Guideline on the Investigation of Drug Interactions

Total Page:16

File Type:pdf, Size:1020Kb

Guideline on the Investigation of Drug Interactions 21 June 2012 CPMP/EWP/560/95/Rev. 1 Corr. 2** Committee for Human Medicinal Products (CHMP) Guideline on the investigation of drug interactions Discussion in the Efficacy Working Party (EWP) June/October 1996 February 1997 Transmission to the CPMP March 1997 Transmission to interested parties March 1997 Deadline for comments September 1997 Re-submission to the EWP December 1997 Approval by the CPMP December 1997 Date for coming into operation June 1998 Draft Rev. 1 Agreed by the EWP April 2010 Adoption Rev. 1 by CHMP for release for consultation 22 April 2010 End of consultation Rev. 1 (deadline for comments) 31 October 2010 Agreed by Pharmacokinetics Working Party February 2012 Adopted by CHMP 21 June 2012 Date for coming into effect 1 January 2013 This guideline replaces guideline CPMP/EWP/560/95. Keywords Interaction, guideline, metabolism, inhibition, induction, transport, enzyme, transport protein, transporter, absorption, food, distribution, PBPK, herbal, SmPC * The correction concerns section 5.3.4.1 (p 26) and the corresponding decision tree no. 6 (p 61) to read “if the observed Ki value is lower or equal to /…/”; Appendix VII, Table 5 to read “See section 5.4.2”.* Decision tree 4. 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2015. Reproduction is authorised provided the source is acknowledged. Guideline on the investigation of drug interactions Table of contents Executive summary ..................................................................................... 4 1. Introduction ............................................................................................ 4 2. Scope....................................................................................................... 5 3. Legal basis and relevant guidelines ......................................................... 5 4. Pharmacodynamic interactions................................................................ 6 5. Pharmacokinetic interactions .................................................................. 6 5.1. Effects of food intake on the pharmacokinetics of the investigational drug ................... 7 5.2. Effects of other medicinal products on the pharmacokinetics of the investigational drug 8 5.2.1. Absorption ........................................................................................................ 8 5.2.2. Distribution ....................................................................................................... 9 5.2.3. Metabolism ..................................................................................................... 10 5.2.4. Active uptake and secretion in drug elimination ................................................... 12 5.2.5. Special populations .......................................................................................... 14 5.3. Effects of the investigational drug on the pharmacokinetics of other drugs ................ 15 5.3.1. Absorption ...................................................................................................... 15 5.3.2. Distribution ..................................................................................................... 15 5.3.3. Metabolism ..................................................................................................... 15 5.3.4. Transport ....................................................................................................... 25 5.4. Design of in vivo studies ..................................................................................... 26 5.4.1. Study population ............................................................................................. 27 5.4.2. Probe drugs and cocktail studies ........................................................................ 27 5.4.3. Dose, formulation and time of administration ...................................................... 28 5.4.4. Time dependencies .......................................................................................... 30 5.4.5. Active metabolites ........................................................................................... 30 5.4.6. Pharmacokinetic parameters ............................................................................. 31 5.4.7. Population pharmacokinetic analysis .................................................................. 31 5.5. PBPK modelling and simulation ............................................................................ 32 5.6. Presentation of in vivo study results in the study report .......................................... 33 5.7. Translation into treatment recommendations ......................................................... 33 5.7.1. In vitro data ................................................................................................... 33 5.7.2. In vivo effects of other drugs on the investigational drug ...................................... 34 5.7.3. In vivo effects of the investigational drug on other drugs ...................................... 35 5.7.4. Food effects .................................................................................................... 36 6. Herbal medicinal products and specific food products ........................... 36 7. Inclusion of information and recommendations in the SmPC .............. 36 7.1. Mechanistic information and prediction of non-studied interactions ........................... 37 7.2. Presentation of study results in the SmPC ............................................................. 38 Guideline on the investigation of drug interactions CPMP/EWP/560/95/Rev. 1 Corr. 2** Page 2/59 Definitions ................................................................................................. 38 Appendix I ................................................................................................. 40 Appendix II ............................................................................................... 41 Appendix III .............................................................................................. 43 Appendix IV ............................................................................................... 44 Appendix V ................................................................................................ 46 Appendix VI ............................................................................................... 48 Appendix VII ............................................................................................. 49 Appendix VIII............................................................................................ 51 Appendix IX ............................................................................................... 52 Appendix X ................................................................................................ 53 Guideline on the investigation of drug interactions CPMP/EWP/560/95/Rev. 1 Corr. 2** Page 3/59 Executive summary The potential for pharmacokinetic interactions between new medicinal products and already marketed drugs should be evaluated. This applies to both effects of the medicinal product on other drugs as well as the effect of other drugs on the medicinal product. Furthermore the effect of concomitant food intake needs to be investigated. The drug-drug interaction potential is usually investigated through in vitro studies followed by in vivo studies. The results of interaction studies are used to predict a number of other interactions based on the mechanisms involved. Treatment recommendations are developed based on the clinical relevance of the interactions and the possibility to make dose adjustments or treatment monitoring. This document aims to provide recommendations on all these issues. General recommendations are also provided for herbal medicinal products. 1. Introduction Drug-drug interactions are a common problem during drug treatment and give rise to a large number of hospital admissions as a result of medically important, sometimes serious or even fatal adverse events. Drug-drug interactions can also cause partial or complete abolishment of treatment efficacy. The ageing European population, where polypharmacy is more frequent, increases the likelihood of such interactions and underlines the importance of a scientifically sound understanding of the potential for drug-drug interactions for all new chemical entities. A number of drugs have been withdrawn from the market as a result of drug-drug interactions that were only discovered post-marketing. The potential for drug-drug interactions is considered in the benefit-risk evaluation of a medicinal product and can negatively impact on this balance either through increased incidence of adverse events or reduced efficacy. This guideline outlines a comprehensive, systematic and mechanistic approach to the evaluation of the interaction potential of a drug during its development and offers guidance to ensure that the prescriber receives clear information on the interaction potential as well as practical recommendations on how the interactions should be managed during clinical use. The first CHMP interaction guideline was adopted in 1997 and this is the first revision of this guideline. During the past 20 years, considerable scientific progress has been made so that today clinically relevant pharmacokinetic drug interactions can be predicted from
Recommended publications
  • “Seizure Disorders” January 2017 This Is the Beginning of CE PRN’S 39Th Year
    Pharmacy Continuing Education from WF Professional Associates ABOUT WFPA LESSONS TOPICS ORDER CONTACT PHARMACY EXAM REVIEWS “Seizure Disorders” January 2017 This is the beginning of CE PRN’s 39th year. WOW! Thanks for your continued participation. The primary goal of seizure disorder treatment is to achieve a seizure-free patient. We update this topic often because it’s so important. This lesson provides 1.25 (0.125 CEUs) contact hours of credit, and is intended for pharmacists & technicians in all practice settings. The program ID # for this lesson is 0798-000-18-228-H01-P for pharmacists & 0798-000-18-228-H01-T for technicians. Participants completing this lesson by December 31, 2019 may receive full credit. Release date for this lesson is January 1, 2017. To obtain continuing education credit for this lesson, you must answer the questions on the quiz (70% correct required), and return the quiz. Should you score less than 70%, you will be asked to repeat the quiz. Computerized records are maintained for each participant. If you have any comments, suggestions or questions, contact us at the above address, or call 1-843-488-5550. Please write your name, NABP eProfile (CPE Monitor®) ID Number & birthdate (MM/DD) in the indicated space on the quiz page. The objectives of this lesson are such that upon completion participants will be able to: Pharmacists: Technicians: 1. Describe the epidemiology of seizure disorders. 1. List the types of seizures. 2. List the types of seizures. 2. List factors that affect the selection of 3. Discuss the goals associated with treating seizure anticonvulsants.
    [Show full text]
  • Daniel Hussar, Phd, New Drug Update
    New Drug Update 2014* *Presentation by Daniel A. Hussar, Ph.D. Remington Professor of Pharmacy Philadelphia College of Pharmacy University of the Sciences in Philadelphia Objectives: After attending this program, the participant will be able to: 1. Identify the indications and routes of administration of the new therapeutic agents. 2. Identify the important pharmacokinetic properties and the unique characteristics of the new drugs. 3. Identify the most important adverse events and precautions of the new drugs. 4. Compare the new drugs to the older therapeutic agents to which they are most similar in activity. 5. Identify information regarding the new drugs that should be communicated to patients. New Drug Comparison Rating (NDCR) system 5 = important advance 4 = significant advantage(s) (e.g., with respect to use/effectiveness, safety, administration) 3 = no or minor advantage(s)/disadvantage(s) 2 = significant disadvantage(s) (e.g., with respect to use/effectiveness, safety, administration) 1 = important disadvantage(s) Additional information The Pharmacist Activist monthly newsletter: www.pharmacistactivist.com Dapagliflozin propanediol (Farxiga – Bristol-Myers Squibb; AstraZeneca) Antidiabetic Agent 2014 New Drug Comparison Rating (NDCR) = Indication: Adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus Comparable drug: Canagliflozin (Invokana) Advantages: --May be less likely to cause hypersensitivity reactions and hyperkalemia --May be less likely to interact with other medications --May
    [Show full text]
  • PLGG1, a Plastidic Glycolate Glycerate Transporter, Is Required for Photorespiration and Defines a Unique Class of Metabolite Transporters
    PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters Thea R. Picka,1, Andrea Bräutigama,1, Matthias A. Schulza, Toshihiro Obatab, Alisdair R. Fernieb, and Andreas P. M. Webera,2 aInstitute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany; and bMax-Planck Institute for Molecular Plant Physiology, Department of Molecular Physiology, 14476 Potsdam-Golm, Germany Edited by Wolf B. Frommer, Carnegie Institution for Science, Stanford, CA, and accepted by the Editorial Board January 8, 2013 (received for review September 4, 2012) Photorespiratory carbon flux reaches up to a third of photosyn- (PGLP). Glycolate is exported from the chloroplasts to the per- thetic flux, thus contributes massively to the global carbon cycle. oxisomes, where it is oxidized to glyoxylate by glycolate oxidase The pathway recycles glycolate-2-phosphate, the most abundant (GOX) and transaminated to glycine by Ser:glyoxylate and Glu: byproduct of RubisCO reactions. This oxygenation reaction of glyoxylate aminotransferase (SGT and GGT, respectively). Glycine RubisCO and subsequent photorespiration significantly limit the leaves the peroxisomes and enters the mitochondria, where two biomass gains of many crop plants. Although photorespiration is molecules of glycine are deaminated and decarboxylated by the a compartmentalized process with enzymatic reactions in the glycine decarboxylase complex (GDC) and serine hydroxymethyl- chloroplast, the peroxisomes, the mitochondria, and the cytosol, transferase (SHMT) to form one molecule each of serine, ammo- nia, and carbon dioxide. Serine is exported from the mitochondria no transporter required for the core photorespiratory cycle has to the peroxisomes, where it is predominantly converted to glyc- been identified at the molecular level to date.
    [Show full text]
  • The Self-Inhibitory Nature of Metabolic Networks and Its Alleviation Through Compartmentalization
    ARTICLE Received 30 Oct 2016 | Accepted 23 May 2017 | Published 10 Jul 2017 DOI: 10.1038/ncomms16018 OPEN The self-inhibitory nature of metabolic networks and its alleviation through compartmentalization Mohammad Tauqeer Alam1,2, Viridiana Olin-Sandoval1,3, Anna Stincone1,w, Markus A. Keller1,4, Aleksej Zelezniak1,5,6, Ben F. Luisi1 & Markus Ralser1,5 Metabolites can inhibit the enzymes that generate them. To explore the general nature of metabolic self-inhibition, we surveyed enzymological data accrued from a century of experimentation and generated a genome-scale enzyme-inhibition network. Enzyme inhibition is often driven by essential metabolites, affects the majority of biochemical processes, and is executed by a structured network whose topological organization is reflecting chemical similarities that exist between metabolites. Most inhibitory interactions are competitive, emerge in the close neighbourhood of the inhibited enzymes, and result from structural similarities between substrate and inhibitors. Structural constraints also explain one-third of allosteric inhibitors, a finding rationalized by crystallographic analysis of allosterically inhibited L-lactate dehydrogenase. Our findings suggest that the primary cause of metabolic enzyme inhibition is not the evolution of regulatory metabolite–enzyme interactions, but a finite structural diversity prevalent within the metabolome. In eukaryotes, compartmentalization minimizes inevitable enzyme inhibition and alleviates constraints that self-inhibition places on metabolism. 1 Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK. 2 Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK. 3 Department of Food Science and Technology, Instituto Nacional de Ciencias Me´dicas y Nutricio´n Salvador Zubira´n, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico.
    [Show full text]
  • Caffeine Posited to Enhance Psoriasis Tx Response
    30 Skin Disorders FAMILY P RACTICE N EWS • July 1, 2006 Caffeine Posited to Enhance Psoriasis Tx Response BY ERIK GOLDMAN versity of Michigan, Ann Arbor. The im- flammatory, and they work by inhibiting drinkers were more likely to discontinue Contributing Writer pact of coffee and other caffeine-containing an enzyme called 5-amidoimidazole-4-car- MTX therapy due to perceived lack of ef- beverages on inflammatory conditions such boxamide ribonucleotide (AICAR) trans- ficacy. A second rheumatoid arthritis study P HILADELPHIA — Patients with psori- as psoriasis has been the subject of con- formylase, resulting in AICAR accumula- involving 39 patients also showed inhibi- asis who drink coffee frequently respond troversy for some time. Many people con- tion. This leads to increased adenosine tion of the drug’s effects, but other pub- better to treatment with methotrexate sider caffeine to be proinflammatory and which has anti-inflammatory properties,” lished studies show no such effects. and sulfasalazine, Dr. Yolanda Helfrich re- have suggested that patients with inflam- explained Dr. Helfrich. “Caffeine acts as an But it appears that, at least biochemi- ported at the annual meeting of the Soci- matory diseases cut their consumption. adenosine receptor antagonist, so you’d cally, coffee has bivalent effects. While it is ety for Investigative Dermatology. On face value, one would expect coffee expect it to inhibit MTX and SSZ.” true that caffeine is an adenosine receptor That should be good news for patients to thwart the efficacy of drugs such as Indeed, a study published several years antagonist, it also increases cyclic adeno- who like to drink coffee, said Dr.
    [Show full text]
  • Pharmacokinetic Interactions of Drugs with St John's Wort
    http://www.paper.edu.cn Pharmacokinetic interactions of Journal of Psychopharmacology 18(2) (2004) 262–276 © 2004 British Association drugs with St John’s wort for Psychopharmacology ISSN 0269-8811 SAGE Publications Ltd, London, Thousand Oaks, CA and New Delhi 10.1177/0269881104042632 Shufeng Zhou Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore. Eli Chan Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore. Shen-Quan Pan Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore. Min Huang Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510089, PR China. Edmund Jon Deoon Lee Department of Pharmacology, Faculty of Medicine, National University of Singapore, Singapore. Abstract There is a worldwide increasing use of herbs which are often cancer patients receiving irinotecan treatment. St John’s wort did not administered in combination with therapeutic drugs, raising the alter the pharmacokinetics of tolbutamide, but increased the incidence potential for herb–drug interactions. St John’s wort (Hypericum of hypoglycaemia. Several cases have been reported that St John’s wort perforatum) is one of the most commonly used herbal antidepressants. A decreased cyclosporine blood concentration leading to organ rejection. literature search was performed using Medline (via Pubmed), Biological St John’s wort caused breakthrough bleeding and unplanned pregnancies Abstracts, Cochrane Library, AMED, PsycINFO and Embase (all from their when used concomitantly with oral contraceptives. It also caused inception to September 2003) to identify known drug interaction with serotonin syndrome when coadministered with selective serotonin- St John’s wort. The available data indicate that St John’s wort is a reuptake inhibitors (e.g.
    [Show full text]
  • CYP3A4 Mediated Pharmacokinetics Drug Interaction Potential of Maha
    www.nature.com/scientificreports OPEN CYP3A4 mediated pharmacokinetics drug interaction potential of Maha‑Yogaraj Gugglu and E, Z guggulsterone Sarvesh Sabarathinam1, Satish Kumar Rajappan Chandra2 & Vijayakumar Thangavel Mahalingam1* Maha yogaraja guggulu (MYG) is a classical herbomineral polyherbal formulation being widely used since centuries. The aim of this study was to investigate the efect of MYG formulation and its major constituents E & Z guggulsterone on CYP3A4 mediated metabolism. In vitro inhibition of MYG and Guggulsterone isomers on CYP3A4 was evaluated by high throughput fuorometric assay. Eighteen Adult male Sprague–Dawley rats (200 ± 25 g body weight) were randomly divided into three groups. Group A, Group B and Group C were treated with placebo, MYG and Standard E & Z guggulsterone for 14 days respectively by oral route. On 15th day, midazolam (5 mg/kg) was administered orally to all rats in each group. Blood samples (0.3 mL) were collected from the retro orbital vein at 0.25, 0.5, 0.75, 1, 2, 4, 6, 12 and 24 h of each rat were collected. The fndings from the in vitro & in vivo study proposed that the MYG tablets and its guggulsterone isomers have drug interaction potential when consumed along with conventional drugs which are CYP3A4 substrates. In vivo pharmacokinetic drug interaction study of midazolam pointed out that the MYG tablets and guggulsterone isomers showed an inhibitory activity towards CYP3A4 which may have leads to clinically signifcant interactions. Te use of alternative medicine such as herbal medicines, phytonutrients, ayurvedic products and nutraceuticals used widely by the majority of the patients for their primary healthcare needs.
    [Show full text]
  • A Textbook of Clinical Pharmacology and Therapeutics This Page Intentionally Left Blank a Textbook of Clinical Pharmacology and Therapeutics
    A Textbook of Clinical Pharmacology and Therapeutics This page intentionally left blank A Textbook of Clinical Pharmacology and Therapeutics FIFTH EDITION JAMES M RITTER MA DPHIL FRCP FMedSci FBPHARMACOLS Professor of Clinical Pharmacology at King’s College London School of Medicine, Guy’s, King’s and St Thomas’ Hospitals, London, UK LIONEL D LEWIS MA MB BCH MD FRCP Professor of Medicine, Pharmacology and Toxicology at Dartmouth Medical School and the Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA TIMOTHY GK MANT BSC FFPM FRCP Senior Medical Advisor, Quintiles, Guy's Drug Research Unit, and Visiting Professor at King’s College London School of Medicine, Guy’s, King’s and St Thomas’ Hospitals, London, UK ALBERT FERRO PHD FRCP FBPHARMACOLS Reader in Clinical Pharmacology and Honorary Consultant Physician at King’s College London School of Medicine, Guy’s, King’s and St Thomas’ Hospitals, London, UK PART OF HACHETTE LIVRE UK First published in Great Britain in 1981 Second edition 1986 Third edition 1995 Fourth edition 1999 This fifth edition published in Great Britain in 2008 by Hodder Arnold, an imprint of Hodden Education, part of Hachette Livre UK, 338 Euston Road, London NW1 3BH http://www.hoddereducation.com ©2008 James M Ritter, Lionel D Lewis, Timothy GK Mant and Albert Ferro All rights reserved. Apart from any use permitted under UK copyright law, this publication may only be reproduced, stored or transmitted, in any form, or by any means with prior permission in writing of the publishers or in the case of reprographic production in accordance with the terms of licences issued by the Copyright Licensing Agency.
    [Show full text]
  • Identification of Human Sulfotransferases Involved in Lorcaserin N-Sulfamate Formation
    1521-009X/44/4/570–575$25.00 http://dx.doi.org/10.1124/dmd.115.067397 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 44:570–575, April 2016 Copyright ª 2016 by The American Society for Pharmacology and Experimental Therapeutics Identification of Human Sulfotransferases Involved in Lorcaserin N-Sulfamate Formation Abu J. M. Sadeque, Safet Palamar,1 Khawja A. Usmani, Chuan Chen, Matthew A. Cerny,2 and Weichao G. Chen3 Department of Drug Metabolism and Pharmacokinetics, Arena Pharmaceuticals, Inc., San Diego, California Received September 30, 2015; accepted January 7, 2016 ABSTRACT Lorcaserin [(R)-8-chloro-1-methyl-2,3,4,5-tetrahydro-1H-3-benza- and among the SULT isoforms SULT1A1 was the most efficient. The zepine] hydrochloride hemihydrate, a selective serotonin 5-hydroxy- order of intrinsic clearance for lorcaserin N-sulfamate is SULT1A1 > Downloaded from tryptamine (5-HT) 5-HT2C receptor agonist, is approved by the U.S. SULT2A1 > SULT1A2 > SULT1E1. Inhibitory effects of lorcaserin Food and Drug Administration for chronic weight management. N-sulfamate on major human cytochrome P450 (P450) enzymes Lorcaserin is primarily cleared by metabolism, which involves were not observed or minimal. Lorcaserin N-sulfamate binds to multiple enzyme systems with various metabolic pathways in human plasma protein with high affinity (i.e., >99%). Thus, despite humans. The major circulating metabolite is lorcaserin N-sulfamate. being the major circulating metabolite, the level of free lorcaserin Both human liver and renal cytosols catalyze the formation of N-sulfamate would be minimal at a lorcaserin therapeutic dose and lorcaserin N-sulfamate, where the liver cytosol showed a higher unlikely be sufficient to cause drug-drug interactions.
    [Show full text]
  • Grapefruit Juice and Psychotropics: How to Avoid Potential Interactions
    Savvy Psychopharmacology Grapefruit juice and psychotropics: How to avoid potential interactions Danielle L. Bishop, PharmD, BCPP s. H, age 42, was given a diagnosis she reports feeling much better during a fol- of bipolar disorder 10 years ago and low-up call and she makes an appointment Mhas been taking carbamazepine, to have her carbamazepine level rechecked 1,200 mg/d, and olanzapine, 10 mg/d, for the in a week. past 2 years. She has not experienced a mood episode while on this regimen, and her car- Although grapefruit products are high in bamazepine level was 9.2 μg/mL 6 months vitamins and low in calories, they can be Vicki L. Ellingrod, ago. The only adverse effect she experienced associated with potentially serious drug PharmD, FCCP was weight gain of approximately 10 lb. interactions. The interaction between Department Editor Ms. H takes a calcium supplement, but no grapefruit juice and the calcium channel other medications. blocker felodipine was discovered inad- Ms. H reports to her psychiatrist that, for vertently >20 years ago; since that time, the past few days, she has been feeling nau- possible interactions with >85 medica- seated, fatigued, and dizzy, but has contin- tions have been identified.1 Interactions ued taking her medications as prescribed. with grapefruit products are complicated Her carbamazepine level is found to be 13.1 μg/mL. Ms. H states she has not started Practice Points any new medications or supplements; her • In general, an entire grapefruit or 8 oz serum creatinine and liver function test of juice is enough to alter a susceptible results are within normal limits.
    [Show full text]
  • Drug Interactions: What You Should Know
    DRUG INTERACTIONS: WHAT YOU SHOULD KNOW Council on Family Health Drug Interactions here are more opportunities today than ever before to learn about your health and to take Tbetter care of yourself. It is also more important than ever to know about the medicines you take. If you take several different medicines, see more than one doctor or have certain health conditions, you and your doctors need to be aware of all the medicines you take to avoid potential problems, such as drug interactions. Drug interactions may make your drug less effec- tive, cause unexpected side effects or increase the action of a particular drug. Some drug interactions can even be harmful to you. Reading the label every time you use a nonprescription or prescription drug and taking the time to learn about drug interactions may be critical to your health. You can reduce the risk of potentially harmful drug interactions and side effects with a little bit of knowledge and common sense. Drug interactions fall into three broad categories: ■ Drug-drug interactions occur when two or more drugs react with each other. This drug- drug interaction may cause you to experience an unexpected side effect. For example, mixing a drug you take to help you sleep (a sedative) and a drug you take for allergies (an antihistamine) can slow your reactions and make driving a car or operating machinery dangerous. ■ Drug-food/beverage interactions result from drugs reacting with foods or beverages. For example, mixing alcohol with some drugs may cause you to feel tired or slow your reactions.
    [Show full text]
  • Article Download
    wjpls, 2019, Vol. 5, Issue 9, 168-177 Research Article ISSN 2454-2229 Ohieku et al. World Journal of Pharmaceutical World Journal and ofLife Pharmaceutical Sciences and Life Sciences WJPLS www.wjpls.org SJIF Impact Factor: 5.088 DIGOXIN INTERACTIONS WITH MEDICATIONS USED IN CONGESTIVE HEART FAILURES AND OTHER CO-MORBID DISEASES: AN IDENTIFICATION OF PATIENTS REQUIRING CONSTANT DRUG THERAPY MONITORING AND VIGILANCE *John David Ohieku and Muhammad Al-amin Usman Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy, University of Maiduguri, PMB 1069, Maiduguri, Borno State, Nigeria. *Corresponding Author: John David Ohieku Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy, University of Maiduguri, PMB 1069, Maiduguri, Borno State, Nigeria. Article Received on 20/07/2019 Article Revised on 10/08/2019 Article Accepted on 01/09/2019 ABSTRACT Background: Digoxin has narrow therapeutic index and many drug combinations are capable of affecting both its pharmacokinetic and pharmacodynamics profile, which may lead to lethal outcomes. Objectives: The objectives were to assess potential interactions between digoxin and other medications and to evaluate its degree, clinical outcomes as well as identify patients that may require constant monitoring and vigilance. Methods: The cross- sectional and prospective study involves the evaluation of digoxin interaction with other medications using online drug interaction software checkers developed by Medscape.com, Drug.com, Drugbank.com and Epocrates.
    [Show full text]