatroomtemperature.Thelysateswerethencentrifugedand80l immunoreagentcontainingantihistonebiotinandantiDNAPODwereaddedto20l supernatantinstreptavidincoated96wellmicrotiterplates.Theplateswereincubatedat roomtemperaturefor2handthenwashedtwicewithincubationbuffer.Afteradding100ul of2,2’azinodi[3ethylbenzthiazolinesulfonate](ABTS)solutiontoeachwell,the absorbancewasmeasuredat490nmand405nmusingamicroplatereader.DNA fragmentationwasmeasuredbythedifferenceinabsorbanceat405and490nmand expressedasabsorbanceunits(AU)/mgprotein.

Hoechst nuclear staining

AfluorescentDNAbindingdye,Hoechst33342,wasusedtomeasureapoptosis.Cells weregrownonpolyllysinecoatedcoverslipsfor24handthensubjectedtotreatments followedbyfixingwith4%paraformaldehyde.ThenucleiwerestainedwithHoechst33342

(10g/ml)dyefor5mininthedark.Cellswereexaminedunderfluorescencemicroscope

(Nikon,Tokyo,Japan)forimageanalysis.Nucleiofapoptoticcellswereidentifiedas heterogeneouspatchyinclusionsduetochromatincondensation,whilenucleiofthe nonapoptoticcellswereidentifiedasdiffusedandhomogenousmannerafterstaining[24].

60

Statistics

DatawereanalyzedwithPrism4.0software(GraphSoftware,SanDiego,CA).Caspase

3activityandDNAfragmentationwereexpressedaspercentageoftherespectivecontrols.

ThedifferencesamongthetreatmentswerecomparedwithANOVAwithTukey'sMultiple

ComparisontestandconsideredsignificantatP<0.05.

Results

Protection of IP6 against 6-OHDA induced apoptosis

TheprotectiveeffectofIP6against6OHDAinducedapoptosiswasmeasuredwith caspase3activityandDNAfragmentation,asshowninFig.3.1.Caspase3activity(A)was about6fold(P<0.001)higherwith6OHDAtreatment,butsignificantly(P<0.05)reducedby

38%withIP6.Similarly,DNAfragmentation(B)wasabout3fold(P<0.001)higherwith6

OHDAtreatmentcomparedtocontrol,andIP6pretreatmentreduceditby63%(P<0.001).

TheHoechstnuclearstaining(Fig.3.2)clearlyshowscellapoptosiswith6OHDAand supportsthecaspase3andDNAfragmentationdataontheprotectiveeffectofIP6.

Protection of IP6 against 6-OHDA induced apoptosis in iron-excess condition

Caspase3activity,DNAfragmentation,andHoechstnuclearstaininginexcessiron conditionsandtheprotectiveeffectofIP6atbothconcentrationsareshowninFig.3.3 .

Caspase3activity(A)wasincreasedabout6fold(P<0.001)with6OHDAandiron.A41%

(P<0.01)protectionwasfoundwith30mol/LIP6,andnoadditionalprotectionwasshown atthehighconcentration(32%,P<0.05).DNAfragmentation(B)wasincreasedby42%

(P<0.05)after6OHDAandIP6counteractedtheeffect(P<0.05).Again,Hoechstnuclear staining(Fig.3.4)supportstheprotectionofIP6against6OHDAinducedapoptosisiniron

61 excessconditions.

Discussion

PDisaslow,progressiveneurodegenerativedisordercharacterizedbythedegeneration ofdopaminergicneuronsinthesubstantianigra.Oxidativestresshasgainedattentioninthe pathogenesisofnigralcelldeathinPDduetothehighlevelsoffreeradicalsgenerated duringoxidativemetabolismofdopamine[32].Theaccumulationofiron,dysfunctionof mitochondria,anddecreasedlevelsoftheantioxidantnutrientglutathionefoundinPD clearlysuggesttheinvolvementofoxidativestressinPD[4,5,34,35].Generally,ironinthe bodyisboundtoproteinssuchasferritinortransferrin.However,HferritinandLferritinare decreasedinsubstantianigraofPDpatients[13].Increasedironlevelsalongwithlowlevels offerritin,resultinfreeironavailableforROSgeneration.Ironmaypromotetheoxidation ofdopaminetoreleasehydrogenperoxideandgiverisetohighlytoxichydroxylradicals throughtheFentonreaction[25].Ironmayalsoincreaseintracellularalphasynuclein,the abnormalproteinaggregationassociatedwiththepathophysiologyofPD[21,44].Alpha synucleinisamajorcomponentoflewybodies,thepathologicalhallmarkofPD,and accumulationofalphasynucleinmaybecentraltothedevelopmentofPD[32].Basedonthe involvementofoxidativestressandironinthepathogenesisofPD,identifyingthe compoundswithantioxidantaswellasironchelatingpropertiesmayrepresentanovel approachforslowingtheprogressionofPD.

ThecauseofPDisnotclear,anditisdifficulttostudythemechanismofthediseasein humans.Therefore,neurotoxinsinducedexperimentalmodelsarecommonlyusedto investigatethepathogenesisandtherapeuticstrategiesofPD.MPTPand6OHDareclassic

62 neurotoxinsusedtostudyPD.MPTP,convertedtoitsactivemetaboliteMPP +inthe dopaminergicneurons,damagesdopaminergicneuronsbyinhibitingmitochondrialfunction andgeneratingfreeradicals[40].6hydroxydopamineinducesnigraldegenerationinvitroas wellasinvivoviathegenerationofhydrogenperoxideandhydroxylradicalsinthepresence ofiron[9].Phyticacidisanaturalantioxidantthatcanbindironandreducesfreeiron availableforfreeradicalgeneration[36].Basedontheinteractionof6OHDAandiron,as wellasantioxidantandchelatingabilityofIP6,wedesignedourstudytodeterminetheeffect ofIP6on6OHDAandironinducedneurotoxicity.

Studieshavedemonstratedthat6OHDAmayinduceapoptosisviacaspase3dependent activation[12,20].Exposureof100mol/L6OHDAfor24hincreasedcaspase3activity by2.5foldandDNAfragmentationby93%inonecellculturestudy[23].Similarly,we showeda6foldincreaseofcaspase3activityand3foldincreaseofDNAfragmentation withthesamedosebutshorterexposure(6h)of6OHDA.Toxicityinducedby6OHDA wassimilarintheironexcesscondition,andcaspase3activitywasincreasedbyabout6fold andDNAfragmentationwasincreasedby42%.Theprotectiveeffectof6OHDAinduced apoptosisintheironexcessconditionwasalsotestedwithahigherconcentrationofIP6and noextraprotectionwasfoundforcaspase3activity.Wedidnotuseahigherconcentration ofIP6intheDNAfragmentationexperimentbecause30mol/LIP6completely counteractedtheincreaseofcaspase3activityinducedby6OHDA.Inaddition,thedoseof

30mol/Liswithinthephysiologicalrangesincewehaveshownthattherewasno cytotoxicityinducedbyIP6atunder600mol/Linourpreviousstudy(unpublished).Inour study,wealsoshowed6OHDAinducedapoptosischaracterizedbyphasebrightnuclear fragmentationbyHoechstnuclearstain.However,cellscotreatedwithIP6and6OHDA

63 showedaroundintactnucleusinadiffused,homogenousmanner.

Inadditiontoinducingapoptosisassociatedwithhydrogenperoxidederivedhydroxyl radicalsinthepresenceofiron,6OHDAmayalsoreleaseironfromferritinandpromote ferritindependentlipidperoxidation[28,29].Therefore,ironchelatorsmaybeparticularly effectiveinattenuating6OHDAinducedneurotoxicity.Indeed,theironchelators desferrioxamineandcatechin,themajorpolyphenolingreentea,wereusedtostudythe protectiveeffectagainst6OHDAinducedtoxicityinbothinvivoandinvitrostudies[3,29].

Intracerebroventricularinjectionof250mg6OHDAcausedan88%reductioninstriatal dopamineanda2.5foldincreaseindopaminerelease.However,priorinjectionoftheiron chelatordesferrioxamineresultedina60%protectionagainst6OHDAinducedstriatal dopaminecontentreductionandanormalizationofdopaminerelease[3].Inanothercell culturestudy,catechinattheconcentrationof3.4and34mol/Lsignificantlyprotected against6OHDA(200mol/L)inducedoxidativedamageandcelldeath[29].Ourresults suggestthatIP6mightoffersimilarprotectionagainst6OHDAinducedneurotoxicityas desferrioxamineandcatechin.However,desferrioxaminemaycausesomesideeffectsin patientssinceitmustbeadministeredatahighdosagetoovercomeitslowabilitytocross thebloodbrainbarrier[49].Phyticacidisanaturalironchelatorandisnontoxicoverthe longtermadministration[47].Furthermore,thedoseusedinourstudyisinwithinthe normalphysiologicalrange.

Inconclusion,IP6preventedagainst6OHDAinducedapoptosisinourcellculture modelinbothnormalandironexcessconditions.However,themetabolismofIP6inhumans iscontroversial.Phyticacidisdegradedbygutphytase,anenzymethatcatalyzesthe stepwisehydrolysisofphytateintheanimals[27].However,IP6maynotbehydrolyzedin

64 humanssincehumanslackphytaseinthegastrointestinaltract,andarecentstudyshoweda

28%absorptionofIP6inhumans[1].SincethedoseofIP6requiredtoreachthetargetsites inthebrainandenterthedopaminergicneuronsremainstobeestablished,futurestudyis warrantedtodeterminetheeffectofIP6inananimalmodelofPD.

References

1 Agte,V.,Jahagirdar,M.andChiplonkar,S.,Apparentabsorptionofeight micronutrientsandphyticacidfromvegetarianmealsinileostomizedhuman volunteers,Nutrition,21(2005)67885. 2 Alam,Z.I.,Jenner,A.,Daniel,S.E.,Lees,A.J.,Cairns,N.,Marsden,C.D.,Jenner,P. andHalliwell,B.,OxidativeDNAdamageintheparkinsonianbrain:anapparent selectiveincreasein8hydroxyguaninelevelsinsubstantianigra,JNeurochem,69 (1997)1196203. 3 BenShachar,D.,Eshel,G.,Finberg,J.P.andYoudim,M.B.,Theironchelator desferrioxamine(Desferal)retards6hydroxydopamineinduceddegenerationof nigrostriataldopamineneurons,JNeurochem,56(1991)14414. 4 Berg,D.,Becker,G.,Riederer,P.andRiess,O.,Ironinneurodegenerativedisorders, NeurotoxRes,4(2002)637653. 5 Berg,D.,Gerlach,M.,Youdim,M.B.,Double,K.L.,Zecca,L.,Riederer,P.and Becker,G.,BrainironpathwaysandtheirrelevancetoParkinson'sdisease,J Neurochem,79(2001)22536. 6 Betarbet,R.,Sherer,T.B.andGreenamyre,J.T.,AnimalmodelsofParkinson's disease,Bioessays,24(2002)30818. 7 Bharath,S.,Hsu,M.,Kaur,D.,Rajagopalan,S.andAndersen,J.K.,Glutathione,iron andParkinson'sdisease,BiochemPharmacol,64(2002)103748. 8 Bishop,G.M.,Robinson,S.R.,Liu,Q.,Perry,G.,Atwood,C.S.andSmith,M.A., Iron:apathologicalmediatorofAlzheimerdisease?,DevNeurosci,24(2002)1847. 9 Blum,D.,Torch,S.,Lambeng,N.,Nissou,M.,Benabid,A.L.,Sadoul,R.andVerna, J.M.,Molecularpathwaysinvolvedintheneurotoxicityof6OHDA,dopamineand MPTP:contributiontotheapoptotictheoryinParkinson'sdisease,ProgNeurobiol,65 (2001)13572. 10 Casetta,I.,Govoni,V.andGranieri,E.,Oxidativestress,antioxidantsand neurodegenerativediseases,CurrPharmDes,11(2005)203352. 11 Crichton,R.R.,Wilmet,S.,Legssyer,R.andWard,R.J.,Molecularandcellular mechanismsofironhomeostasisandtoxicityinmammaliancells,JInorgBiochem, 91(2002)918. 12 DelRio,M.J.andVelezPardo,C.,Monoamineneurotoxinsinducedapoptosisin lymphocytesbyacommonoxidativestressmechanism:involvementofhydrogen peroxide(H(2)O(2)),caspase3,andnuclearfactorkappaB(NFkappaB),p53,cJun transcriptionfactors,BiochemPharmacol,63(2002)67788.

65

13 DomingoJ.Pinero,J.R.C.,IronintheBrain:AnImportantContributorinNormal andDiseasedStates,TheNeuroscientist,6(2000)435453. 14 Double,K.L.,BenShachar,D.,Youdim,M.B.,Zecca,L.,Riederer,P.andGerlach, M.,Influenceofneuromelaninonoxidativepathwayswithinthehumansubstantia nigra,NeurotoxicolTeratol,24(2002)6218. 15 Double,K.L.,Gerlach,M.,Youdim,M.B.andRiederer,P.,Impairediron homeostasisinParkinson'sdisease,JNeuralTransmSuppl(2000)3758. 16 Faucheux,B.A.,Martin,M.E.,Beaumont,C.,Hauw,J.J.,Agid,Y.andHirsch,E.C., Neuromelaninassociatedredoxactiveironisincreasedinthesubstantianigraof patientswithParkinson'sdisease,JNeurochem,86(2003)11428. 17 Floor,E.andWetzel,M.G.,Increasedproteinoxidationinhumansubstantianigra parscompactaincomparisonwithbasalgangliaandprefrontalcortexmeasuredwith animproveddinitrophenylhydrazineassay,JNeurochem,70(1998)26875. 18 Fox,C.H.andEberl,M.,Phyticacid(IP6),novelbroadspectrumantineoplastic agent:asystematicreview,ComplementTherMed,10(2002)22934. 19 Gotz,M.E.,Freyberger,A.andRiederer,P.,Oxidativestress:aroleinthe pathogenesisofParkinson'sdisease,JNeuralTransmSuppl,29(1990)2419. 20 Hanrott,K.,Gudmunsen,L.,O'Neill,M.J.andWonnacott,S.,6hydroxydopamine inducedapoptosisismediatedviaextracellularautooxidationandcaspase3 dependentactivationofproteinkinaseCdelta,JBiolChem,281(2006)537382. 21 Hasegawa,T.,Matsuzaki,M.,Takeda,A.,Kikuchi,A.,Akita,H.,Perry,G.,Smith, M.A.andItoyama,Y.,Acceleratedalphasynucleinaggregationafterdifferentiation ofSHSY5Yneuroblastomacells,BrainRes,1013(2004)519. 22 Jenner,P.,OxidativestressinParkinson'sdisease,AnnNeurol,53Suppl3(2003) S2636;discussionS368. 23 Kanthasamy,A.G.,Anantharam,V.,Zhang,D.,Latchoumycandane,C.,Jin,H.,Kaul, S.andKanthasamy,A.,Anovelpeptideinhibitortargetedtocaspase3cleavagesite ofaproapoptotickinaseproteinkinaseCdelta(PKCdelta)protectsagainst dopaminergicneuronaldegenerationinParkinson'sdiseasemodels,FreeRadicBiol Med,41(2006)157889. 24 Kaul,S.,Kanthasamy,A.,Kitazawa,M.,Anantharam,V.andKanthasamy,A.G., Caspase3dependentproteolyticactivationofproteinkinaseCdeltamediatesand regulates1methyl4phenylpyridinium(MPP+)inducedapoptoticcelldeathin dopaminergiccells:relevancetooxidativestressindopaminergicdegeneration,EurJ Neurosci,18(2003)1387401. 25 Kaur,D.andAndersen,J.K.,IroningoutParkinson'sdisease:istherapeutictreatment withironchelatorsarealpossibility?,AgingCell,1(2002)1721. 26 Latchoumycandane,C.,Anantharam,V.,Kitazawa,M.,Yang,Y.,Kanthasamy,A. andKanthasamy,A.G.,ProteinkinaseCdeltaisakeydownstreammediatorof manganeseinducedapoptosisindopaminergicneuronalcells,JPharmacolExpTher, 313(2005)4655. 27 Lopez,H.W.,Vallery,F.,LevratVerny,M.A.,Coudray,C.,Demigne,C.and Remesy,C.,Dietaryphyticacidandenhancemucosalphytaseactivityin ratsmallintestine,JNutr,130(2000)20205.

66

28 Monteiro,H.P.andWinterbourn,C.C.,6Hydroxydopaminereleasesironfrom ferritinandpromotesferritindependentlipidperoxidation,BiochemPharmacol,38 (1989)417782. 29 NobreJunior,H.V.,Cunha,G.M.,Maia,F.D.,Oliveira,R.A.,Moraes,M.O.andRao, V.S.,Catechinattenuates6hydroxydopamine(6OHDA)inducedcelldeathin primaryculturesofmesencephaliccells,CompBiochemPhysiolCToxicol Pharmacol,136(2003)17580. 30 Obata,T.,Phyticacidsuppresses1methyl4phenylpyridiniumioninducedhydroxyl radicalgenerationinratstriatum,BrainRes,978(2003)2414. 31 Olanow,C.W.,OxidationreactionsinParkinson'sdisease,Neurology,40(1990) suppl327;discussion379. 32 Olanow,C.W.andTatton,W.G.,EtiologyandpathogenesisofParkinson'sdisease, AnnuRevNeurosci,22(1999)12344. 33 Pollitt,E.andLeibel,R.L.,Irondeficiencyandbehavior,JPediatr,88(1976)37281. 34 Prasad,K.N.,Cole,W.C.andKumar,B.,Multipleantioxidantsinthepreventionand treatmentofParkinson'sdisease,JAmCollNutr,18(1999)41323. 35 Ramsey,C.P.andGiasson,B.I.,RoleofmitochondrialdysfunctioninParkinson's disease:implicationsfortreatment,DrugsAging,24(2007)95105. 36 Rao,P.S.,Liu,X.K.,Das,D.K.,Weinstein,G.S.andTyras,D.H.,Protectionof ischemicheartfromreperfusioninjurybymyoinositolhexaphosphate,anatural antioxidant,AnnThoracSurg,52(1991)90812. 37 Reddy,M.B.andClark,L.,Iron,oxidativestress,anddiseaserisk,NutrRev,62 (2004)1204. 38 Reddy,M.B.,Hurrell,R.F.,Juillerat,M.A.andCook,J.D.,Theinfluenceofdifferent proteinsourcesonphytateinhibitionofnonhemeironabsorptioninhumans,AmJ ClinNutr,63(1996)2037. 39 Scheife,R.T.,Schumock,G.T.,Burstein,A.,Gottwald,M.D.andLuer,M.S.,Impact ofParkinson'sdiseaseanditspharmacologictreatmentonqualityoflifeand economicoutcomes,AmJHealthSystPharm,57(2000)95362. 40 Schmidt,N.andFerger,B.,NeurochemicalfindingsintheMPTPmodelof Parkinson'sdisease,JNeuralTransm,108(2001)126382. 41 Shamsuddin,A.M.andVucenik,I.,MammarytumorinhibitionbyIP6:areview, AnticancerRes,19(1999)36714. 42 Shamsuddin,A.M.,Vucenik,I.andCole,K.E.,IP6:anovelanticanceragent,Life Sci,61(1997)34354. 43 Sofic,E.,Lange,K.W.,Jellinger,K.andRiederer,P.,Reducedandoxidized glutathioneinthesubstantianigraofpatientswithParkinson'sdisease,NeurosciLett, 142(1992)12830. 44 Turnbull,S.,Tabner,B.J.,ElAgnaf,O.M.,Moore,S.,Davies,Y.andAllsop,D., alphaSynucleinimplicatedinParkinson'sdiseasecatalysestheformationof hydrogenperoxideinvitro,FreeRadicBiolMed,30(2001)116370. 45 Vucenik,I.andShamsuddin,A.M.,Cancerinhibitionbyinositolhexaphosphate(IP6) andinositol:fromlaboratorytoclinic,JNutr,133(2003)3778S3784S. 46 Vucenik,I.andShamsuddin,A.M.,ProtectionagainstcancerbydietaryIP6and inositol,NutrCancer,55(2006)10925.

67

47 Vucenik,I.,Tomazic,V.J.,Fabian,D.andShamsuddin,A.M.,Antitumoractivityof phyticacid(inositolhexaphosphate)inmurinetransplantedandmetastatic fibrosarcoma,apilotstudy,CancerLett,65(1992)913. 48 Yang,Y.,Kaul,S.,Zhang,D.,Anantharam,V.andKanthasamy,A.G.,Suppression ofcaspase3dependentproteolyticactivationofproteinkinaseCdeltabysmall interferingRNApreventsMPP+induceddopaminergicdegeneration,MolCell Neurosci,25(2004)40621. 49 Zhang,X.,Xie,W.,Qu,S.,Pan,T.,Wang,X.andLe,W.,Neuroprotectionbyiron chelatoragainstproteasomeinhibitorinducednigraldegeneration,BiochemBiophys ResCommun,333(2005)5449.

68

A B

* **

800 400 b

b # # 600 300 c 400 200 a a 200 a 100 Caspase-3 activity Caspase-3 DNA fragmentation DNA

0 0

A 6 A IP6 +IP + OHD OHD control 6- control 6-

-OHDA 6-OHDA 6

Figure 3.1 ProtectionofIP6against6OHDAinducedapoptosis.Cellapoptosiswas measuredascaspase3activity(FU/mgprotein,A;n=10)andDNAfragmentation(AU/mg protein,B;n=3).ANOVAwithTukey'sMultipleComparisontestwasusedtodetectthe differencesamongthetreatments.Meanswithletterswerecomparedwiththecontrol treatment.Symbolsrepresentthecomparisonbetweentreatments. cP<0.01; bP<0.001; *P<0.05;**P<0.001.

69

Control6OHDA6OHDA+IP6Magnification

20X

60X

Apoptosis Figure 3.2 ProtectionofIP6against6OHDAinducedapoptosismeasuredasapoptoticcell nucleistainedbyHoechstnuclearstaining.Stainednucleirepresentlivecells.

70

A B * * ** b 200 700 # d # 600 150 500 b a c a 400 100 300 200 a 50 Caspase-3 activity Caspase-3 100 fragmentation DNA 0 0 ) ) rol Fe 0 t (30 n 6 (10 ol Fe o A+ + c 6 ontr OHD e+IP c DA 6 Fe+IP H A+F -O A+ 6 OHD 6 OHD 6-OHDA+Fe+IP6 6

Figure 3.3 ProtectionofIP6against6OHDAinducedapoptosisintheironexcesscondition. Cellapoptosiswasmeasuredascaspase3activity(FU/mgprotein,A;n=45)andDNA fragmentation(AU/mgprotein,B;n=34).ANOVAwithTukey'sMultipleComparisontest wasusedtodetectthedifferencesamongthetreatments.Meanswithletterswerecompared withthecontroltreatment.Symbolsrepresentthecomparisonbetweentreatments. dP<0.05; cP<0.01; bP<0.001;*P<0.05;**P<0.01.

71

6OHDA+Fe6OHDA+Fe+IP6Magnification

20X

60X

Apoptosis Figure 3.4 Protectionof30mol/LIP6against6OHDAinducedapoptosisintheiron excessconditionmeasuredasapoptoticcellnucleistainedbyHoechstnuclearstaining. Stainednucleirepresentlivecells.

72

CHAPTER 4. GENERAL CONCLUSION

General discussion

Parkinson’sdisease(PD)istheprogressiveneurodegenerativedisorderandcharacterized bytheselectivedegenerationofdopaminergicneuronsinthesubstantianigra.Theroleof ironhasgainedattentioninPDsincedisruptedironmetabolismandexcessiron accumulationwerefoundinthebrainsofPDpatients(Bergetal.2002;Leeetal.2006).

ExcessnonproteinboundironcanbeinvolvedinhydroxylradicalformationthroughHaber

WeissandFentonreaction,andcauseoxidativedamagetomembranes,nucleotides,and proteins.Inaddition,ironmaybeinvolvedinthepathogenesisofPDbypromotingthe oxidationofdopaminetoproducehydroxylradicalsandincreaseoxidativestressinthe dopaminergicneurons(Kaur&Andersen2002).

1methyl4phenyl1,2,3,6tetrahydropyridine(MPTP)and6hydroxydopamine(6

OHDA)areclassicneurotoxinsusedtoinducePDinexperimentalmodels.Theactive metaboliteofMPTP,1methyl4phenylpyridinium(MPP +)and6OHDAaresuggestedto induceneurodegenerationbyinhibitingmitochondrialfunctionandgeneratingfreeradicals.

Inaddition,MPTPand6OHDAhavebeenshowntoreleaseferritinboundironbothinvitro andinvivoconditions(Grunblattetal.2000),whichcouldfurtherenhanceoxidativestress, aswellasincreasetheintracellular αsynucleinaggregationandtriggertheformationof lewybodiesinPD(Fig.4.1).

73

Figure 4.1 SchematicoverviewofprotectionofIP6againstMPP+and6OHDAinducedcell apoptosis. Ironchelatorshavebeensuggestedtobeeffectivetherapiesforpreventionortreatment ofPDbasedontheinvolvementofironandoxidativestressinthepathogenesisofPD.The ironchelatorsdesferrioxamineandclioquinolhavebeendemonstratedtopreventMPTP inducedneurodegenerationintheanimalmodelsofPD(Kauretal.2003;Lan&Jiang1997).

However,thecurrentlyusedironchelatorsmaycausesomesideeffectsinpatients.Thus,the nutrientswithnatural,nontoxic,antioxidantandironchelatingpropertymayserveasnovel therapeuticagentsinthetreatmentofPD.Useofphyticacid(IP6),anaturalfoodcomponent, topreventtheprogressionofthediseaseisappealingbecauseofitsantioxidantandiron chelatingproperty.Inourstudy,wefoundIP6protectedagainstMPP +and6OHDAinduced cytotoxicityandapoptosisbothinnormalandironexcessconditionsinthecellculture modelsofPD.SinceMPTPand6OHDAwerefoundtoincreasefreeironlevelsbothinvivo andinvitro,theproposedmechanismsofprotectionmaybe1)preventMPP +and6OHDA

74 inducedneurotoxicitybychelatingfreeironand2)protectagainstMPP +and6OHDA inducedcytotoxicityandapoptosisbyalteringcellsignaltransductionorkeyenzymesinthe antioxidantsystem(Fig.4.1).

Inconclusion,ourstudiesdemonstrateasignificantneuroprotectiveeffectofIP6against bothMPP +or6OHDAinducedcytotoxicityandapoptosisbothinnormalandironexcess conditions.Althoughfutureanimalandhumanstudiesareneededtoconfirmtheresults,our findingssuggestthatIP6mayofferapromisingsafertherapeuticapproach,maybealong withtraditionaldrugtherapy,toslowdowntheprogressionofPD.

References

Berg,D.,G.Becker,P.Riederer&O.Riess:Ironinneurodegenerativedisorders. Neurotox Res 2002,4,637653. Grunblatt,E.,S.Mandel&M.B.Youdim:NeuroprotectivestrategiesinParkinson'sdisease usingthemodelsof6hydroxydopamineandMPTP. Ann N Y Acad Sci 2000,899, 26273. Kaur,D.&J.K.Andersen:IroningoutParkinson'sdisease:istherapeutictreatmentwithiron chelatorsarealpossibility? Aging Cell 2002,1,1721. Kaur,D.,F.Yantiri,S.Rajagopalan,J.Kumar,J.Q.Mo,R.Boonplueang,V.Viswanath,R. Jacobs,L.Yang,M.F.Beal,D.DiMonte,I.Volitaskis,L.Ellerby,R.A.Cherny,A.I. Bush&J.K.Andersen:GeneticorpharmacologicalironchelationpreventsMPTP inducedneurotoxicityinvivo:anoveltherapyforParkinson'sdisease. Neuron 2003, 37 ,899909. Lan,J.&D.H.Jiang:DesferrioxamineandvitaminEprotectagainstironandMPTP inducedneurodegenerationinmice. J Neural Transm 1997,104,46981. Lee,D.W.,J.K.Andersen&D.Kaur:Irondysregulationandneurodegeneration:the molecularconnection. Mol Interv 2006,6,8997.

75

APPENDIX. PHYTIC ACID DOES NOT HAVE A NEUROPROTECTIVE

EFFECT IN AN ANIMAL MODEL OF PARKINSON'S DISEASE

Abstract

Disruptedironmetabolismleadingtoexcessiveironlevelscanpromoteoxidativestress andsubsequentlyinduceneurodegenerationinParkinson’sdisease(PD).Phyticacidisa uniquenaturalironchelatorwhichinhibitsironcatalyzedhydroxylradicalsformation.Inthe presentstudy,wedeterminedtheeffectofphyticacidon1methyl4phenyl1,2,3,6 tetrahydropyridine(MPTP)inducedPDinnormalorironoverloadedmice.MPTP significantlydecreasedstriataldopamineanditsmetabolites3,4dihydroxyphenylaceticacid

(DOPAC)andhomovanillicacid(HVA)levelsinbothnormalandironexcessconditions.

Althoughpretreatmentwithphyticacidsignificantlyinhibitedstriatalironaccumulationor wholebrainironcontent,itdidnotprotectagainstMPTPinducedneurodegenerationas expected.Ourresultssuggestthatphyticacidmaynotcrossthebloodbrainbarrieroritis hydrolyzedtolowerinositolphosphate,whichisalesseffectiveantioxidant,beforeentering thedopaminergicneuronstopreventagainstMPTPinducedneurodegeneration.

Introduction

Parkinson’sdisease(PD)isthesecondmostcommonneurodegenerativedisorderafter

Alzheimer’sdiseaseandischaracterizedbyaselectivedegenerationofdopaminergic neuronsinthesubstantianigra,resultinginirreversiblemotordysfunctionsuchasresting tremor,bradykinesia,andrigidity(1,2).PreventionofPDisachallengesincecurrent therapeuticstrategiesarelimitedtosymptomaticrelief.Alternatetherapeuticand

76 neuroprotectiveagentsthateffectivelypreventtheprogressionoftheneurodegenerative processarebadlyneeded.

Oxidativestressmayplayaprominentroleinneurologicaldegenerationassociatedwith

PDsinceitcandamagetoproteins,DNA,andlipidsandinduceapoptoticdeathin dopaminergicneurons(36).Reducedlevelsofglutathione,decreasedactivityofantioxidant enzymesincludingperoxidase,catalase,andglutathioneperoxidase,andincreasedlipid peroxidationandproteincarbonylsclearlysuggesttheinvolvementofoxidativestressinPD

(7,8).Freeradicalformationislinkedtotheexcessiveironaccumulationinthesubstantia nigrasinceasignificantincreaseinironwasfoundinthesubstantianigraofpostmortem brainsinPDpatients(9,10).Excessironcanreactwithhydrogenperoxidethroughthe

HaberWeissandFentonreactionstoproducehydroxylradicals,themostreactiveoxygen species(ROS)thatcandamagetissues(11).IronmetabolismisdisruptedinPD,suchthat ironinlewybodiesaccumulatesanddistributionofirontransportandstorageproteinsis altered.Increasedironlevelswithoutaconcomitantincreaseintheironstorageprotein ferritinallowforfreeironthatcanbeinvolvedinoxidativestress(9,12,13).

TheinvolvementsofoxidativestressandironinPDhaveencouragedtheuseof antioxidantsaswellasironchelatorsasnewtherapeuticstrategiesinthepreventionand treatmentofPD.Themostpotentironchelator,desferrioxamine(DFO),hasbeenfoundto reversethereductionofstriataldopamineinducedbyexcessironand1methyl4phenyl1,2,

3,6tetrahydropyridine(MPTP)(14).Ironchelationviaeithertransgenicexpressionofthe ironbindingproteinferritinororaladministrationofthemetalchelatorclioquinol(CQ) protectedagainstMPTPinducedneurodegeneration(15).

Phyticacid(IP6,myoinositolhexakisphosphate)ispresentinhighconcentrationin

77 cerealsandlegumesandhasantioxidantcapabilitybyinhibitingirondrivenhydroxyl radicalsanddecreasinglipidperoxidation(16).Thissuppressionofironcatalyzedoxidative reactionswassuggestedtohaveresultedfromtheabilityofIP6toformauniquechelatewith

Fe(III)occupyingallofthecoordinatingsites(17).Anumberofstudieshaveshownthe beneficialeffectofIP6oncancerandloweringbloodlipids(1822),buttheeffectofIP6on neurodegenerativediseasesisnotyetwelldefined.Toourknowledge,onestudyreported thatIP6couldsuppress1methyl4phenylpyridinium(MPP +)inducedhydroxylradical generationthroughdirectadministrationtotherat’sstriatum(23).Ourpreviousstudy

(unpublished)showedtheneuroprotectiveeffectofIP6againstMPP +and6 hydroxydopamine(6OHDA)inducedPDinacellculturemodel.However,theobjectiveof thisstudywastodeterminetheeffectofIP6onneurotoxinMPTPinducedneurodegeneration inamousemodel.

Materials and methods

Chemicals

Phyticacid,DFO,MPTP,sodiumethylenediaminetetraacetate(Na 2EDTA),bovine serumalbumin(BSA),irondextran,3(2pyridyl)5,6diphenyl1,2,4triazine4’,4’’ disulfonicacidsodiumsalt(Ferrozine),andsodiumtrichloroacetate(TCAsodiumsalt)were purchasedfromSigmaAldrich(St.Louis,MO).Perchloricacid,sodiummetabisulfite

(Na 2S2O5),andparaformaldehydewerepurchasedfromFisherScientific(Pittsburgh,PA).

ThemouseantityrosinehydroxylasewaspurchasedfromChemicon(Temecula,CA).The cy3conjugatedgoatantimouseantibodywasobtainedfromJacksonImmunoResearch

(WestGrove,PA).Standarddiet2018plus2.5%carbonylironwaspurchasedfromHarlan

78

Teklad(Indianapolis,IN).Allthesolutionswerepreparedimmediatelybeforeuse.

Animal treatment

MaleC57blackmice(~25g)werepurchasedfromHarlanTeklad(Indianapolis,IN).

Themicewerehousedindividuallyinatemperature/humiditycontrolledroomwitha12h light/darkcycle.Foodandwaterwereprovidedadlibitum.Themiceweresacrificedby decapitationaftereachtreatment.AlltheprocedureswereapprovedbytheInstitutional

AnimalCareandUseCommitteeatIowaStateUniversity.

Experiment1.OraladministrationofIP6

Themiceweredividedintofourgroups:control(n=2),IP6(n=3),MPTP(n=5),and

MPTP+IP6(n=7).ThemiceintheIP6andMPTP+IP6groupweregivenIP6(800mg/Kg, twiceaday)byoralgavagefor35days.Startingfromday31,themiceinthelasttwogroups weregivenMPTPbyintraperitonealinjection(i.p,30mg/Kg)for5daysandtheremaining miceweregivenequalvolumeofsaline.

Experiment2.IPadministrationofIP6

Themiceweredividedintofourgroups:control(n=8),MPTP(n=9),MPTP+IP6(n=9) andMPTP+DFO(n=9).ThemiceinthelasttwogroupsweregivenIP6(i.p,40mg/Kg)or

DFO(i.p,125mg/Kg),respectively,for10days.Startingfromday8,allmiceexceptinthe controlgroupweregivenMPTP(i.p,20mg/Kg)for3days.

Experiment3.ProtectionofIP6withirondextraninducedironoverloading

Miceweredividedintothreegroups:control(n=2),MPTP(n=2)andMPTP+IP6(n=2).

Theironexcessconditionwasinducedinallmicebyonedoseofirondextran(i.p,25 mg/Kg).Afteroneweek,themiceintheMPTP+IP6groupweregivenIP6(i.p,40mg/Kg) for10days.Startingfromday8,themiceintheMPTPandMPTP+IP6groupsweregiven

79

MPTP(i.p,25mg/Kg)for3daystoinduceneurodegeneration.

Experiment4.ProtectionofIP6withdietaryironoverloading

Miceweredividedintosixgroups:control(n=9),MPTP(n=9),iron(n=8),iron+MPTP

(n=8),iron+MPTP+IP6(n=9),andiron+MPTP+DFO(n=7).Allmiceexceptcontroland

MPTPgroupswerefedwith2.5%carbonylirondietfor30days.Startingfromday21,other miceinthelasttwogroupsweretreatedwithIP6(i.p,40mg/Kg)orDFObyintramuscular injection(i.m,250mg/Kg)foranother10dayswhilecontinuingwithahighirondiet.Onthe

30thday,themiceintheMPTP,iron+MPTP,iron+MPTP+IP6,andiron+MPTP+DFO groupsweregivenonedoseofMPTP(i.p,30mg/Kg).Remaininganimalswereinjectedwith anequalvolumeofsaline.

Experiment5.ProtectionofIP6withhigherdoseMPTPindietaryironoverloadingcondition

Werepeatedtheexperiment4toseetheeffectoflongeradministrationofMPTPby givingthemicethreedosesofMPTP.Allthemicewerefedanironrichdietforoneweek.

Theanimalsweredividedintothreegroups:control(n=8),MPTP(n=7),andMPTP+IP6

(n=8).Fromthesecondweek,thehighirondietwaschangedtonormaldietandthe

MPTP+IP6groupwasgivenIP6(i.p,60mg/Kg)foranother7days.Fromday12,themice inthelasttwogroupswereinjectedwithMPTP(i.p,25mg/Kg)forthreedays.Remaining animalswereinjectedwithanequalvolumeofsaline.Neurochemicalanalysis,tyrosine hydroxylaseimmunohistochemistryanalysis,wholebrainnonhemeiron,andstriataliron measurementswereperformedinthisexperimentandtheproceduresaredescribedbelow.

Neurochemical analysis

Neurochemicalanalysiswasperformedinalltheexperiments.Thestriatumwas dissectedonanicecoldglassplatformimmediatelyafterthebrainwasremoved.Thetissues

80 wereweighedandstoredat−80 oCuntilanalyzed.Onthedaytheywereanalyzed,thestriatal tissuesweresonicatedinPBSbuffercontaining0.2mol/lperchloricacid,0.5mg/ml

Na 2EDTA,and1g/mlNa 2S2O5andcentrifugedat13200xgfor25min.Thesupernatants wereanalyzedfordopamine(DA)anditsmetabolitesDOPACandHVAbyreversephase highperformanceliquidchromatography(HPLC)coupledwithelectrochemicaldetection

(EC)asdescribedearlier(24).TheHPLCsystemincludedapressuremodule,asolvent deliverysystem(RaininInstrumentCo.Inc.,Woburn,MA),andanautomaticAS48sampler

(BioRadLaboratories,Hercules,CA).Reversedphasecolumn(AC18,RaininInstrument

Co.Inc.)wasusedtoseparateneurotransmittersisocraticallywiththemobilephase(PH3.1,

0.15mol/Lmonochloroaceticacid,0.13mmol/Lsodiumoctylsulfonate,0.67mmol/L sodiumEDTA,0.12mol/lsodiumhydroxide,and1.5%acetonitirle)ataflowrateof

1ml/min.TheDA,DOPACandHVAlevelswerenormalizedbythewettissueweight.

Tyrosine hydroxylase (TH) immunohistochemistry analysis

TheimmunostainingoftheTHmarkerofdopaminergicneuronswasperformedas describedinapreviouspublication(24).Thebrainswerefixedin4%paraformaldehyde solutionfor24handthenplacedina30%sucrosesolutionovernight.Coronalsections(25

m)werecutthroughtheentiresubstantianigrausingacryostatandwerefloatedin0.1 mmol/lPBS.SectionswerepermeabilizedinPBScontaining0.2%TritonX100,followed byblockingwithPBScontaining0.2%TritonX100and1%BSAfor1h.Thesectionswere incubatedwithaprimaryantibody,mouseantityrosinehydroxylase(1:500),at4 oCovernight, followedbyincubationwithasecondantibody,cy3conjugatedgoatantimouse(1:500),for

90minandmounted.Forquantitativeevaluation,twotothreesectionswereselectedand

THpositivecellsintheparscompactaofthesubstantianigrawerecountedtoreflectthetotal

81

THpositiveneuronsinthemidbrain.Quantificationwasperformedwithsectionsatthe caudorostallevelofthethirdcranialnerveasdescribedpreviously(25).Theslideswere visualizedunderfluorescentmicroscope(Nikon,Tokyo,Japan).Theimageswere thresholdedandtheneuronalcountsweremeasuredusingtheintegratedmorphometry analysissoftware(MolecularDevices,Downingtown,PA).

Brain iron measurement

Wholebrainnonhemeironcontent(n=4)wasdeterminedbythemodifiedTCAprotein precipitationmethodusingferrozineasachromogen(26,27).Braintissueswere homogenizedandthehomogenateswereincubatedwith20%TCA/6NHCL(hydrochloric acid)at65 oCfor20h.Aftercentrifugationfor15min,thesupernatantswereusedto measurenonhemeironcontentwithamicroplatereaderatanabsorbanceof563nm.

Totalstriatalironcontent(n=46)wasdeterminedbyinductivelycoupledplasmamass spectroscopy(ICP/MS)bytheIowaStateUniversitySoilandPlantAnalysisLaboratory.The sampleswerewetashedwithnitricacidinamicrowavepriortoanalysis.

Statistics

DatawereanalyzedwithPrism4.0software(GraphSoftware,SanDiego,CA).All measurementswerenormalizedwiththerespectivecontrolsineachexperiment.The differencesamongthetreatmentswerecomparedwithANOVAwithTukey'sMultiple

ComparisontestandconsideredsignificantatP<0.05.

Results

Neurochemical analysis

TheeffectoforallyadministeredIP6againstMPTPinducedneurodegenerationin

82 experiment1wasdeterminedbymeasuringstriatalDA(Fig.1A)anditsmetabolitesDOPAC

(Fig.1B)andHVA(Fig.1C).MPTPsignificantlydecreasedDA(P<0.001)andits metabolitesDOPAC(P<0.05)andHVA,butpretreatmentwithIP6hadnoprotectionon

MPTPinduceddecreaseofneurotransmitters.

ProtectionwithIP6orDFOadministeredbyIPinjectionagainstMPTPinduceddecrease ofneurotransmittersinexperiment2wasshowninFig.2.MPTPtreatmentcauseda significantreductioninstriatalDA(P<0.001)andHVAlevels(P<0.01)butnotDOPAC levels.Again,pretreatmentwithIP6orDFOdidnotshowasignificantprotectionagainst

MPTPinduceddecreaseofneurotransmitterlevels.

TheprotectiveeffectofIP6againstMPTPinducedneurodegenerationintheironexcess conditioninducedbyirondextran(experiment3)wasshowninFig.3.PretreatmentwithIP6 significantlyreversedthedecreaseofstriatalHVA(P<0.05)buthadnoeffectontheDAand

DOPACdecreaseinducedbyMPTPintheironexcesscondition.

SinceonedoseofMPTPdidnotinduceneurotoxicity(datawasnotshown),werepeated theexperimentbygivingthreedosesofMPTPandfeedingtheironrichdietforashorter timeinexperiment5(Fig.4).MPTPtreatmentsignificantlyreducedstriatalDA(P<0.001) anditsmetabolitesDOPAC(P<0.001)andHVA(P<0.05),butnoprotectionwasshownwith

IP6.

Tyrosine hydroxylase positive neuron analysis

TheeffectofIP6againstMPTPinducedneurodegenerationinexperiment5was determinedbyevaluatingTHpositiveneurons(Fig.5).Similartotheneurotransmitter analysis,MPTPtreatmentsignificantly(P<0.001)decreasedTHimmunostainedneuronsin theironexcessconditionandIP6pretreatmentdidnotshowsignificantprotection.

83

Brain iron analysis

Wholebrainnonhemeironconcentration(Fig.6)didnotsignificantlyincreaseinMPTP treatmentintheironexcesscondition(experiment5).However,a17%reductionwas observedwithIP6pretreatmentcomparedtoMPTPtreatedmice.

Totalstriatalironcontent(Fig.7),wassignificantly(P<0.05)increasedby31%in iron+MPTPtreatedmicecomparedwithironalonetreatedmiceinexperiment5.However, pretreatmentwithIP6resultedina36%reduction.

Discussion

PDisaprogressiveneurodegenerativedisordercharacterizedbyselectivelossof dopaminergicneurons.Todate,traditionaltherapyhasfocusedonlyonsymptomaticrelief andthereisnocureforPD.Althoughseveralneurotoxinssuchas6OHDA,rotenone, lactacystin,andMPTPareusedtoinducePDinanimalmodels(13,28),MPTPiscommonly usedfortestingneuroprotectivestrategiesofPDsinceitinducesParkinsonismthatis identicaltothatseeninPD(2830).MPTPisconvertedtoitsactivemetaboliteMPP +,in dopaminergicneuronsandimpairsmitochondrialrespirationanddepletesneurotransmitters

(6,15,31).

BasedontheinvolvementofoxidativestressandironinthepathogenesisofPD,useof anantioxidantaswellasanironchelatormaybeareasonableapproachforslowingthe progressionofPD.Desferrioxamine,apowerfulironchelator,wasshowntosignificantly inhibitreactivehydroxylradicalsandlipidperoxidationinducedbyexcessironandMPTP, resultinginasignificantreversionofthereductionofstriataldopaminelevels(14).Greentea anditsmajorpolyphenol(±)epigallocatechin3gallate(EGCG)protectedagainstMPTP

84 inducedneurodegenerationinanimalstudies,possiblyduetotheirpotentironchelatingand antioxidantproperties(32,33).Phyticacidisalsoconsideredasanantioxidantandhasiron chelatingpropertiesandcancompletelypreventironcatalyzedhydroxylradicalsformation

(34).ApreviouslypublishedstudyshowedtheprotectiveeffectofIP6againstMPP +andiron inducedhydroxylradicals(23).AlimitationofthisstudyisthatIP6wasdirectlyinfusedto therat’sstriatumandotherroutesofadministrationwerenottested.Inourpreviousstudy, wefoundIP6preventedneurotoxinsMPP +and6OHDAinducedapoptosisinacellculture model.Inthecurrentstudy,wetestedtheeffectoforalorIPadministeredIP6onMPTP inducedneurodegenerationinnormalandexcessironconditionsinamousemodelofPD.

Inourfirstexperimentaltrial,oralgavageofIP6hadnoeffectonMPTPinduced neurodegeneration,possiblyduetothedegradationofIP6byphytaseinthemousegut.Since endogenousphytaseactivityisgreaterinrodentsthanhumans,IP6wasintraperitoneally injectedtoavoidthegastrointestinalphytasedegradationinthesecondexperiment.Theiron chelatorDFOwasalsousedasapositivecontrolinthestudy.However,neitherIP6norDFO protectedagainstMPTPinducedneurodegeneration.Ourresultscontradicttheprevious studiesshowingthatIP6suppressedMPP +andironinducedhydroxylradicalsandDFO protectedagainstMPTPinducedneurodegenerationinironoverloadedmice(14,23).Both previousstudieswereperformedinanironoverloadedconditionandourstudywas performedinanormalironcondition.Becausewespeculatedthatdifferentialironstatus accountedforthedifferentresults,weperformedthesubsequentstudiesinaniron overloadedcondition.

WhenthemiceweregivenonedoseofirondextranfollowedbyIP6treatment,no protectionwasfoundwithIP6.Althoughirondextrancausesironoverloadinvarioustissues

85

(3537),dataonbrainironcontentarelimited.Thelackofincreasedironinthebrainafter irondextranadministrationsuggeststhatitmaynotcrossthebloodbrainbarrier(38).Thus, wealsotriedinducingironoverloadbydietaryironinthefollowingexperiments.This experimentwasbasedonthepreviousstudydemonstratingthattreatmentwithDFO significantlyprotectedagainstiron+MPTPinducedneurodegeneration.Inthepublished paper,onedoseofMPTPsignificantlyreducedDAandDOPAClevels.However,wefound thesameonedoseofMPTPdidnotdecreasedopamineoritsmetabolitesinourstudy,and wedonotknowwhy.WerepeatedtheexperimentbyincreasingthedosesofMPTPand feedingthemiceforashortertimewiththeironrichdiet.IP6decreasedthestriatalironor wholebrainironsignificantlyiniron+MPTPtreatedmice,suggestingIP6makesironless availabletocrossthebloodbrainbarrier.Surprisingly,insteadofprotection,IP6further decreasedstriatalDAandHVAlevelsanddidnotshowprotectionagainstlossofTH positiveneuronsinducedbyMPTP.

SincetheabilityofIP6toenterthebrainisnotclear,thelackofprotectionfoundinour studymaybeduetoitslowabilitytocrossthebloodbrainbarrier.ItisalsopossiblethatIP6 ishydrolyzedtothelowerinositolbeforeenteringthedopaminergicneurons, resultingindecreasedironchelatingability(39).ApreviousstudyfoundprotectionofIP6 againstMPP +andironinducedhydroxylradicals,butIP6wasdirectlyinfusedintotherat’s striatumthroughamicrodialysisprobetoavoidhydrolysisofIP6andallowentryacrossthe bloodbrainbarrier(23).Therefore,IP6maybeneuroprotectiveifitisadministereddirectly intothebrainbutnotfollowingotherroutesofadministration.

Insummary,IP6didnotshowprotectionagainstMPTPinducedneurodegenerationin eithernormalorironexcessconditions,althoughIP6couldsignificantlydecreasetheiron

86 contentbothinthewholebrainandstriatum.BasedontheneuroprotectiveeffectofIP6in thecellculturemodelandthepreviousstudywithdirectadministrationintothebrain,IP6 maynotcrossthebloodbrainbarrierandmayhydrolyzetolowerinositolphosphatesbefore enteringthetargetsitetopreventMPTPinducedneurodegeneration.

References

1.Scheife,R.T.,Schumock,G.T.,Burstein,A.,Gottwald,M.D.&Luer,M.S.(2000) ImpactofParkinson'sdiseaseanditspharmacologictreatmentonqualityoflifeand economicoutcomes.AmJHealthSystPharm57:953962. 2.Singh,N.,Pillay,V.&Choonara,Y.E.(2007)AdvancesinthetreatmentofParkinson's disease.ProgNeurobiol. 3.Jenner,P.&Olanow,C.W.(1996)OxidativestressandthepathogenesisofParkinson's disease.Neurology47:S161170. 4.Fahn,S.(1996)Islevodopatoxic?Neurology47:S184195. 5.Burke,R.E.&Kholodilov,N.G.(1998)Programmedcelldeath:doesitplayarolein Parkinson'sdisease?AnnNeurol44:S126133. 6.Kaul,S.,Kanthasamy,A.,Kitazawa,M.,Anantharam,V.&Kanthasamy,A.G.(2003) Caspase3dependentproteolyticactivationofproteinkinaseCdeltamediatesand regulates1methyl4phenylpyridinium(MPP +)inducedapoptoticcelldeathin dopaminergiccells:relevancetooxidativestressindopaminergicdegeneration.EurJ Neurosci18:13871401. 7.Gotz,M.E.,Freyberger,A.&Riederer,P.(1990)Oxidativestress:aroleinthe pathogenesisofParkinson'sdisease.JNeuralTransmSuppl29:241249. 8.Olanow,C.W.(1990)OxidationreactionsinParkinson'sdisease.Neurology40:suppl32 37;discussion3739. 9.Berg,D.,Gerlach,M.,Youdim,M.B.,Double,K.L.,Zecca,L.,Riederer,P.&Becker,G. (2001)BrainironpathwaysandtheirrelevancetoParkinson'sdisease.JNeurochem79: 225236. 10.Berg,D.,Becker,G.,Riederer,P.&Riess,O.(2002)Ironinneurodegenerativedisorders. NeurotoxRes4:637653. 11.Braughler,J.M.,Duncan,L.A.&Chase,R.L.(1986)Theinvolvementofironinlipid peroxidation.Importanceofferrictoferrousratiosininitiation.JBiolChem261:10282 10289. 12.Bishop,G.M.,Robinson,S.R.,Liu,Q.,Perry,G.,Atwood,C.S.&Smith,M.A.(2002) Iron:apathologicalmediatorofAlzheimerdisease?DevNeurosci24:184187. 13.Zhang,X.,Xie,W.,Qu,S.,Pan,T.,Wang,X.&Le,W.(2005)Neuroprotectionbyiron chelatoragainstproteasomeinhibitorinducednigraldegeneration.BiochemBiophysRes Commun333:544549. 14.Lan,J.&Jiang,D.H.(1997)DesferrioxamineandvitaminEprotectagainstironand MPTPinducedneurodegenerationinmice.JNeuralTransm104:469481.

87

15.Kaur,D.,Yantiri,F.,Rajagopalan,S.,Kumar,J.,Mo,J.Q.,Boonplueang,R.,Viswanath, V.,Jacobs,R.,Yang,L.,Beal,M.F.,DiMonte,D.,Volitaskis,I.,Ellerby,L.,Cherny,R. A.,Bush,A.I.&Andersen,J.K.(2003)Geneticorpharmacologicalironchelation preventsMPTPinducedneurotoxicityinvivo:anoveltherapyforParkinson'sdisease. Neuron37:899909. 16.Graf,E.,Empson,K.L.&Eaton,J.W.(1987)Phyticacid.Anaturalantioxidant.JBiol Chem262:1164711650. 17.Graf,E.,Mahoney,J.R.,Bryant,R.G.&Eaton,J.W.(1984)Ironcatalyzedhydroxyl radicalformation.Stringentrequirementforfreeironcoordinationsite.JBiolChem259: 36203624. 18.Deliliers,G.L.,Servida,F.,Fracchiolla,N.S.,Ricci,C.,Borsotti,C.,Colombo,G.& Soligo,D.(2002)Effectofinositolhexaphosphate(IP(6))onhumannormaland leukaemichaematopoieticcells.BrJHaematol117:577587. 19.Vucenik,I.,Tomazic,V.J.,Fabian,D.&Shamsuddin,A.M.(1992)Antitumoractivity ofphyticacid(inositolhexaphosphate)inmurinetransplantedandmetastatic fibrosarcoma,apilotstudy.CancerLett65:913. 20.Onomi,S.,Okazaki,Y.&Katayama,T.(2004)Effectofdietarylevelofphyticacidon hepaticandserumlipidstatusinratsfedahighsucrosediet.BiosciBiotechnolBiochem 68:13791381. 21.Vucenik,I.,Sakamoto,K.,Bansal,M.&Shamsuddin,A.M.(1993)Inhibitionofrat mammarycarcinogenesisbyinositolhexaphosphate(phyticacid).Apilotstudy.Cancer Lett75:95102. 22.Jariwalla,R.J.(1999)Inositolhexaphosphate(IP6)asanantineoplasticandlipid loweringagent.AnticancerRes19:36993702. 23.Obata,T.(2003)Phyticacidsuppresses1methyl4phenylpyridiniumioninduced hydroxylradicalgenerationinratstriatum.BrainRes978:241244. 24.Sun,F.,Anantharam,V.,Zhang,D.,Latchoumycandane,C.,Kanthasamy,A.& Kanthasamy,A.G.(2006)ProteasomeinhibitorMG132inducesdopaminergic degenerationincellcultureandanimalmodels.Neurotoxicology27:807815. 25.Kanthasamy,A.G.,Kanthasamy,A.,Matsumoto,R.R.,Vu,T.Q.&Truong,D.D. (1997)NeuroprotectiveeffectsofthestrychnineinsensitiveglycinesiteNMDA antagonist(R)HA966inanexperimentalmodelofParkinson'sdisease.BrainRes759: 18. 26.Proulx,A.K.&Reddy,M.B.(2007)FermentationandLacticAcidAdditionEnhance IronBioavailabilityof.JAgricFoodChem. 27.Torrance,J.D.&Bothwell,T.H.(1968)Asimpletechniqueformeasuringstorageiron concentrationsinformalinisedliversamples.SAfrJMedSci33:911. 28.Beal,M.F.(2001)ExperimentalmodelsofParkinson'sdisease.NatRevNeurosci2: 325334. 29.Schober,A.(2004)ClassictoxininducedanimalmodelsofParkinson'sdisease:6 OHDAandMPTP.CellTissueRes318:215224. 30.Bove,J.,Prou,D.,Perier,C.&Przedborski,S.(2005)Toxininducedmodelsof Parkinson'sdisease.NeuroRx2:484494. 31.Kalivendi,S.V.,Kotamraju,S.,Cunningham,S.,Shang,T.,Hillard,C.J.& Kalyanaraman,B.(2003)1Methyl4phenylpyridinium(MPP +)inducedapoptosisand

88

mitochondrialoxidantgeneration:roleoftransferrinreceptordependentironand hydrogenperoxide.BiochemJ371:151164. 32.Levites,Y.,Weinreb,O.,Maor,G.,Youdim,M.B.&Mandel,S.(2001)Greentea polyphenol()epigallocatechin3gallatepreventsNmethyl4phenyl1,2,3,6 tetrahydropyridineinduceddopaminergicneurodegeneration.JNeurochem78:1073 1082. 33.Choi,J.Y.,Park,C.S.,Kim,D.J.,Cho,M.H.,Jin,B.K.,Pie,J.E.&Chung,W.G. (2002)Preventionofnitricoxidemediated1methyl4phenyl1,2,3,6 tetrahydropyridineinducedParkinson'sdiseaseinmicebyteaphenolicepigallocatechin 3gallate.Neurotoxicology23:367374. 34.Vucenik,I.&Shamsuddin,A.M.(2006)ProtectionagainstcancerbydietaryIP6and inositol.NutrCancer55:109125. 35.Brown,K.E.,Mathahs,M.M.,Broadhurst,K.A.&Weydert,J.(2006)Chroniciron overloadstimulateshepatocyteproliferationandcyclinD1expressioninrodentliver. TranslRes148:5562. 36.Bonkowsky,H.L.,Healey,J.F.,Sinclair,P.R.,Sinclair,J.F.&Pomeroy,J.S.(1981) Ironandtheliver.Acuteandlongtermeffectsofironloadingonhepatichaem metabolism.BiochemJ196:5764. 37.Wood,J.C.,OttoDuessel,M.,Gonzalez,I.,Aguilar,M.I.,Shimada,H.,Nick,H., Nelson,M.&Moats,R.(2006)Deferasiroxanddeferiproneremovecardiacironinthe ironoverloadedgerbil.TranslRes148:272280. 38.Legssyer,R.,Geisser,P.,McArdle,H.,Crichton,R.R.&Ward,R.J.(2003)Comparison ofinjectableironcomplexesintheirabilitytoironloadtissuesandtoinduceoxidative stress.Biometals16:425433. 39.Miyamoto,S.,Kuwata,G.,Imai,M.,Nagao,A.&Terao,J.(2000)Protectiveeffectof phyticacidhydrolysisproductsonironinducedlipidperoxidationofliposomal membranes.Lipids35:14111413

89

A B a 100 175 a a 150 75 125 # a 100 # 50

DA 75 DOPAC 50 25 b b 25 b b 0 0

ol 6 IP6 IP6 IP6 TP PTP +IP M MP control contr TP MPTP+ MP C a 150

120 a # 90 HVA 60 a a 30

0 6 IP P6 MPTP P+I control T MP Figure 1 EffectoforaladministrationofIP6onMPTPinduceddecreaseofDA(A)andits metabolitesDOPAC(B)andHVA(C). #Thevalues(Mean+SEM)representpercentageof therespectivecontrols(notreatment).ANOVAwithTukey'sMultipleComparisontestwas usedtodetectthedifferencesamongthetreatments.Thebarssharingthesamesuperscript arenotsignificantly(P<0.05)different.n=27.

90

A B a a 100 a a a 100 b 75 b b 80 #

# 60 50 DA

DOPAC 40 25 20

0 0 l 6 l g o P k P6 tr /kg / I n +I DFO mg + mg co /kg /kg+ g contro 20 /kg+DFO P mg g T 0 MPTP20 P20m 20mg/kg MP T P TP2 P MP PT M M MPTP20m C a 100 a a 75

# b 50 HVA

25

0

O F +IP6 ntrol g +D co g P20mg/kg T MP PTP20mg/k M MPTP20mg/k Figure 2 EffectofIPadministeredIP6onMPTPinduceddecreaseofDA(A)andits metabolitesDOPAC(B)andHVA(C). #Thevalues(Mean+SEM)representpercentageof therespectivecontrols(notreatment).ANOVAwithTukey'sMultipleComparisontestwas usedtodetectthedifferencesamongthetreatments.Thebarssharingthesamesuperscript arenotsignificantly(P<0.05)different.n=89.

91

A B a a 100 100

75 b 75 b #

# c 50 50 c DA DOPAC 25 25

0 0 Fe P6 PTP I Fe IP6 M PTP + TP+ M P P T Fe+ M + Fe+ e F Fe+MP C a 100

75

# c 50 HVA

25 b

0 e F IP6 MPTP P+ + T e F e+MP F Figure 3 EffectofIP6onMPTPinduceddecreaseofDA(A),DOPAC(B),andHVA(C) withirondextraninducedironoverloading. #Thevalues(Mean+SEM)representpercentage oftherespectivecontrols(ironalonetreatment).ANOVAwithTukey'sMultipleComparison testwasusedtodetectthedifferencesamongthetreatments.Thebarssharingthesame superscriptarenotsignificantly(P<0.05)different.n=2.

92

A B a 120 100 a 100 b 75 # 80 b b # c 60 50 DA DOPAC 40

25 20

0 0 6 Fe +IP Fe TP P6 P +I MP P T Fe+MPTP e+ F MP Fe+MPT e+ F

C a 100 b 75 # 50 HVA c 25

0

P Fe T P P+IP6 +M T e F P +M e F

Figure 4 EffectofIP6withahigherdoseofMPTPinduceddecreaseofDA(A),DOPAC (B),andHVA(C)withdietaryironoverloading. #Thevalues(Mean+SEM)represent percentageoftherespectivecontrols(ironalonetreatment).ANOVAwithTukey'sMultiple Comparisontestwasusedtodetectthedifferencesamongthetreatments.Thebarssharing thesamesuperscriptarenotsignificantly(P<0.05)different.n=78.

93

A

FealoneFe+MPTPFe+MPTP+IP6Magnification

10X

2X

B a 100 # + 75 b b 50

25 number of TH per section neurons

0 6 Fe TP IP MP TP+ e+ F MP e+ F Figure 5 EffectofIP6onMPTPinducedlossofdopaminergicneurons. #Thevalues(Mean+ SEM)representpercentageoftherespectivecontrols(ironalonetreatment).ANOVAwith Tukey'sMultipleComparisontestwasusedtodetectthedifferencesamongthetreatments. Thebarssharingthesamesuperscriptarenotsignificantly(P<0.05)different.n=4.

94

a 120 a # 100 b

80

60

40 nonhemeiron

in the whole brain in whole the 20

0

P 6 Fe T P+IP PT Fe+MP M + Fe Figure 6 Wholebrainnonhemeironconcentration. #Thevalues(Mean+SEM)represent percentageoftherespectivecontrols(ironalonetreatment).ANOVAwithTukey'sMultiple Comparisontestwasusedtodetectthedifferencesamongthetreatments.Thebarssharing thesamesuperscriptarenotsignificantly(P<0.05)different.n=4.

95

200 b a

# 150 a 100

striatum iron 50

0 6 Fe IP

Fe+MPTP Fe+MPTP+ Figure 7 Thestriatalironcontent.# Thevalues(Mean+SEM)representpercentageofthe respectivecontrols(ironalonetreatment).ANOVAwithTukey'sMultipleComparisontest wasusedtodetectthedifferencesamongthetreatments.Thebarssharingthesame superscriptarenotsignificantly(P<0.05)different.n=46.

96

ACKNOWLEDGEMENTS

Iwouldliketotakethisopportunitytoexpressmysincerethankstomymajorprofessors,

Dr.ManjuB.ReddyandDr.AnumanthaG.Kanthasamyfortheireducation,supportand patiencethroughoutmyMaster’sdegreestudyandthewritingofthisthesis.Theytaughtme alotonhowtoconductresearch,writepapersandpresentacademicposters.Theresearch projectsIcompletedwereattributedtotheirinsightsandinnovativeideas.Iwouldlikealso thankDr.ChadH.Stahlforbeingmycommitteemember,forhisinput,supportandvaluable suggestionstoimprovemyresearchwork.ThankyoutoDr.VellareddyAnantharamandDr.

ArthiKanthasamy,fortheirthoughtfulandprofessionalopinionsformyresearch.Alsothank youtoDanhuiZhangandAmyProulx,formanypatienthoursofteachingmelaboratory techniques.

Ialsowanttothankmycolleagues,DanhuiZhang,FanengSun,HuajunJin,Chunjuan

Song,HariharanSaminathan,RichardGordon,JennyLin,QinglinLi,YingZhou,

ArunkumarAsaithambi,HilaryAfesehNgwa,DustinMartin,AmyProulx,RebeccaLukacto makemystudyhereamemorableone.

Ialsowanttothankmyhusband,ZhenhuiShenforhissupportandencouragement.Last, butnotleast,IwouldliketothankmyparentsSongbinXuandYezhenJingfortheirgreat loveandconfidenceinme.

IfeelthatIwasprovidedwithanexceptionalopportunitytolearnalotofnewthings duringmystudy,Iwouldliketoexpressmygratitudetoallthosewhohelpedmealongthe way.