The Role of In-Memory Database Systems in Routing Table Management for IP Routers

Total Page:16

File Type:pdf, Size:1020Kb

The Role of In-Memory Database Systems in Routing Table Management for IP Routers The Role of In-Memory Database Systems in Routing Table Management for IP Routers Abstract: Core Internet bandwidth grows at triple the rate of CPU power, but the promise of high-value applications can only be realized by managing much more data traffic at the network's edge. This requires rapid evolution of the fundamental edge infrastructure device, the IP router. To keep pace, routing table management (RTM) software within routers must respond quickly to changing protocol and provisioning requirements, but as demands increase, proprietary routing table implementations encounter limitations in scalability, extensibility, and ease of maintenance. This paper examines the use of in-memory database systems (IMDS) within RTM software to overcome these barriers. In addition to greater development flexibility, IMDS technology provides built-in data integrity and fault tolerance, while meeting data lookup and update demands needed for RTM software to support IP routing functions. (Performance examples are provided for Linux and Windows 2000.) This solution improves infrastructure vendors’ ability to produce new generations of routers faster and at less cost, improving their competitive position. McObject LLC 33309 1st Way South Suite A-208 Federal Way, WA 98003 Phone: 425-888-8505 E-mail: [email protected] www.mcobject.com Copyright 2013-2018, McObject LLC Introduction - General Routing Concepts IP Routing is the main process used by Internet hosts and routers to deliver packets. The Internet is based on a hop-by-hop routing model. Each host or router that handles a packet examines the destination address in the IP header, computes the next hop that will bring the packet one step closer to its destination, and delivers the packet to the next hop, where the process is repeated. To make this work, routers use routing tables to compute the next hop for a packet. Routing table lookup processes match destination addresses with next hop addresses. The content of the routing tables is determined both by routing protocols responsible for automatic (dynamic) table updates, and by the router’s static network management function, for manual updates. Architecturally, routers are usually divided into three components: the control plane that executes routing protocols, stacks, etc., the management plane that provides various provisioning and management functions, and the data plane (forwarding) that performs wire speed packet processing. (In fact, routers’ control and management planes are often discussed as a single unit. Because this paper focuses on dynamic updating and other automated control capabilities, the term “control plane” is used broadly, even when possibly overlapping with management plane functions.) Modern Internet router architectures perform the forwarding table lookup using either a central CPU or several CPUs positioned at the incoming interfaces. General-purpose CPUs work well for forwarding, at most, hundreds of thousands of packets per second. The port speeds of high-end routers range from hundreds of megabits (Mbps) all the way up to hundreds of gigabits per second. These high speeds imply the use of optical physical interfaces and very wide parallel electrical busses operating at high speeds. For instance, a 10Gbps line would need to be transformed into a bus operating at 100MHz that would be 64 bits wide. Even a 622Mbps interface may transmit up to 1.5 million packets per second. A router with 128 such interfaces would need to cope with 200 million forwarding decisions per second. Therefore, high-end routers use dedicated hardware to perform forwarding. The control plane has evolved as the site of the router’s more complex and data-hungry software functions, which run on a general purpose CPU and operating system. Key control plane software components, discussed below, include routing protocols; the routing table; and the routing table management (RTM) software that installs, modifies and deletes routes (often from multiple protocols) in the routing table, and synchronizes information between the routing and forwarding tables. In the fast-growing Internet environment, routing table management must provide fast conversions—that is, it must quickly reflect network topology changes in the router hardware. Figure 1 shows the role of control, management and forwarding planes in router architecture. 2 Control and management plane. Runs on general purpose CPU under general purpose OS BGP OSPF IS_IS RIP Static routes Routing table (RT). Contains all the routing information learned by routing protocols. Routing table management (RTM). RT access API Data plane. Runs a packet forwarding engine usually on special hardware Forwarding table. Contains the routes actually used to forward packets through the router Network interfaces Packet in Packet out Figure 1 Protocols Routing protocols determine optimal routing paths through a network, usually based on paths with the least delay and highest reliability. Typically, the best paths are those with the least number of hops, but traffic volume can influence the choice of paths, as well. Most routing protocols facilitate communication between routers and operate in a distributed manner, learning the presence and responsiveness of immediate neighbors through polling and listening routines, and through sharing routing table information with neighbors. Through this process, each router maintains a complete picture of a network in terms of connectivity and quality of specific links. Routers’ ability to adapt to a changing network was demonstrated in dramatic fashion on September 11. Within an hour, Internet traffic flows returned to normal as traffic was re-routed around the damaged portions. Popular routing protocols include: Routing Information Protocol (RIP). This is a distance vector routing protocol, choosing paths based on the distance (number of hops) to the destination. RIP maintains optimal paths by sending out update messages if the network topology changes. For example, if a router finds a faulty link, it will update its routing table, and then send a copy of the modified table to its neighbors. These neighbors update their tables and forward information to others, and so on. Within a short period, all routers will have the new information. Open Shortest Path First (OSPF). The Internet Engineering Task Force (IETF) developed OSPF, which is often preferred over RIP for larger autonomous system networks. OSPF is a link- state routing protocol (sometimes referred to as distributed-database protocol, but not to be confused with the OLTP DBMS definition of distributed databases.) OSPF routers maintain a 3 map of the inter-network that is updated after any change to the topology. This map, called the link-state database, is synchronized between all the OSPF routers and is used to compute the routes in the routing table. Neighboring OSPF routers form an adjacency, which is a logical relationship between routers to synchronize the link-state database. Topology changes are efficiently flooded across the entire inter-network to ensure that the link- state database on each router is synchronized and accurate. Changes to this database trigger a recalculation of the routing table. As the size of this database increases, memory requirements and route computation times increase. To address this scaling problem, OSPF divides the inter-network into areas (collections of contiguous networks) connected to one another through a backbone area. Each router keeps a link-state database only for areas that are directly connected. Area border routers (ABRs) connect the backbone area to other areas. Intermediate System to Intermediate System (IS-IS). This link-state protocol offers services similar to OSPF. However, IS-IS was developed by the International Organization for Standardization (ISO) as a part of the Open System Interconnection (OSI) network architecture. IS-IS periodically floods the network with link state information, allowing each router to maintain a complete picture of the network's topology. Board Gateway Protocol (BGP). This is a protocol for exchanging routing information between gateway hosts (each with its own router) in a network of autonomous systems. Routing Table Management Software Routing Table Management (RTM) software provides a means of coordinating information obtained by the routing protocols and statically configured routes, and communicating this data between the control and data planes. In the current generation of routers, the RTM software maintains the routing table (discussed below) as an integrated structure containing persistent data required by control plane processes. The RTM software’s functions allow protocols to install new routes (often from multiple protocols) in the routing table, provides means for efficient population of the forwarding data, and supports functionality to communicate new routes back to protocols. Routing Table The routing table is a central repository for storing one or more of a protocol instance's preferred routes to a given destination. Different protocol modules use the routing table in different ways. For instance, OSPF maintains its link state database separately and instantiates routes into the routing database when it performs a link state computation. From OSPF, there can be only one route to a given destination. RIP and BGP add routes received in updates from peers, so the routing table may contain as many BGP routes to a destination as there are peers. While “routing table” suggests a single, straightforward data set, the
Recommended publications
  • Resume of Dr. Michael J. Bisconti
    Table of Contents This file contains, in order: Time Savers Experience Matrix Resume _________________________ 1 Time Savers There are a number of things we can do to save everyone’s time. In addition to resume information there are a number of common questions that employers and recruiters have. Here is an FAQ that addresses these questions. (We may expand this FAQ over time.) Frequently Asked Questions 1099 Multiple Interviewers Severance Pay Contract End Date Multiple Interviews Technical Exam Contract Job Need/Skill Assessment Interview Temporary Vs. Permanent Contract Rate Payment Due Dates U.S. Citizenship Drug Testing Permanent Job W2 Face-to-face Interview Phone Interview Word Resume Job Hunt Progress Salary Are you a U.S. citizen? Yes. Do you have a Word resume? Yes, and I also have an Adobe PDF resume. Do you prefer temporary (contract) or permanent employment? Neither, since, in the end, they are equivalent. Will you take a drug test? 13 drug tests taken and passed. Do you work 1099? Yes, but I give W2 payers preference. Do you work W2? Yes, and I work 1099 as well but I give W2 payers preference. How is your job search going? See 1.2 Job Hunt Progress. What contract rate do you expect? $65 to $85/hr. W2 and see the 2.5 Quick Rates Guide. What salary do you expect? 120k to 130k/yr. and see the 2.5 Quick Rates Guide. When do you expect to be paid? Weekly or biweekly and weekly payers will be given preference. Will you do a face-to-face interview? Yes, but I prefer a Skype or equivalent interview because gas is so expensive and time is so valuable.
    [Show full text]
  • LIST of NOSQL DATABASES [Currently 150]
    Your Ultimate Guide to the Non - Relational Universe! [the best selected nosql link Archive in the web] ...never miss a conceptual article again... News Feed covering all changes here! NoSQL DEFINITION: Next Generation Databases mostly addressing some of the points: being non-relational, distributed, open-source and horizontally scalable. The original intention has been modern web-scale databases. The movement began early 2009 and is growing rapidly. Often more characteristics apply such as: schema-free, easy replication support, simple API, eventually consistent / BASE (not ACID), a huge amount of data and more. So the misleading term "nosql" (the community now translates it mostly with "not only sql") should be seen as an alias to something like the definition above. [based on 7 sources, 14 constructive feedback emails (thanks!) and 1 disliking comment . Agree / Disagree? Tell me so! By the way: this is a strong definition and it is out there here since 2009!] LIST OF NOSQL DATABASES [currently 150] Core NoSQL Systems: [Mostly originated out of a Web 2.0 need] Wide Column Store / Column Families Hadoop / HBase API: Java / any writer, Protocol: any write call, Query Method: MapReduce Java / any exec, Replication: HDFS Replication, Written in: Java, Concurrency: ?, Misc: Links: 3 Books [1, 2, 3] Cassandra massively scalable, partitioned row store, masterless architecture, linear scale performance, no single points of failure, read/write support across multiple data centers & cloud availability zones. API / Query Method: CQL and Thrift, replication: peer-to-peer, written in: Java, Concurrency: tunable consistency, Misc: built-in data compression, MapReduce support, primary/secondary indexes, security features.
    [Show full text]
  • Ordered Indexing Methods for Data Streaming Applications
    IT 11 061 Examensarbete 45 hp Augusti 2011 Ordered indexing methods for data streaming applications Sobhan Badiozamany Institutionen för informationsteknologi Department of Information Technology Abstract Ordered indexing methods for data streaming applications Sobhan Badiozamany Teknisk- naturvetenskaplig fakultet UTH-enheten Many data streaming applications need ordered indexing techniques in order to maintain statistics required to answer historical and continuous queries. Conventional Besöksadress: DBMS indexing techniques are not specifically designed for data streaming Ångströmlaboratoriet Lägerhyddsvägen 1 applications; this motivates an investigation on comparing the scalability of different Hus 4, Plan 0 ordered indexing techniques in data streaming applications. This master thesis compares two ordered indexing techniques – tries and B-trees - with each other in Postadress: the context of data streaming applications. Indexing data streams also requires Box 536 751 21 Uppsala supporting high insertion and deletion rates. Two deletion strategies, bulk deletion and incremental deletion were also compared in this project. The Linear Road Telefon: Benchmark, SCSQ-LR and Amos II were comprehensively used to perform the 018 – 471 30 03 scalability comparisons and draw conclusions. Telefax: 018 – 471 30 00 Hemsida: http://www.teknat.uu.se/student Handledare: Tore Risch Ämnesgranskare: Tore Risch Examinator: Anders Jansson IT 11 061 Sponsor: This project is supported by VINNOVA, grant 2007-02916. Tryckt av: Reprocentralen ITC Acknowledgments The idea of this project was suggested by Prof. Tore Risch. Without his continuous valuable supervision, support, guidance and encouragement it was impossible to perform this study. I would also like to thank Erik Zeitler and Thanh Truong. Erik helped me in understanding the LRB and also running the experiments.
    [Show full text]
  • Data Management in Set-Top Box Electronic Programming Guides
    Data Management in Set-Top Box Electronic Programming Guides Abstract: The electronic programming guide (EPG) offers the most fully developed interactive browsing service on digital television, enabling users to search, filter and customize program listings and even control access to some content. These capabilities add significant data management considerations to the design of new set-top boxes. Seeking a proven solution, a handful of vendors have begun incorporating off-the-shelf database technology into their set-top boxes. This paper explores EPG data management, with the goal of educating developers and improving their software results. It maps emerging digital TV standards and the set-top box technology environment, explores data management requirements, and presents typical data objects and interrelationships found in programming guides. In examining solutions, the paper focuses on one relatively new type of data management, the in-memory database system (IMDS), which improves data management performance and minimizes resource demands through a streamlined design. Code examples and sample database schema focus on efficiencies gained by implementing set-top box data management using an off-the-shelf database system. McObject LLC 22525 SE 64th Place Suite 302 Issaquah, WA 98027 Phone: 425-831-5964 E-mail: [email protected] www.mcobject.com Copyright 2002, McObject LLC Introduction. Digital television has no doubt emerged as one of the most fully realized networked multimedia technologies. While other convergence applications strive to move into the mainstream, digital TV is already delivering hundreds of channels, a crisp clear picture, and better-than-CD-quality audio to millions of users. The period of transition from analog to digital broadcasting could last a decade or more, but eventually all broadcasters will move to the digital domain.
    [Show full text]
  • Extremedb™ Kernel Mode Edition
    Product Datasheet eXtreme DB Kernel Mode Edit ion “The Linux kernel is no place for 'self-expressive fancy.' ” Kernel -mode main memory storage solution for -- Andrew Morton, performance-critical applications Open Source Development Labs Overview eXtreme DB-KM achieves this by providing direct The essential part of any operating system is the operating access to kernel data . The eXtreme DB-KM run-time system “kernel”. The kernel is responsible for resource maps its databases directly into the driver or kernel allocation, scheduling, low-level hardware interfaces, module address space, providing direct pointers to the networking, security etc. data and eliminating expensive buffer management. The Challenge The eXtreme DB run-time code is directly linked with the module, so remote procedure calls are eliminated Increasingly, system software vendors try to put more from the execution path. As a consequence, the application functionality into the operating system kernel. execution path generally requires just a few CPU Running parts of the application in the kernel adds to the entire instructions. Concurrent access is coordinated by the system’s performance tremendously. At the same time, many database run-time. The databases are also made modern application architectures require sophisticated data available to user-mode applications via a set of public management functions such as concurrent data access, interfaces implemented via system calls. transaction control and complex searches. Putting the data management portion of the system into the kernel makes those functions faster and more robust. For example, firewalls and other types of computer security User Program software (access control applications, etc) must run their policy engines as kernel components, to achieve needed performance.
    [Show full text]
  • IMDS-NVDIMM-Paper
    Database Persistence, Without The Performance Penalty Benchmarking McObject’s In-Memory Database System With AgigA Tech’s Non-Volatile DIMM Technology McObject LLC 22525 SE 64th Place Suite 302 Issaquah, WA 98027 Phone: 425-888-8505 E-mail: [email protected] www.mcobject.com Copyright 2014, McObject LLC In the past decade, in-memory database systems (IMDSs) have emerged as the database solution for many real-time applications. An IMDS stores data entirely in main memory (DRAM), leveraging memory’s superior read/write speed while eliminating the file I/O, cache management, data transfer and other overhead inherent in traditional database management systems (DBMSs) that are designed to store records on persistent media. As a result, in- memory database systems perform an order of magnitude faster than their disk-based counterparts. A disadvantage to DRAM-based storage is volatility. What happens to records stored in main memory if power disappears? Without some kind of backup or log, they’re gone – and some applications require a higher level of data durability and recoverability. As a solution, IMDS vendors offer transaction logging, which keeps a record of changes to the database. But this logging requires writing to persistent storage. Will re-introducing these “database writes” eliminate IMDSs’ performance advantage over disk-based DBMSs? Another solution is to deploy an IMDS using DRAM that is backed up by battery power. However, disadvantages of this “battery-backed RAM” or non-volatile RAM (NVRAM) include batteries’ restrictive temperature requirements and the risk of leaking corrosive and toxic fluids. Battery-backed RAM also suffers from limited length of storage (data typically must be transferred from the chip within 72 hours of failover to battery), long re-charge cycles, finite battery shelf life, and overall high cost-of-ownership.
    [Show full text]
  • Virtual Denormalization Via Array Index Reference for Main Memory OLAP
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. X, XXXXX 2015 1 Virtual Denormalization via Array Index Reference for Main Memory OLAP Yansong Zhang, Xuan Zhou, Ying Zhang, Yu Zhang, Mingchuan Su, and Shan Wang Abstract—Denormalization is a common tactic for enhancing performance of data warehouses, though its side-effect is quite obvious. Besides being confronted with update abnormality, denormalization has to consume additional storage space. As a result, this tactic is rarely used in main memory databases, which regards storage space, i.e., RAM, as scarce resource. Nevertheless, our research reveals that main memory database can benefit enormously from denormalization, as it is able to remarkably simplify the query processing plans and reduce the computation cost. In this paper, we present A-Store, a main memory OLAP engine customized for star/snowflake schemas. Instead of generating fully materialized denormalization, A-Store resorts to virtual denormalization by treating array indexes as primary keys. This design allows us to harvest the benefit of denormalization without sacrificing additional RAM space. A-Store uses a generic query processing model for all SPJGA queries. It applies a number of state-of-the-art optimization methods, such as vectorized scan and aggregation, to achieve superior performance. Our experiments show that A-Store outperforms the most prestigious MMDB systems significantly in star/snowflake schema based query processing. Index Terms—Main-memory, OLAP, denormalization, A-Store, array index. Ç 1INTRODUCTION HE purpose of database normalization is to eliminate strategy of denormalization. Recent development of MMDB Tdata redundancy, so as to save storage space and avoid [1], [2], [3] has shown that simplicity of data processing update abnormality.
    [Show full text]
  • In-Memory Database Systems (Imdss) Beyond the Terabyte Size Boundary
    In-Memory Database Systems (IMDSs) Beyond the Terabyte Size Boundary A BENCHMARK REPORT Abstract: In-memory database systems (IMDSs) hold out the promise of breakthrough performance for time-sensitive, data-intensive tasks. Yet IMDSs’ compatibility with very large databases (VLDBs) has been largely uncharted. This benchmark analysis fills the information gap and pushes the boundaries of IMDS size and performance. Using McObject’s 64-bit eXtreme DB- 64, the application creates a 1.17 Terabyte, 15.54 billion row database on a 160-core Linux- based SGI® Altix® 4700 server. It measures time required for database provisioning, backup and restore. In SELECT, JOIN and SUBQUERY tests, benchmark results range as high as 87.78 million query transactions per second. The report also examines efficiency in utilizing all of the test bed system’s 160 processors, and includes full database schema and relevant application source code. McObject LLC 22525 SE 64th Place Suite 302 Issaquah, WA 98027 Phone: 425-831-5964 E-mail: [email protected] www.mcobject.com Copyright 2007, McObject LLC Introduction The Louisiana Immersive Technologies Enterprise (LITE), hosted in the Research Park of the University of Louisiana at Lafayette, is a facility designed for exploring technological boundaries. LITE recently added a massive computing component to its already world-leading infrastructure: a 160-processor SGI® Altix® 4700 server with 4.1 terabytes of memory. The acquisition positions LITE in the top echelon of computing resources available for private and public sector projects. The facility targets the most demanding analytical tasks: seismic modeling for energy exploration, signals and imagery intelligence for the military, business intelligence, real-time automobile impact simulations, geospatial analysis, and many other projects that require crunching vast amounts of data in limited time.
    [Show full text]
  • Exploring Code Size and Footprint, and In-Memory Database Techniques to Minimize Footprint
    Exploring Code Size and Footprint, and In-Memory Database Techniques to Minimize Footprint Are Either Relevant to Embedded Systems in the IoT Age? Abstract: The terms ‘code size’ and ‘footprint’ are often used interchangeably. But, they are not the same; code size is a subset of footprint. This paper will explain the differentiation and relevance, then proceed to describe some of the techniques employed within eXtremeDB® to minimize footprint. McObject LLC 33309 1st Way S. A208 Federal Way, WA 98003 Phone: 425-888-8505 E-mail: [email protected] www.mcobject.com Copyright 2020, McObject LLC 1. Are ‘footprint’ and ‘code size’ the same thing? 2. And, is either relevant in the current age? 1. No. Code size is a subset of footprint. In the context of an in-memory database system, ‘footprint’ consists of: Code size Stack memory used DRAM used for anything other than raw data With respect to code size, we must have an all-encompassing view. We’re not the only embedded database vendor that boasts about a ‘small footprint’. But, eXtremeDB might be the only embedded database that has no external dependencies. For purposes of this discussion, it means that using the eXtremeDB core in-memory database does not cause the application to link in the C run-time library for things like malloc/free, string operations, etc. A claim of ‘small footprint’ is hollow when the application is forced to link a megabyte of the C run-time library. 2. Yes, it’s relevant. Code size matters. We can impute two things from a small code size: The function call depth and the number of CPU instructions for any given operation.
    [Show full text]
  • Partner Directory Wind River Partner Program
    PARTNER DIRECTORY WIND RIVER PARTNER PROGRAM The Internet of Things (IoT), cloud computing, and Network Functions Virtualization are but some of the market forces at play today. These forces impact Wind River® customers in markets ranging from aerospace and defense to consumer, networking to automotive, and industrial to medical. The Wind River® edge-to-cloud portfolio of products is ideally suited to address the emerging needs of IoT, from the secure and managed intelligent devices at the edge to the gateway, into the critical network infrastructure, and up into the cloud. Wind River offers cross-architecture support. We are proud to partner with leading companies across various industries to help our mutual customers ease integration challenges; shorten development times; and provide greater functionality to their devices, systems, and networks for building IoT. With more than 200 members and still growing, Wind River has one of the embedded software industry’s largest ecosystems to complement its comprehensive portfolio. Please use this guide as a resource to identify companies that can help with your development across markets. For updates, browse our online Partner Directory. 2 | Partner Program Guide MARKET FOCUS For an alphabetical listing of all members of the *Clavister ..................................................37 Wind River Partner Program, please see the Cloudera ...................................................37 Partner Index on page 139. *Dell ..........................................................45 *EnterpriseWeb
    [Show full text]
  • Extremedb Hybrid Database System
    eXtremeDB® “eXtremeDB is well-designed to solve the unique Hybrid in-memory/on-disk database system for development challenges of data management for real- maximum performance and data durability. time embedded software.” —Schneider Electric eXtremeDB, the real-time embedded database for devices that are eXtremely innovative Overview eXtremeDB: Best of Both Worlds In-memory database systems (IMDSs) offer superior eXtremeDB enables the developer to combine in- performance and the possibility of very small RAM, CPU and memory and on-disk paradigms in a single database storage demands. IMDSs boost speed by eliminating file system. Specifying that data will be stored in memory system I/O, multiple data copies, and redundant processes, (transient), or on disk (persistent), requires a simple such as caching. This streamlined design can also dramatically database schema declaration, as shown below. reduce system footprint. transient class classname { In contrast, on-disk databases cache frequently requested data [fields] in memory, for faster access, but write database inserts, }; updates and deletes through the cache to persistent storage. Byte-for-byte, disk storage can cost less than memory, and persistent class classname { require less physical space: RAM chips can’t yet approach the [fields] density of a micro-drive, for instance. So, for small form- }; factor devices with large storage needs, such “spinning memory” can be better. The resulting system retains in-memory strengths (speed, footprint, etc.), yet leverages the potential cost eXtremeDB provides the best of both worlds, marrying in- savings and durability of an on-disk database. memory database technology with the traditional disk-based database system. The result is a hybrid database for resource- Key On-Disk Database Features constrained and high-performance systems that affords developers the ultimate in flexibility.
    [Show full text]
  • Distinguishing an In-Memory Database System from a Database
    Will the Real IMDS Please Stand Up? How to tell the difference between real and imitation in-memory database systems, and why it matters. McObject LLC 33309 1st Way South Suite A-208 Federal Way, WA 98003 Phone: 425-888-8505 E-mail: [email protected] www.mcobject.com Copyright 2013-2017, McObject LLC Introduction Declining RAM cost, emergence of data-hungry real-time systems, and other factors drove the growth of in-memory database systems (IMDSs) over the past decade. This technology offers the features of traditional (file system-based) database management systems (DBMSs)—including transactions, multi-user concurrency control, and high level data definition and querying languages—but with a key difference: in-memory databases store records in main memory, eliminating disk storage and related overhead. This enables IMDSs to offer faster performance as well as a more streamlined design and smaller code size. In-memory databases have changed the software landscape in several ways. Whole categories of applications that previously could not benefit from database systems are now able to do so. IMDSs’ growing popularity has sparked mergers and acquisitions involving the largest technology companies. However, one troubling recent trend, which should matter to anyone considering using the technology, is a flurry of products falsely claiming to be in-memory database systems. This report examines a handful of these imitators and explains why they fail to deliver on IMDSs’ promise. The goal is to better educate potential users. Why In-Memory Database Systems? Random-access memory (RAM) has steadily declined in price to the point where desktop and back office systems are customarily configured with amounts of RAM ranging up to hundreds of gigabytes.
    [Show full text]