Cycloaldolase (NAD-Dependent) from Acer Pseudoplatanus L. Cell Cultures

Total Page:16

File Type:pdf, Size:1020Kb

Cycloaldolase (NAD-Dependent) from Acer Pseudoplatanus L. Cell Cultures Plant Physiol. (1971) 48, 255-260 The Isolation and Characterization of D-Glucose 6-Phosphate Cycloaldolase (NAD-Dependent) from Acer pseudoplatanus L. Cell Cultures ITS OCCURRENCE IN PLANTS' Received for publication March 4, 1971 M ARY W. LOEWUS AND F. LOEWUS Department of Biology, State University of New York at Buffalo, Buffalo, New York 14214 ABSTRACT labile than the phosphatase, thus permitting the latter to be studied independently of the former (13). Chen and Charalam- A soluble enzyme system from suspension cultures of Acer pous (7) have achieved separation of these activities on pseudoplatanus L. converts D-glucose 6-phosphate to myoinosi- DEAE'-cellulose using the yeast system. Partial purification of tol. A Mg'-dependent phosphatase, present in the crude ex- the cyclizing enzyme and related studies on cell-free systems tract, hydrolyzes the product of the cyclization, myoinositol from rat testis, yeast, and Neurospora have generated a wealth monophosphate, to free myoinositol. Further purification of the of information regarding the mechanism of action (3, 8, 13, enzyme system by precipitation with (NEL)2SO& followed by 16, 27, 31), physical and chemical properties of the soluble diethylaminoethyl cellulose chromatography eliminates the system (2, 5, 6, 12), and identity of substrate, intermediates, phosphatase and makes it necessary to add alkaline phospha- and product (4, 6, 13, 15). tase to the reaction mixture in order to assay for free myo- In plants, cyclization of -glucose 6-P to myoinositol takes inositol. Gel filtration on Sephadex G-200 increases the specific on added significance in light of the observation that oxidative activity of the cycloaldolase to 8.8 X 10-' units per milligram cleavage of myoinositol to n-glucuronate and conversion of protein (1 unit = 1 micromole of myoinositol formed per min. the latter to uronate and pentose components of cell wall poly- ute). The cycloaldolase has an absolute requirement for nico- saccharides provides an alternative route from 1-glucose to tinamide adenine dinucleotide and a maximum activity at pH 8 products of D-glucuronate metabolism that bypasses the oxi- with 0.1 mM nicotinamide adenine dinucleotide. The reaction dation of UDP-D-glucose (22). Further evidence of the preva- rate is linear for 2.5 hours when D-glucose 6-phosphate is below lence of the cyclizing enzyme in plants and a comparative 4 mMand has a Km of 1.77 mm. The diethylaminoethyl cellu- study of its properties and mechanism with those occurring lose-purified enzyme is stable for 6 to 8 weeks in the frozen in yeast and rat testis is desirable. We have conducted such a state. survey in the search for a dependable plant source of this enzyme. On the basis of this search we have chosen to iso- late and purify the cycloaldolase from suspension cell cultures of Acer pseudoplantanus L. MATERIAL AND METHODS In 1962 Loewus and Kelly (23) demonstrated the cycliza- Herbaceous plants were grown under green house con- tion of 1-glucose to myoinositol in detached parsley leaves. ditions. Leaves were harvested just prior to use. Since then, the enzyme system catalyzing this conversion has A sample of pollen (Lilium longiflorum, cv. Croft) that had been isolated from several sources. 1-Glucose 6-P is the actual been held in storage at -20 C for several months was freed of substrate (4). Cell-free preparations from rat testis (14) and "pollen kitt," a gummy residue adhering to pollen grains, by Candida utilis (4) revealed that D-glucose 6-P is converted to rinsing in medium prepared according to Dickinson (11). myoinositol in two enzymatic steps; first, cyclization of the Washed grains were divided into two portions, one which was sugar phosphate to 1-L-myoinositol 1-P (7, 15), then hydroly- homogenized immediately and the other after incubation for sis of 1-L-myoinositol 1-P to myoinositol and P1 (6, 13). The 1 hr at 25 C in fresh medium. Pollen tubes were not micro- crude systems required both NAD+ and Mge for activity, but scopically visible at the end of 1 hr, but prolonged incubation resolution of the cycloaldolase from the phosphatase activity (6-8 hr) of separate aliquots showed about 70% germination. revealed that only NAD+ is needed by the cyclizing enzyme, Corn seeds (Zea mays, Agway hybrid M-4) were soaked for and the Mg'+ requirement is associated with the phosphatase. 15 min in 50% Clorox (2.5% hypochlorite), rinsed, and ger- Similar systems have been found in Neurospora, Oryza sativa, minated at 28 C in the dark in sterile Petri dishes containing Phaseolus vulgaris, and Sinapis alba (19, 28, 30). a 3 mm layer of 0.5% lonagar. Three-day-old seedlings were In rat testis preparations, the cycloaldolase is more heat separated from cotyledons and homogenized. Marine algae from the vicinity of Woods Hole, Massachu- setts, were harvested just before assay. 1This investigation was supported by Grant GM-12422 from the Division of Research Grants and Fellowships, National Institutes of Health, United States Public Health Service. 2Abbreviation: DEAE: diethylaminoethyl. 255 256 LOEWUS AND LOEWUS Plant Physiol. Vol. 48, 1971 Acer pseudoplatanus L. cell cultures were obtained from a 1 cm from the edge of a 20- X 20-cm thin layer cellulose plate line of cells that had been maintained continuously in the au- (Brinkman MN 300). Two furrows through the cellulose layer thors' laboratory over the past 7 years. The specific clone used were drawn parallel to the opposite two edges, about 2.5 cm in this study had been grown on Murashige and Skoog's me- from the edges. Standards were applied to the origins of each dium with 0.1% myoinositol (22) throughout that period. Sus- one-dimensional strip formed by furrowing. Each plate was pension cultures were prepared by transferring a 2 to 3 g developed in the first direction with ethyl acetate-pyridine- mass of cells from agar medium to 100 ml of fresh liquid water (10:6:5, v/v) and in the second with methanol-formic medium in a 300-ml DeLong flask (Belco Glass, Inc. No. 599). acid-water (80:15:5, v/v). The myoinositol region of the two- After 3 weeks of continuous gyrorotatory shaking (200 rpm), dimensional separation, located by means of standards run at the contents (30-40 g fresh weight of cells) were transferred the margins, was scraped off the plate and eluted from the to 1 liter of fresh medium in a low form culture flask (Corning cellulose powder by stirring with a Teflon-coated magnetic bar No. 4422) and gently agitated on a reciprocating shaker for 3 in 1 ml of water for 1 hr. Samples of the supernatant were as- weeks at 28 C. Yields averaged about 125 to 150 g of cells sayed for radioactivity. Controls involving authentic radio- fresh weight per flask. active myoinositol gave 98 to 100% recovery by this method. Preparation of Soluble Enzyme for Assay. Tissues were Purification of Enzyme from A. pseudoplatanus Cells. The homogenized for 2 min with 20 mm tris-HCl buffer, pH 8, 35 to 50% saturated (NH4)2SO4 fraction obtained from cen- containing 0.5 mM GSH (1:1, w/v) in a Sorvall Omnimixer. trifuged disrupted cells retained about 70% of the activity Acer cells, suspended in the same buffer, were disrupted by present in the extract. Widening this fraction did not improve release from a Parr cell disruption vessel (Parr Inst. Co. model yields. Overnight dialysis resulted in an unexplainable loss of No. 4635) at 1000 psi of N2 after holding the cells at that 50% of the activity present in the (NH4)2SO4 fraction. Subse- pressure forS min. Cell breakage was better than 90%. quent dialyses did not influence the activity beyond the effect Exploratory experiments revealed that the relatively high noted here. rate of centrifugation used by others (3, 4, 13, 19) was not After dialysis to remove (NH4)2S04, the enzyme was put on necessary in the preparation of plant enzyme. Homogenates a DEAE-cellulose column (I X 30 cm, Cellex D, BioRad Labs) spun at 15,000 rpm for 90 min (4 C) in a Sorvall RC-2 cen- that had been previously equilibrated with buffer containing trifuge gave solutions with protein concentration and enzyme 0.5 mM GSH. The column was washed with additional buffer assay similar to ones obtained at the higher speeds. After re- (100 ml) and eluted with a gradient that had been prepared moving material that precipitated when solid (NH,)2SO4 was by introducing into a solution of 20 mm tris-HCl, pH 8, con- added to bring the solution to 30% saturation, further taining 0.5 mM GSH (200 ml) a second solution (100 ml) of the (NH4)2SO4 was added until the solution was 50% saturated same buffer containing 0.625M NaCl. In more recent prepara- (90% in some survey studies). The protein that salted out was tions the enzyme was separated as adequately using a linear collected by centrifugation, redissolved in tris-HCl buffer dia- gradient in which 0.2M NaCl in 20 mm tris-HCl buffer. pH 8 lyzed overnight against 20 mm tris-HCl, pH 8, omitting GSH, (200 ml), was added to the same buffer (200 ml). and assayed for myoinositol synthesizing ability. Although Further purification was obtained by an additional step of GSH was required in the initial extraction for recovery of gel filtration on a column of Sephadex G-200 (0.9 x 90 cm) maximum activity, it has been shown to inhibit under assay that had been equilibrated, prior to loading with 50 mM tris- conditions (5); therefore, it was removed by dialysis prior to HCI, pH 8.
Recommended publications
  • Inositol Safety: Clinical Evidences
    European Review for Medical and Pharmacological Sciences 2011; 15: 931-936 Inositol safety: clinical evidences G. CARLOMAGNO, V. UNFER AGUNCO Obstetrics & Gynecology Center, Rome (Italy) Abstract. – Myo-inositol is a six carbon ent required by the human cells for the growth cyclitol that contains five equatorial and one axi- and survival in the culture. In humans and other al hydroxyl groups. Myo-inositol has been classi- species, Myo-inositol can be converted to either fied as an insulin sensitizing agent and it is L- or D-chiro-inositol by epimerases. Early stud- commonly used in the treatment of the Polycys- tic Ovary Syndrome (PCOS). However, despite ies showed that inositol urinary clearance was al- its wide clinical use, there is still scarce informa- tered in type 2 diabetes patients, the next step tion on the myo-inositol safety and/or side ef- was to link impaired inositol clearance with in- fects. The aim of the present review was to sum- sulin resistance (for a review see1). Because of marize and discuss available data on the myo-in- these properties, inositol have been classified as ositol safety both in non-clinical and clinical set- “insulin sensitizing agent”2. tings. The main outcome was that only the highest In the recent years, inositol has found more dose of myo-inositol (12 g/day) induced mild and more space in the reproductive clinical prac- gastrointestinal side effects such as nausea, fla- tice3-6. Indeed, since the main therapy for Poly- tus and diarrhea. The severity of side effects did cystic Ovary Syndrome (PCOS) is the use of in- not increase with the dosage.
    [Show full text]
  • Revisions to USP 31–NF 26, Second Supplement
    Revisions to USP 31–NF 26, Second Supplement (published May 2008) Published April 2008 General Chapters Monographs:A–C D–N O–S T–Z Monograph Title Section Head Scientific Liaison DANTROLENE SODIUM Dissolution <711> CAPSULES PF 33(4) Pg. 645 DEHYDROACETIC ACID PF 33(4) Title Pg. 703 DEHYDROACETIC ACID PF 33(4) Chemical Info Pg. 703 DEHYDROACETIC ACID PF 33(4) Definition Pg. 703 DEHYDROACETIC ACID PF 33(4) Packaging and storage Pg. 703 DEHYDROACETIC ACID PF 33(4) USP Reference standards <11> Pg. 703 DEHYDROACETIC ACID PF 33(4) Identification Pg. 703 DEHYDROACETIC ACID PF 33(4) Heavy Metals, Method II <231> Pg. 703 DEHYDROACETIC ACID PF 33(4) Loss on drying <731> Pg. 703 DEHYDROACETIC ACID PF 33(4) Melting range, Class I <741> Pg. 703 DEHYDROACETIC ACID PF 33(4) Residue on ignition <281> Pg. 703 DEHYDROACETIC ACID PF 33(4) Assay Pg. 703 DIDANOSINE TABLETS FOR ORAL SUSPENSION PF 32(3) Pg. Title 784 DIDANOSINE TABLETS FOR ORAL SUSPENSION PF 32(3) Pg. Definition 784 file:///C|/Documents%20and%20Settings/rwt/Desktop/revisions/usp31nf26secondSupplement03.html[4/26/2011 1:18:07 PM] DIDANOSINE TABLETS FOR ORAL SUSPENSION PF 32(3) Pg. Packaging and storage 784 DIDANOSINE TABLETS FOR ORAL SUSPENSION PF 32(3) Pg. Labeling 784 DIDANOSINE TABLETS FOR ORAL SUSPENSION PF 32(3) Pg. USP Reference stadards 784 DIDANOSINE TABLETS FOR ORAL SUSPENSION PF 32(3) Pg. Identification 784 DIDANOSINE TABLETS FOR ORAL SUSPENSION PF 32(3) Pg. Uniformity of dosage units 784 DIDANOSINE TABLETS FOR ORAL SUSPENSION PF 32(3) Pg. Loss on drying 784 DIDANOSINE TABLETS FOR ORAL SUSPENSION PF 32(3) Pg.
    [Show full text]
  • Genetic Control of Apigenin Di-C-Glycoside Biosynthesis in Bread Wheat Grain and Their Role
    Genetic control of Apigenin di-C-glycoside biosynthesis in bread wheat grain and their role as yellow pigments of Asian alkaline noodles Submitted by Grace Yasmein Wijaya This thesis is submitted to Faculty of Sciences in fulfilment of the requirements for the degree Doctor of Philosophy Faculty of Science The University of Adelaide November 2012 This book is An Answer to Prayers of a Long list of Believers I have been very blessed and loved with all of your spiritual supports, for His guidance and protections, and sincerely will not have enough to thank you all..... May you all be blessed and loved, too As I have been always, yasmein Table of Content Table of Content i List of Tables x List of Figures xiii List of Supplemental Materials xxv Summary xxx Statement of Authorship xxxiv List of Publications xxxv Acknowledgement xxxvi List of Abbreviations xxxix Chapter I: General Introduction 1 1.1 Background 1 1.2 Knowledge Gap 2 1.3 Structure of thesis 2 Chapter II: Literature review 4 2.1 Asian noodles as one of the major end-products of Australian bread wheat 4 2.2 Yellow colour of YAN 5 2.2.1 Natural Compounds that contribute to the yellow colour of YAN 5 2.2.1.1 Types of natural compounds that contributes to the yellow colour of YAN and their roles in plants and human health 5 2.2.1.2 Contribution of xanthophylls and ACGs to the yellow colour of alkaline noodles 8 2.2.2 Factors influencing the measurement of the yellowness of noodles and the content of xanthophyll and ACG in wheat grain 10 i 2.2.3 The amount, tissue location and composition
    [Show full text]
  • Phytic Acid Phosphorus and Inorganic Phosphorus Composition in Seeds
    PHYTIC ACID PHOSPHORUS AND INORGANIC PHOSPHORUS COMPOSITION IN SEEDS OF SOYBEAN LINES WITH INDEPENDENT INOSITOL PENTAKISPHOSPHATE 2-KINASE MUTATIONS A Thesis Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Master of Plant, Insect & Microbial Science By JENNIFER VINCENT Dr. Kristin Bilyeu and Dr. Anne McKendry, Thesis Supervisors DECEMBER 2013 The undersigned, appointed by the dean of the Graduate School, have examined the Thesis entitled PHYTIC ACID PHOSPHORUS AND INORGANIC PHOSPHORUS COMPOSITION IN SEEDS OF SOYBEAN LINES WITH INDEPENDENT INOSITOL PENTAKISPHOSPHATE 2-KINASE MUTATIONS Presented by Jennifer Vincent A candidate for the degree of Master of Plant, Insect & Microbial Science And hereby certify that, in their opinion, it is worthy of acceptance. Dr. Kristin Bilyeu Dr. Anne McKendry Dr. Emmanual Liscum Dedicated to My parents: Jack and Nancy My younger siblings: Nicole and Ryan My older half-brothers: John and Josh and their families My friends, both from Illinois and Columbia, who stood by me My maternal grandparents My paternal grandparents, may they rest in peace ACKNOWLEDGEMENTS First and Foremost, I would like to thank my thesis supervisor, Dr. Kristin Bilyeu, for welcoming me into her lab after only meeting a few times. Kristin, you took a huge gamble asking me to join your lab, and for this, I am grateful. You have taught me an innumerable amount of information, both inside and outside the workplace. I have learned how to think more like a scientist and become more scientific in my writings. Through the infuriating numerous attempts at PCR, you taught me that sometimes a ‘lucky charm’ will do the trick.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Use of Phytic Acid Or Its Salts for the Prevention Or Treatment of Hepatic Diseases
    Europaisches Patentamt European Patent Office Office europeen des brevets (Ti) Publication number: 0 349 143 B1 EUROPEAN PATENT SPECIFICATION @ Date of publication of patent specification (£) Int. CI.6: A61K 31/66 30.06.93 Bulletin 93/26 (2i) Application number : 89305930.3 (22) Date of filing : 12.06.89 Use of phytic acid or its salts for the prevention or treatment of hepatic diseases. (So) Priority: 01.07.88 JP 164717/88 73) Proprietor : SANWA KAGAKU KENKYUSHO CO., LTD. No. 35, Higashi-sotobori-cho (43) Date of publication of application Higashi-ku Nagoya-shi Aichi-ken (JP) 03.01.90 Bulletin 90/01 72) Inventor : Sawai, Kiichi Publication of the grant of the patent : 36-14 Ninomiya 1-chome 30.06.93 Bulletin 93/26 Funabashi-shi Chiba-ken (JP) Inventor : Kurono, Masayasu Designated Contracting States : 6-7 Sasaonishi 3-chome BE CH DE FR GB IT LI LU NL SE Touincho Inabegun Mie-ken (JP) Inventor : Asai, Hiromoto 1-6 Nakayamacho S.chome Mizuho.ku @ References cited : Nagoya-shi Aichi-ken (JP) PATENT ABSTRACTS OF JAPAN, vol. 8, no. Inventor : Mitani, Takahiko 110 (C-224)[1547], 23rd May 1984; & JP-A-59 25 881-3 Ageki Hokuseicho-oaza 677 (KEI Al KAGAKU K.K.) 09-02-1984 Inabe-gun Mie-ken (JP) JOURNAL OF VITAMINOLOGY, vol. 16, no. 1, Inventor : Hayashi, Motohide 1970, pages 75-79; A. KOTAKI et al.: Studies Kozyocho 261 on myoinositol. V. Effect of myoinositol on the Uto-shi Kumamoto-ken (JP) prevention of fatty liver induced by orotic Inventor : Nakano, Kazumasa acid " 881-3 Ageki Hokuseicho-oaza JOURNAL OF VITAMINOLOGY, vol.
    [Show full text]
  • Inositol (Powder) Introduced 2008
    Product Information Sheet – March 2016 Inositol (powder) Introduced 2008 What Is It? Inositol (powder) Inositol is a component of the B-complex family. It supports healthy two scoops (approximately 4.2 g) contain v central nervous system function, including emotional wellness, healthy mood and behavior. Additionally, it may promote ovarian health.* inositol (as myo-inositol) .................................................................................4.2 g serving size: approximately 4.2 g (2 scoops) Uses For Inositol (powder) servings per container: 60 Emotional Wellness: Myo-inositol is the primary form of inositol 2 scoops, 1–2 times daily, with or between meals, or as directed found in the central nervous system. It plays an important role in cell by a health professional. membrane formation and serves as part of the phosphatidylinositol second messenger system, supporting serotonin, norepinenephrine and cholinergic receptor function. As a result, inositol may support healthy mood, emotional wellness and behavior, and ease occasional nervous tension.* Ovarian Function: Research suggests that myo-inositol may help to support healthy ovulatory activity, ovarian function and reproductive system function.* What Is The Source? Myo-inositol is derived from rice bran. Recommendations Pure Encapsulations® recommends 2 scoops, 1–2 times daily, with or between meals, or as directed by a health professional. Are There Any Potential Side Effects Or Precautions? Rarely, inositol has been associated with nausea, fatigue, headache or dizziness. If pregnant or lactating, consult your physician before taking this product. Are There Any Potential Drug Interactions? At this time, there are no known adverse reactions when taken in conjunction with medications. Consult your physician for more information. *These statements have not been evaluated by the Food and Drug Administration.
    [Show full text]
  • WO 2015/072852 Al 21 May 2015 (21.05.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/072852 Al 21 May 2015 (21.05.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 36/84 (2006.01) A61K 31/5513 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/045 (2006.01) A61P 31/22 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 31/522 (2006.01) A61K 45/06 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/NL20 14/050780 KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (22) International Filing Date: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, 13 November 2014 (13.1 1.2014) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 61/903,430 13 November 2013 (13. 11.2013) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: RJG DEVELOPMENTS B.V.
    [Show full text]
  • Phytic Acid (Phytate)/ Total Phosphorus
    www.megazyme.com PHYTIC ACID (PHYTATE)/ TOTAL PHOSPHORUS Measured as phosphorus released by phytase and alkaline phosphatase ASSAY PROCEDURE K-PHYT 05/19 (50 Assays per Kit) © Megazyme 2019 INTRODUCTION: Phytic acid (phytate; myo-inositol 1,2,3,4,5,6-hexakisphosphate) is the primary source of inositol and storage phosphorus in plant seeds contributing ~ 70% of total phosphorus. The abundance of phytic acid in cereal grains is a concern in the foods and animal feeds industries because the phosphorus in this form is unavailable to monogastric animals due to a lack of endogenous phytases; enzymes specific for the dephosphorylation of phytic acid. In addition, the strong chelating characteristic of phytic acid reduces the bioavailability of other essential dietary nutrients such as minerals (e.g. Ca2+, Zn2+, Mg2+, Mn2+, Fe2+/3+), proteins and amino acids.2 High phytic acid content feeds are generally supplemented with inorganic phosphate, however this causes increased faecal phosphate levels and subsequent eutrophication of waterways. Alternatively, supplementation with commercial phytases is becoming increasingly popular and reduces the requirement for inorganic phosphate supplementation as well as the associated environmental issues. Currently, there is no commercially available, simple, quantitative method for phytic acid and, while such measurement is relatively complex, the generally accepted AOAC Method 986.11 has limitations.3 For each individual analysis the method requires cumbersome anion-exchange purification and a major inherent assumption here is that only phytic acid is purified. While this assumption is viable for non-processed grains for which phytic acid comprises at least 97% of total inositol phosphates, it is not viable for processed foods and feeds which can contain higher levels of some lower myo-inositol phosphate forms (i.e.
    [Show full text]
  • Seed Biofortification and Phytic Acid Reduction: a Conflict of Interest for the Plant?
    Plants 2015, 4, 728-755; doi:10.3390/plants4040728 OPEN ACCESS plants ISSN 2223-7747 www.mdpi.com/journal/plants Review Seed Biofortification and Phytic Acid Reduction: A Conflict of Interest for the Plant? Francesca Sparvoli * and Eleonora Cominelli Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-02-23699435; Fax: +39-02-23699411. Academic Editor: Rishi R. Burlakoti Received: 3 August 2015 / Accepted: 13 November 2015 / Published: 20 November 2015 Abstract: Most of the phosphorus in seeds is accumulated in the form of phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate, InsP6). This molecule is a strong chelator of cations important for nutrition, such as iron, zinc, magnesium, and calcium. For this reason, InsP6 is considered an antinutritional factor. In recent years, efforts to biofortify seeds through the generation of low phytic acid (lpa) mutants have been noteworthy. Moreover, genes involved in the biosynthesis and accumulation of this molecule have been isolated and characterized in different species. Beyond its role in phosphorus storage, phytic acid is a very important signaling molecule involved in different regulatory processes during plant development and responses to different stimuli. Consequently, many lpa mutants show different negative pleitotropic effects. The strength of these pleiotropic effects depends on the specific mutated gene, possible functional redundancy, the nature of the mutation, and the spatio-temporal expression of the gene. Breeding programs or transgenic approaches aimed at development of new lpa mutants must take into consideration these different aspects in order to maximize the utility of these mutants.
    [Show full text]
  • Synthesis of Mannosylglucosaminylinositol
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 6025-6029, July 1992 Medical Sciences Synthesis of mannosylglucosaminylinositol phospholipids in normal but not paroxysmal nocturnal hemoglobinuria cells (complement/decay-accelerating factor/CD59) SHINICHI HIROSE*, LAKSHMESWARI RAVI*, GREGORY M. PRINCE*, MELVIN G. ROSENFELDt, ROBERT SILBERf, STEVEN W. ANDRESEN§, SANDRA V. HAZRA¶, AND M. EDWARD MEDOF*II *Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106; Departments of tCell Biology and *Medicine, New York University Medical Center, New York, NY 10016; §Cleveland Clinic Foundation, Cleveland, OH 44106; and lAkron General Medical Center, Akron, OH 44307 Communicated by Frederick C. Robbins, November 29, 1991 (received for review September 12, 1991) ABSTRACT To identify mannosyl (Man)-containing inter- have been identified, information concerning the biochemical mediates ofthe human glycoinositol phospholipid (GPI) anchor pathway(s) responsible for their intracellular GPI-anchor pathway and examine their expression in paroxysmal nocturnal assembly and protein incorporation is only beginning to hemoglobinuria (PNH), mannolipid products deriving from in emerge. vitro guanosine diphosphate [3HJMan labeling of HeLa cell Among human GPI-anchored proteins are the decay- microsomes were characterized. The defined GPI species were accelerating factor (DAF) and CD59, membrane-associated correlated with products deriving from in vivo [3HJMan label- regulators of the complement cascade which protect host ing of normal and (GPI-anchor defective) affected leukocytes. tissues from autologous complement attack (reviewed in refs. In vitro analyses in HeLa cells showed dolichol-phosphoryl 2-4). Deficient expression of these proteins underlies an (Dol-P)-[3H]Man and a spectrum of [3H]Man lipids exhibiting acquired hemolytic disorder termed paroxysmal nocturnal TLC mobilities approximating those of Trypanosoma brucei hemoglobinuria (PNH), and the lesion responsible for the (Tryp) GPI precursors.
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]