Characterization of Coding/Noncoding Variants for SHROOM3 in Patients with CKD

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Coding/Noncoding Variants for SHROOM3 in Patients with CKD CLINICAL RESEARCH www.jasn.org Characterization of Coding/Noncoding Variants for SHROOM3 in Patients with CKD Jeremy W. Prokop,1,2 Nan Cher Yeo,3 Christian Ottmann,4,5 Surya B. Chhetri,1,6 Kacie L. Florus,1 Emily J. Ross,1,7 Nadiya Sosonkina,1 Brian A. Link,8 Barry I. Freedman,9 Candice J. Coppola,6 Chris McDermott-Roe,10 Seppe Leysen,4 Lech-Gustav Milroy,4 Femke A. Meijer,4 Aron M. Geurts,10 Frank J. Rauscher III,11 Ryne Ramaker,1 Michael J. Flister,10 Howard J. Jacob,1 Eric M. Mendenhall,1,6 and Jozef Lazar1 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Interpreting genetic variants is one of the greatest challenges impeding analysis of rapidly increasing volumes of genomic data from patients. For example, SHROOM3 is an associated risk gene for CKD, yet causative mechanism(s) of SHROOM3 allele(s) are unknown. Methods We used our analytic pipeline that integrates genetic, computational, biochemical, CRISPR/Cas9 editing, molecular, and physiologic data to characterize coding and noncoding variants to study the human SHROOM3 risk locus for CKD. Results We identified a novel SHROOM3 transcriptional start site, which results in a shorter isoform lacking the PDZ domain and is regulated by a common noncoding sequence variant associated with CKD (rs17319721, allele frequency: 0.35). This variant disrupted allele binding to the transcription factor TCF7L2 in podocyte cell nuclear extracts and altered transcription levels of SHROOM3 in cultured cells, potentially through the loss of repressive looping between rs17319721 and the novel start site. Although common variant mechanisms are of high utility, sequencing is beginning to identify rare variants involved in disease; therefore, we used our biophysical tools to analyze an average of 112,849 individual human genome sequences for rare SHROOM3 missense variants, revealing 35 high-effect variants. The high-effect alleles include a coding variant (P1244L) previously associated with CKD (P=0.01, odds ratio=7.95; 95% CI, 1.53 to 41.46) that we find to be present in East Asian individuals at an allele frequency of 0.0027. We determined that P1244L attenuates the interaction of SHROOM3 with 14–3-3, suggesting alterations to the Hippo pathway, a known mediator of CKD. Conclusions These data demonstrate multiple new SHROOM3-dependent genetic/molecular mecha- nisms that likely affect CKD. J Am Soc Nephrol 29: 1525–1535, 2018. doi: https://doi.org/10.1681/ASN.2017080856 The combination of current sequencing and genome wideassociationstudies(GWAS)haslinkedhundredsof Significance Statement human loci with CKD. Yet the majority of causative Although the genetics of CKD are beginning to be deciphered, interpretation of how variants result in Received August 8, 2017. Accepted January 19, 2018. disease remains a challenge that is increasing as more and more genomes are being sequenced. In this paper, Published online ahead of print. Publication date available at we use our workflow designed to assess variants to www.jasn.org. develop mechanistic insights into CKD variants, high- Correspondence: Dr. Jeremy W. Prokop or Dr. Jozef Lazar, lighting new knowledge of both common noncoding HudsonAlpha Institute for Biotechnology, 601 Genome Way and rare coding variants within SHROOM3. The de- Northwest, Huntsville, AL 35806. E-mail: [email protected] tailed knowledge gleaned for function of SHROOM3 in or [email protected] podocytes advances novel pathways and mechanisms for CKD. Copyright © 2018 by the American Society of Nephrology J Am Soc Nephrol 29: 1525–1535, 2018 ISSN : 1046-6673/2905-1525 1525 CLINICAL RESEARCH www.jasn.org faced by genetic research is to develop strate- gies that will rapidly characterize variants and provide insight for personalizing disease in- terventions.1 Here, we deployed our sequence-to-struc- ture-to-function approach2 that integrates ge- netic, computational, biochemical, CRISPR/ Cas9 editing, molecular, and physiologic data to characterize coding and noncoding geno- mic variants identified for CKD3–10 risk within SHROOM3. SHROOM3 is an actin- binding protein involved in cell shape, neural tube formation, and epithelial morphogene- sis.11,12 A recent study showed that rs17319721 was associated with changes in expression of SHROOM3,andisaleadingSNPincreasing renal fibrosis in patients with kidney trans- plantation.13,14 Our group identified missense variants within Shroom3 of the FHH rat that affect normal maintenance of kidney glomer- ular filtration.15 In mice, genetic deletion of Shroom3 confirms its role in glomerular func- tion and maintenance of proper podocyte morphology, with alterations of apically dis- tributed actin.12 The apical construction role of SHROOM3 was first documented in neu- rulation.16 This paper lays out mechanistic in- sights into both noncoding GWAS-associated common variants and rare coding variants of SHROOM3,layingoutaworkflow for addi- tional GWAS LD block analysis. Figure 1. Analysis of SHROOM3 data from Roadmap Epigenetics. Core 15-state METHODS model for multiple human tissue types for SHROOM3 gene. Colors indicate the predicted states: red=active TSS, orange red=flanking active TSS, green=transcript, Analysis of SHROOM3 Regulation yellow=enhancer, gray=repressed polycomb, white=quiescent. All 15 colors for each 17 state can be found at http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning. The roadmap epigenomics 15 core data html#core_15state. Three active TSSs (labeled on top), resulting in three isoforms for were viewed for SHROOM3 and sorted on the SHROOM3 gene. Neural tissue is boxed in blue, fetal kidney in red, and adrenal the basis of expression and isoform detec- gland in green. The bottom of the figure is the zoomed in view of the CKD-associated tion. Start sites predicted for SHROOM3 LD block of SNPs associated in GWAS showing a breakdown of the 15-state model, were identified using SwitchGear. The LD 25-state model, DNase hypersensitivity, H3kme1, H3kme3, vertebrate conservation, block for the GWAS near SHROOM3 was human GWAS lead SNPs, and the HapMap CEU Utah LD analysis. The red intensity identified using the SNAP tool18 with a 0.8 shows the correlation of any two points (red is highest correlation) on the chromo- correlation. Biotin-conjugated DNA probes some for coinheritance of genetic variants, such that the point of the triangle is the were used to perform LightShift Chemilumi- correlation of the two edges of the base. CEU, Utah Residents with Northern and nescent Electrophoresis Mobility Shift As- Western European Ancestry; LD, linkage disequilibrium; SNP, single nucleotide polymorphism. says (EMSA) (ThermoFisher) as previously published.19 CRISPR/Cas9 Modification variant(s) and mechanism(s) within each locus that confers risk CRISPR/Cas9 replacement of rs17319721 was performed remainlargelyunknown.Thus,rapidlygrowingvolumesofgenetic using gRNAs following previous published conditions20 data without functional validation have dramatically increased the into HEK293T cells. Cells underwent clonal expansion catalog of variants that have not been categorized with respect to and variants were confirmed with Sanger sequencing. function. We and others postulate that the next greatest challenge Real-time qPCR was performed using the RNeasy Plus 1526 Journal of the American Society of Nephrology J Am Soc Nephrol 29: 1525–1535, 2018 www.jasn.org CLINICAL RESEARCH Zebrafish Experiments to Test the Short Isoform of SHROOM3 Human SHROOM3 cDNA ORF (NM_020859) was purchased from OriGene Technolo- gies and the ASD2 (ΔASD2) or PDZ (ΔPDZ) were removed using Phusion site-directed mutagenesis. Zebrafish coin- jections were performed on one- to four- cell–stage zebrafish embryos, and dextran clearance assay performed as previously described.15 A p53 morpholino was coin- jected to reduce off-target cell dealth,22 and efficiency of morpholino has been previ- ously published.15 P1244L Analysis Human coding variants for SHROOM3 were pulled from the gnomAD data- base23 and potential functional variants were assessed using our sequence-to- structure-to-function tools.2 LATS2 phosphorylation was analyzed using multiple custom peptides, and ADP-Glo Kinase Assay. For determining Kd and solving the crystal structure of 14–3-3 with SHROOM3 (either WT or P1244L) the peptides were synthesized24 and combined with purified 14–3-3. Isother- mal titration calorimetry measurements were performed with Malvern MicroCal iTC200. Crystals were set up using 14–3-3 and SHROOM3 peptide dissolved in crystallization buffer and mixed in a 1:1 stoichiometry, set up for sitting-drop crystallization; crystals were captured af- ter 10 days of incubation at 4°C; and dif- fraction data collected at the 306SA/PXI beamline. Figure 2. Nuclear interactions with the SHROOM3 CKD noncoding associated SNPs. (A) EMSA using probes with minor (A) or major (G) alleles of rs17319721 and nuclear lysates from HEK293 and the three primary kidney cell nuclear extracts (endothelial, tubule, and RESULTS podocyte). Shown to the side of the representative EMSA is the quantification of free probe and shifted probe from three separate replicates. The stars are sites significantly different from the control. (B) EMSA assays of rs17319721 using recombinant TCF7L2 Transcript Characterization of and FOXO1 compared with the shifting seen by the podocyte nuclear lysate. The bands SHROOM3 Isoforms in Human and for TCF7L2 are identified in blue and those for FOXO1 in magenta with the quantification Mouse Tissues of three separate experiments
Recommended publications
  • High-Resolution SNP Arrays in Mental Retardation Diagnostics: How Much Do We Gain?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio della ricerca- Università di Roma La Sapienza European Journal of Human Genetics (2010) 18, 178–185 & 2010 Macmillan Publishers Limited All rights reserved 1018-4813/10 $32.00 www.nature.com/ejhg ARTICLE High-resolution SNP arrays in mental retardation diagnostics: how much do we gain? Laura Bernardini1, Viola Alesi1,2, Sara Loddo1,2, Antonio Novelli1, Irene Bottillo1, Agatino Battaglia3, Maria Cristina Digilio4, Giuseppe Zampino5, Adam Ertel2, Paolo Fortina*,2,6, Saul Surrey7 and Bruno Dallapiccola1 We used Affymetrix 6.0 GeneChip SNP arrays to characterize copy number variations (CNVs) in a cohort of 70 patients previously characterized on lower-density oligonucleotide arrays affected by idiopathic mental retardation and dysmorphic features. The SNP array platform includes B900 000 SNP probes and 900 000 non-SNP oligonucleotide probes at an average distance of 0.7 Kb, which facilitates coverage of the whole genome, including coding and noncoding regions. The high density of probes is critical for detecting small CNVs, but it can lead to data interpretation problems. To reduce the number of false positives, parameters were set to consider only imbalances 475 Kb encompassing at least 80 probe sets. The higher resolution of the SNP array platform confirmed the increased ability to detect small CNVs, although more than 80% of these CNVs overlapped to copy number ‘neutral’ polymorphism regions and 4.4% of them did not contain known genes. In our cohort of 70 patients, of the 51 previously evaluated as ‘normal’ on the Agilent 44K array, the SNP array platform disclosed six additional CNV changes, including three in three patients, which may be pathogenic.
    [Show full text]
  • Circular RNA Hsa Circ 0005114‑Mir‑142‑3P/Mir‑590‑5P‑ Adenomatous
    ONCOLOGY LETTERS 21: 58, 2021 Circular RNA hsa_circ_0005114‑miR‑142‑3p/miR‑590‑5p‑ adenomatous polyposis coli protein axis as a potential target for treatment of glioma BO WEI1*, LE WANG2* and JINGWEI ZHAO1 1Department of Neurosurgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033; 2Department of Ophthalmology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China Received September 12, 2019; Accepted October 22, 2020 DOI: 10.3892/ol.2020.12320 Abstract. Glioma is the most common type of brain tumor APC expression with a good overall survival rate. UALCAN and is associated with a high mortality rate. Despite recent analysis using TCGA data of glioblastoma multiforme and the advances in treatment options, the overall prognosis in patients GSE25632 and GSE103229 microarray datasets showed that with glioma remains poor. Studies have suggested that circular hsa‑miR‑142‑3p/hsa‑miR‑590‑5p was upregulated and APC (circ)RNAs serve important roles in the development and was downregulated. Thus, hsa‑miR‑142‑3p/hsa‑miR‑590‑5p‑ progression of glioma and may have potential as therapeutic APC‑related circ/ceRNA axes may be important in glioma, targets. However, the expression profiles of circRNAs and their and hsa_circ_0005114 interacted with both of these miRNAs. functions in glioma have rarely been studied. The present study Functional analysis showed that hsa_circ_0005114 was aimed to screen differentially expressed circRNAs (DECs) involved in insulin secretion, while APC was associated with between glioma and normal brain tissues using sequencing the Wnt signaling pathway. In conclusion, hsa_circ_0005114‑ data collected from the Gene Expression Omnibus database miR‑142‑3p/miR‑590‑5p‑APC ceRNA axes may be potential (GSE86202 and GSE92322 datasets) and explain their mecha‑ targets for the treatment of glioma.
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • SHROOM3 Is a Novel Candidate for Heterotaxy Identified by Whole Exome Sequencing Tariq Et Al
    SHROOM3 is a novel candidate for heterotaxy identified by whole exome sequencing Tariq et al. Tariq et al. Genome Biology 2011, 12:R91 http://genomebiology.com/2011/12/9/R91 (21 September 2011) Tariq et al. Genome Biology 2011, 12:R91 http://genomebiology.com/2011/12/9/R91 RESEARCH Open Access SHROOM3 is a novel candidate for heterotaxy identified by whole exome sequencing Muhammad Tariq1, John W Belmont2, Seema Lalani2, Teresa Smolarek3 and Stephanie M Ware1,3* Abstract Background: Heterotaxy-spectrum cardiovascular disorders are challenging for traditional genetic analyses because of clinical and genetic heterogeneity, variable expressivity, and non-penetrance. In this study, high-resolution SNP genotyping and exon-targeted array comparative genomic hybridization platforms were coupled to whole-exome sequencing to identify a novel disease candidate gene. Results: SNP genotyping identified absence-of-heterozygosity regions in the heterotaxy proband on chromosomes 1, 4, 7, 13, 15, 18, consistent with parental consanguinity. Subsequently, whole-exome sequencing of the proband identified 26,065 coding variants, including 18 non-synonymous homozygous changes not present in dbSNP132 or 1000 Genomes. Of these 18, only 4 - one each in CXCL2, SHROOM3, CTSO, RXFP1 - were mapped to the absence-of- heterozygosity regions, each of which was flanked by more than 50 homozygous SNPs, confirming recessive segregation of mutant alleles. Sanger sequencing confirmed the SHROOM3 homozygous missense mutation and it was predicted as pathogenic by four bioinformatic tools. SHROOM3 has been identified as a central regulator of morphogenetic cell shape changes necessary for organogenesis and can physically bind ROCK2, a rho kinase protein required for left-right patterning.
    [Show full text]
  • In This Table Protein Name, Uniprot Code, Gene Name P-Value
    Supplementary Table S1: In this table protein name, uniprot code, gene name p-value and Fold change (FC) for each comparison are shown, for 299 of the 301 significantly regulated proteins found in both comparisons (p-value<0.01, fold change (FC) >+/-0.37) ALS versus control and FTLD-U versus control. Two uncharacterized proteins have been excluded from this list Protein name Uniprot Gene name p value FC FTLD-U p value FC ALS FTLD-U ALS Cytochrome b-c1 complex P14927 UQCRB 1.534E-03 -1.591E+00 6.005E-04 -1.639E+00 subunit 7 NADH dehydrogenase O95182 NDUFA7 4.127E-04 -9.471E-01 3.467E-05 -1.643E+00 [ubiquinone] 1 alpha subcomplex subunit 7 NADH dehydrogenase O43678 NDUFA2 3.230E-04 -9.145E-01 2.113E-04 -1.450E+00 [ubiquinone] 1 alpha subcomplex subunit 2 NADH dehydrogenase O43920 NDUFS5 1.769E-04 -8.829E-01 3.235E-05 -1.007E+00 [ubiquinone] iron-sulfur protein 5 ARF GTPase-activating A0A0C4DGN6 GIT1 1.306E-03 -8.810E-01 1.115E-03 -7.228E-01 protein GIT1 Methylglutaconyl-CoA Q13825 AUH 6.097E-04 -7.666E-01 5.619E-06 -1.178E+00 hydratase, mitochondrial ADP/ATP translocase 1 P12235 SLC25A4 6.068E-03 -6.095E-01 3.595E-04 -1.011E+00 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 Protein kinase C and casein Q9BY11 PACSIN1 3.837E-03 -5.863E-01 3.680E-06 -1.824E+00 kinase substrate in neurons protein 1 Tubulin polymerization- O94811 TPPP 6.466E-03 -5.755E-01 6.943E-06 -1.169E+00 promoting protein MIC C9JRZ6 CHCHD3 2.912E-02 -6.187E-01 2.195E-03 -9.781E-01 Mitochondrial 2-
    [Show full text]
  • Mirna Regulons Associated with Synaptic Function
    miRNA Regulons Associated with Synaptic Function Maria Paschou1, Maria D. Paraskevopoulou2, Ioannis S. Vlachos2, Pelagia Koukouraki1, Artemis G. Hatzigeorgiou2,3, Epaminondas Doxakis1* 1 Basic Neurosciences Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece, 2 Institute of Molecular Oncology, Biomedical Sciences Research Center ‘‘Alexander Fleming’’ Vari, Greece, 3 Department of Computer and Communication Engineering, University of Thessaly, Volos, Greece Abstract Differential RNA localization and local protein synthesis regulate synapse function and plasticity in neurons. MicroRNAs are a conserved class of regulatory RNAs that control mRNA stability and translation in tissues. They are abundant in the brain but the extent into which they are involved in synaptic mRNA regulation is poorly known. Herein, a computational analysis of the coding and 39UTR regions of 242 presynaptic and 304 postsynaptic proteins revealed that 91% of them are predicted to be microRNA targets. Analysis of the longest 39UTR isoform of synaptic transcripts showed that presynaptic mRNAs have significantly longer 39UTR than control and postsynaptic mRNAs. In contrast, the shortest 39UTR isoform of postsynaptic mRNAs is significantly shorter than control and presynaptic mRNAs, indicating they avert microRNA regulation under specific conditions. Examination of microRNA binding site density of synaptic 39UTRs revealed that they are twice as dense as the rest of protein-coding transcripts and that approximately 50% of synaptic transcripts are predicted to have more than five different microRNA sites. An interaction map exploring the association of microRNAs and their targets revealed that a small set of ten microRNAs is predicted to regulate 77% and 80% of presynaptic and postsynaptic transcripts, respectively.
    [Show full text]
  • Clinical and Genetic Associations of Renal Function and Diabetic Kidney Disease in the United Arab Emirates: a Cross-Sectional Study
    Open access Research BMJ Open: first published as 10.1136/bmjopen-2017-020759 on 14 December 2018. Downloaded from Clinical and genetic associations of renal function and diabetic kidney disease in the United Arab Emirates: a cross-sectional study Wael M Osman,1 Herbert F Jelinek,2,3 Guan K Tay,1,4,5,6 Ahsan H Khandoker,6 Kinda Khalaf,6 Wael Almahmeed,7,8 Mohamed H Hassan,9 Habiba S Alsafar1,6 To cite: Osman WM, Jelinek HF, ABSTRACT Strengths and limitations of this study Tay GK, et al. Clinical and Objectives Within the Emirati population, risk factors and genetic associations of genetic predisposition to diabetic kidney disease (DKD) ► This cross-sectional study to determine the clini- renal function and diabetic have not yet been investigated. The aim of this research kidney disease in the United cal, laboratory and genetic associations of diabetic was to determine potential clinical, laboratory and reported Arab Emirates: a cross- kidney disease (DKD) and renal function traits in a genetic loci as risk factors for DKD. sectional study. BMJ Open sample of patients with type 2 diabetes mellitus was Research design and methods Four hundred and ninety 2018;8:e020759. doi:10.1136/ the first of its kind in a population of Arab ancestry unrelated Emirati nationals with type 2 diabetes mellitus bmjopen-2017-020759 from the United Arab Emirates. (T2DM) were recruited with and without DKD, and clinical ► A limitation inherent to this study was that the anal- ► Prepublication history for and laboratory data were obtained. Following adjustments this paper is available online.
    [Show full text]
  • Supplementary Information – Postema Et Al., the Genetics of Situs Inversus Totalis Without Primary Ciliary Dyskinesia
    1 Supplementary information – Postema et al., The genetics of situs inversus totalis without primary ciliary dyskinesia Table of Contents: Supplementary Methods 2 Supplementary Results 5 Supplementary References 6 Supplementary Tables and Figures Table S1. Subject characteristics 9 Table S2. Inbreeding coefficients per subject 10 Figure S1. Multidimensional scaling to capture overall genomic diversity 11 among the 30 study samples Table S3. Significantly enriched gene-sets under a recessive mutation model 12 Table S4. Broader list of candidate genes, and the sources that led to their 13 inclusion Table S5. Potential recessive and X-linked mutations in the unsolved cases 15 Table S6. Potential mutations in the unsolved cases, dominant model 22 2 1.0 Supplementary Methods 1.1 Participants Fifteen people with radiologically documented SIT, including nine without PCD and six with Kartagener syndrome, and 15 healthy controls matched for age, sex, education and handedness, were recruited from Ghent University Hospital and Middelheim Hospital Antwerp. Details about the recruitment and selection procedure have been described elsewhere (1). Briefly, among the 15 people with radiologically documented SIT, those who had symptoms reminiscent of PCD, or who were formally diagnosed with PCD according to their medical record, were categorized as having Kartagener syndrome. Those who had no reported symptoms or formal diagnosis of PCD were assigned to the non-PCD SIT group. Handedness was assessed using the Edinburgh Handedness Inventory (EHI) (2). Tables 1 and S1 give overviews of the participants and their characteristics. Note that one non-PCD SIT subject reported being forced to switch from left- to right-handedness in childhood, in which case five out of nine of the non-PCD SIT cases are naturally left-handed (Table 1, Table S1).
    [Show full text]
  • Identification of a Thymus Microrna‑Mrna Regulatory Network in Down Syndrome
    MOLECULAR MEDICINE REPORTS 20: 2063-2072, 2019 Identification of a thymus microRNA‑mRNA regulatory network in Down syndrome MIAO CHAI*, LIJU SU*, XIAOLEI HAO, MENG ZHANG, LIHUI ZHENG, JIABING BI, XIAO HAN and CHUNBO GAO Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China Received September 6, 2017; Accepted August 28, 2018 DOI: 10.3892/mmr.2019.10433 Abstract. The present bioinformatics analysis was performed reported in the present study. miR‑30c, miR‑145, miR‑183 and using a multi-step approach to identify a microRNA their targets may serve important roles in the pathogenesis and (miR)-mRNA regulatory network in Down syndrome. miR development of complications in Down syndrome. However, (GSE69210) and mRNA (GSE70573) data was downloaded further experimental studies are required to verify these and collected from the thymic tissues of both Down syndrome results. and karyotypically normal subjects and placed in a public repository. Then, weighted gene co-expression network anal- Introduction ysis (WGCNA) was performed to screen for miRs and mRNAs associated with Down syndrome. Subsequently, differen- Down syndrome is one of the most frequently occurring tially expressed miRs (DEmiRs) and mRNAs/differentially chromosomal abnormalities in humans, with a worldwide inci- expressed genes (DEGs) were identified following screening dence of ~1:1,000 births annually (1). This disease is caused and mapping to RNA data. Bidirectional hierarchical clus- by the presence of part or a full extra copy of chromosome 21 tering analysis was then performed to distinguish DEmiRs and therefore is also called trisomy 21 (2). Down syndrome and DEGs between Down syndrome samples and normal is typically associated with craniofacial abnormalities, intel- control samples.
    [Show full text]
  • Characterization of Coding/Noncoding Variants for SHROOM3 in Patients with CKD
    CLINICAL RESEARCH www.jasn.org Characterization of Coding/Noncoding Variants for SHROOM3 in Patients with CKD Jeremy W. Prokop,1,2 Nan Cher Yeo,3 Christian Ottmann,4,5 Surya B. Chhetri,1,6 Kacie L. Florus,1 Emily J. Ross,1,7 Nadiya Sosonkina,1 Brian A. Link,8 Barry I. Freedman,9 Candice J. Coppola,6 Chris McDermott-Roe,10 Seppe Leysen,4 Lech-Gustav Milroy,4 Femke A. Meijer,4 Aron M. Geurts,10 Frank J. Rauscher III,11 Ryne Ramaker,1 Michael J. Flister,10 Howard J. Jacob,1 Eric M. Mendenhall,1,6 and Jozef Lazar1 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Interpreting genetic variants is one of the greatest challenges impeding analysis of rapidly increasing volumes of genomic data from patients. For example, SHROOM3 is an associated risk gene for CKD, yet causative mechanism(s) of SHROOM3 allele(s) are unknown. Methods We used our analytic pipeline that integrates genetic, computational, biochemical, CRISPR/Cas9 editing, molecular, and physiologic data to characterize coding and noncoding variants to study the human SHROOM3 risk locus for CKD. Results We identified a novel SHROOM3 transcriptional start site, which results in a shorter isoform lacking the PDZ domain and is regulated by a common noncoding sequence variant associated with CKD (rs17319721, allele frequency: 0.35). This variant disrupted allele binding to the transcription factor TCF7L2 in podocyte cell nuclear extracts and altered transcription levels of SHROOM3 in cultured cells, potentially through the loss of repressive looping between rs17319721 and the novel start site.
    [Show full text]
  • Genome Wide Association of Chronic Kidney Disease Progression: the CRIC Study (Author List and Affiliations Listed at End of Document)
    SUPPLEMENTARY MATERIALS Genome Wide Association of Chronic Kidney Disease Progression: The CRIC Study (Author list and affiliations listed at end of document) Genotyping information page 2 Molecular pathway analysis information page 3 Replication cohort acknowledgments page 4 Supplementary Table 1. AA top hit region gene function page 5-6 Supplementary Table 2. EA top hit region gene function page 7 Supplementary Table 3. GSA pathway results page 8 Supplementary Table 4. Number of molecular interaction based on top candidate gene molecular networks page 9 Supplementary Table 5. Results of top gene marker association in AA, based on EA derived candidate gene regions page 10 Supplementary Table 6. Results of top gene marker association in EA, based on AA derived candidate gene regions page 11 Supplementary Table 7. EA Candidate SNP look up page 12 Supplementary Table 8. AA Candidate SNP look up page 13 Supplementary Table 9. Replication cohorts page 14 Supplementary Table 10. Replication cohort study characteristics page 15 Supplementary Figure 1a-b. Boxplot of eGFR decline in AA and EA page 16 Supplementary Figure 2a-l. Regional association plot of candidate SNPs identified in AA groups pages 17-22 Supplementary Figure 3a-f. Regional association plot of candidate SNPs identified in EA groups pages 23-25 Supplementary Figure 4. Molecular Interaction network of candidate genes for renal, cardiovascular and immunological diseases pages 26-27 Supplementary Figure 5. Molecular Interaction network of candidate genes for renal diseases pages 28-29 Supplementary Figure 6. ARRDC4 LD map page 30 Author list and affiliations page 31 1 Supplemental Materials Genotyping Genotyping was performed on a total of 3,635 CRIC participants who provided specific consent for investigations of inherited genetics (of a total of 3,939 CRIC participants).
    [Show full text]
  • Investigating the Role of Shroom3 in Kidney Development
    INVESTIGATING THE ROLE OF SHROOM3 IN KIDNEY DEVELOPMENT INVESTIGATING THE ROLE OF SHROOM3 IN KIDNEY DEVELOPMENT By Ashmeet Hunjan, B.Sc. (Hons.) A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Master of Science McMaster University © Copyright by Ashmeet Hunjan, August 2021 ii TITLE: Investigating the Role of Shroom3 in Kidney Development AUTHOR: Ashmeet Hunjan B.Sc. (Hons.), McMaster University PROGRAM: Medical Sciences Graduate Program, Division of Cancer and Genetics, McMaster University, Hamilton, Ontario Canada SUPERVISOR: Darren Bridgewater, PhD SUPERVISORY COMMITTEE: Dr. Joan Krepinsky and Dr. Peter Margetts NUMBER OF PAGES: xiii, 117 iii ABSTRACT Nephrons develop from a specialized group of mesenchyme cells known as the nephron progenitors. Nephron progenitors can very dynamic as they can self-renew, migrate, and change their cell morphology. These alterations are essential for orientating and organizing select cells for progression through various stages of nephrogenesis. However, the underlying mechanisms that drive these dynamic morphological changes are not fully understood. Shroom3 is an actin-binding protein that regulates cell shape changes by modulating the actin cytoskeleton. In mice and humans, mutations in Shroom3 are associated with poor nephron function and chronic kidney disease. Despite these findings, the underlying mechanisms of Shroom3 function and how genetic mutations contribute to abnormal nephron formation are unclear. Here, we investigated functional roles for Shroom3 in the nephron progenitor population by analyzing E13.5 and E18.5 Wildtype and Shroom3 deficient mice (termed Shroom3-/-). First, using in-situ hybridization (ISH) and immunofluorescence (IF), we confirm Shroom3 expression in select nephron progenitors.
    [Show full text]