Program Analysis and Optimization for Embedded Systems

Total Page:16

File Type:pdf, Size:1020Kb

Program Analysis and Optimization for Embedded Systems Program Analysis and Optimization for Embedded Systems Mike Jochen and Amie Souter jochen, souter ¡ @cis.udel.edu Computer and Information Sciences University of Delaware Newark, DE 19716 (302) 831-6339 1 Introduction ¢ have low cost A proliferation in use of embedded systems is giving cause ¢ have low power consumption for a rethinking of traditional methods and effects of pro- ¢ require as little physical space as possible gram optimization and how these methods and optimizations can be adapted for these highly specialized systems. This pa- ¢ meet rigid time constraints for computation completion per attempts to raise some of the issues unique to program These requirements place constraints on the underlying analysis and optimization for embedded system design and architecture’s design, which together affect compiler design to address some of the solutions that have been proposed to and program optimization techniques. Each of these crite- address these specialized issues. ria must be balanced against the other, as each will have an This paper is organized as follows: section 2 provides effect on the other (e.g. making a system smaller and faster pertinent background information on embedded systems, de- will typically increase its cost and power consumption). A lineating the special needs and problems inherent with em- typical embedded system, as illustrated in figure 1, consists bedded system design; section 3 addresses one such inherent of a processor core, a program ROM (Read Only Memory), problem, namely limited space for program code; section 4 RAM (Random Access Memory), and an ASIC (Applica- discusses current approaches and open issues for code min- tion Specific Integrated Circuit). The cost of developing an imization problems; section 5 proposes a new approach to integrated circuit is linked to the size of the system. The the code minimization problem; and finally section 6 pro- largest portion of the integrated circuit is often devoted to vides areas of related work to embedded systems. the ROM for storing the application. Therefore, developing techniques that reduce code size are extremely important in 2 Background terms of reducing the cost of producing such systems. Unfortunately, the current state of the art in compilation Consumers’ hunger for smaller, faster, more powerful gad- for embedded systems is somewhat left to be desired. We gets in the telecommunication, multimedia, and consumer live in an era where memory for the general use computer is electronics industries is pushing the integration of complete abundant and processing speed is remarkably fast. Thus is- systems onto a single chip [Lie97]. The demand for con- sues such as limiting code size for compiled code have taken sumer oriented, wireless communication and multimedia de- a back seat to other optimizations. Compiler technology for vices directly impacts the design of the underlying architec- embedded system design must support: ture for such gadgets. Embedded systems are quickly be- ¢ coming the means to meet these consumer demands. Em- compilation for low-cost, irregular architectures (in- bedded systems are much more specialized in nature than struction set programmable architectures) like micro- general computing systems (e.g. desktop computers, lap- controller units (MCU’S), Digital Signal Processors top machines, servers, and workstations). Embedded sys- (DSP’s), and application specific instruction set pro- tems are designed to serve dedicated functions (e.g. anti- cessors (ASIC’s) lock brake systems, digital cellular phones, video coding for ¢ rich data structures to support complex instruction sets HDTV, audio coding for surround sound, etc.). for the above The special nature of use of these personal digital assis- tants (PDA’s) imposes several critical criteria on their design. ¢ extensive searching (helpful in register allocation, These systems must: scheduling, & code selection) that must be addressed because embedded systems are usu- ally constrained to relatively small memories. Thus, with the onslaught of embedded processors and A/D embedded systems, we are now forced to re-examine many of today’s optimizations and their effect on the target code in terms of code size, register use, instruction scheduling, and D/A DSP garbage collection, among other issues. CORE ROM S/P 3 Code Minimization for Embedded Systems The whole premise of an embedded system demands that P/S it be small; no one wants to carry around a portable phone that is as large as a toaster. This constraint on size means there can be no wasted space. Put more succinctly, every- RAM ASIC DMA thing from chip design to on-board memory must take as little space as possible. To this end, a few approaches to limiting the amount of memory needed to hold executable code have surfaced. Some techniques look at instruction Figure 1: A typical embedded system. scheduling [CS98, CSS99] and its effect on target code size. Other techniques employ some form of pattern matching [CM99, LDK99] to eliminate regions of repeated code. A ¢ methods for capturing architecture specific optimiza- third genre of technique attempts to physically compress the tions easily target code [LW98] to save on precious memory space. All of these new requirements render current compiler An attempt to limit target code growth via efficient in- technologies at least inefficient and at most unusable for em- struction scheduling was introduced by [CS98]. This tech- bedded systems. In fact, most source codes for embedded nique merely tries to repair the damage (the increase in code systems today are written in assembly, despite all the bene- space requirements) normally done by instruction schedul- fits that come with today’s high level languages. The costs ing optimization (e.g. finding another sequence of instruc- of using these high level languages via traditional compila- tions that minimizes the number of ’nop’ instructions). This tion are too great in terms of executable code size, execution is done by scheduling larger regions of code which allows a time, and number and type of registers used. Further, a com- higher degree of fine-grain parallelism (ILP) to be achieved, piler for embedded systems must be: thus eliminating ’nop’ or stall instructions. This technique adds a good deal of overhead (in terms of time) to the schedul- ¢ retargetable - able to compile to a number of changing ing phase of compilation. Somehow finding a way to de- instruction sets for different architectures crease instruction scheduling time while increasing the size of the block of instructions to be scheduled would be wel- ¢ able to handle register constraints - most embedded comed improvements. processors have a number of special-purpose rather than In [CSS99], Cooper et al. expanded the above approach general-purpose registers (allows for tighter instruction to include a series of optimizations in which genetic search coding) algorithms find a sequence of optimizations that produce ¢ able to handle specialized arithmetic - DSP’s often have small codes. Genetic algorithms are search algorithms de- specialized math operators which require more than 3 signed to mimic the process of natural selection and evolu- operands (thus rendering 3-address-code useless) tion in nature. The goal of the algorithm in this case is to search for the best optimizing sequence that creates minimal The complexity of these systems are forcing designers codes. Cooper at al. validates their approach with experi- who were once able to implement functions in hardware to ments using C and FORTRAN codes. The genetic algorithm switch to implementing the functions in software and then approach produces code sizes that range from 20 to 75 per- burning the program onto a chip. There is now a motiva- cent smaller than unoptimized code. They also show that tion to switch to high-level languages to program embed- the GA produces codes with 0 to 40 percent fewer static op- ded systems, assembly languages are being phased out be- erations, and that the GA can produce codes with 25 to 26 cause development costs are lower when using high-level percent fewer dynamic operations. Since code for embedded languages. One disadvantage of implementation via high- systems is often compiled once and burned onto a ROM, the level languages is increased code size. This is a problem software designer will tolerate longer compile times. Ge- netic algorithms do take a long time to run. For their results, cache miss, the cache line is fetched from memory and sent they ran the GA for 10 hours to find the best optimization through a decoder before it is given to the cache. Thus, de- sequence. The GA approach typically produces small object compression is done on the fly at run time. They present two codes, but not always. Also, the code produced may some- algorithms for compression using such an approach. Their times run more slowly than the original code, but it is stated results show that these approaches achieve good code com- that code speed comes secondary to code size. pression results, comparable to UNIX Compress and gzip. The goal of Liao et al’s work is to achieve maximal code The difference is that their approach can be performed sep- compression while incurring very little performance penalty arate from compilation. This approach does require special [LDK99]. The basic technique uses a data compression ap- hardware, and there is some increase in cache miss penalty proach where common sequences of code are extracted to as decompression must also be included with each cache form dictionary entries and are replaced by mini subrou- miss. tine calls to the dictionary. Liao et al. formulate the dic- An application of code compression is shown in the work tionary entry selection and substitution problem as a set- by [YRE98]. They are trying to compress the Java machine covering problem. Two methods are introduced, one based in order to make it feasible to run on the Inferno OS (an OS on software and the second based on hardware/software.
Recommended publications
  • Stochastic Program Optimization by Eric Schkufza, Rahul Sharma, and Alex Aiken
    research highlights DOI:10.1145/2863701 Stochastic Program Optimization By Eric Schkufza, Rahul Sharma, and Alex Aiken Abstract Although the technique sacrifices completeness it pro- The optimization of short sequences of loop-free, fixed-point duces dramatic increases in the quality of the resulting code. assembly code sequences is an important problem in high- Figure 1 shows two versions of the Montgomery multiplica- performance computing. However, the competing constraints tion kernel used by the OpenSSL RSA encryption library. of transformation correctness and performance improve- Beginning from code compiled by llvm −O0 (116 lines, not ment often force even special purpose compilers to pro- shown), our prototype stochastic optimizer STOKE produces duce sub-optimal code. We show that by encoding these code (right) that is 16 lines shorter and 1.6 times faster than constraints as terms in a cost function, and using a Markov the code produced by gcc −O3 (left), and even slightly faster Chain Monte Carlo sampler to rapidly explore the space of than the expert handwritten assembly included in the all possible code sequences, we are able to generate aggres- OpenSSL repository. sively optimized versions of a given target code sequence. Beginning from binaries compiled by llvm −O0, we are able 2. RELATED WORK to produce provably correct code sequences that either Although techniques that preserve completeness are effec- match or outperform the code produced by gcc −O3, icc tive within certain domains, their general applicability −O3, and in some cases expert handwritten assembly. remains limited. The shortcomings are best highlighted in the context of the code sequence shown in Figure 1.
    [Show full text]
  • The Effect of Code Expanding Optimizations on Instruction Cache Design
    May 1991 UILU-EN G-91-2227 CRHC-91-17 Center for Reliable and High-Performance Computing THE EFFECT OF CODE EXPANDING OPTIMIZATIONS ON INSTRUCTION CACHE DESIGN William Y. Chen Pohua P. Chang Thomas M. Conte Wen-mei W. Hwu Coordinated Science Laboratory College of Engineering UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Approved for Public Release. Distribution Unlimited. UNCLASSIFIED____________ SECURITY ¿LASSIPlOvriON OF t h is PAGE REPORT DOCUMENTATION PAGE 1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS Unclassified None 2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; distribution unlimited 4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) UILU-ENG-91-2227 CRHC-91-17 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION Coordinated Science Lab (If applicable) NCR, NSF, AMD, NASA University of Illinois N/A 6c ADDRESS (G'ty, Staff, and ZIP Code) 7b. ADDRESS (Oty, Staff, and ZIP Code) 1101 W. Springfield Avenue Dayton, OH 45420 Urbana, IL 61801 Washington DC 20550 Langley VA 20200 8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL ORGANIZATION 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 7a (If applicable) N00014-91-J-1283 NASA NAG 1-613 8c. ADDRESS (City, State, and ZIP Cod*) 10. SOURCE OF FUNDING NUMBERS PROGRAM PROJECT t a sk WORK UNIT 7b ELEMENT NO. NO. NO. ACCESSION NO. The Effect of Code Expanding Optimizations on Instruction Cache Design 12. PERSONAL AUTHOR(S) Chen, William, Pohua Chang, Thomas Conte and Wen-Mei Hwu 13a. TYPE OF REPORT 13b. TIME COVERED 14. OATE OF REPORT (Year, Month, Day) Jl5.
    [Show full text]
  • ARM Optimizing C/C++ Compiler V20.2.0.LTS User's Guide (Rev. V)
    ARM Optimizing C/C++ Compiler v20.2.0.LTS User's Guide Literature Number: SPNU151V January 1998–Revised February 2020 Contents Preface ........................................................................................................................................ 9 1 Introduction to the Software Development Tools.................................................................... 12 1.1 Software Development Tools Overview ................................................................................. 13 1.2 Compiler Interface.......................................................................................................... 15 1.3 ANSI/ISO Standard ........................................................................................................ 15 1.4 Output Files ................................................................................................................. 15 1.5 Utilities ....................................................................................................................... 16 2 Using the C/C++ Compiler ................................................................................................... 17 2.1 About the Compiler......................................................................................................... 18 2.2 Invoking the C/C++ Compiler ............................................................................................. 18 2.3 Changing the Compiler's Behavior with Options ......................................................................
    [Show full text]
  • Compiler Optimization-Space Exploration
    Journal of Instruction-Level Parallelism 7 (2005) 1-25 Submitted 10/04; published 2/05 Compiler Optimization-Space Exploration Spyridon Triantafyllis [email protected] Department of Computer Science Princeton University Princeton, NJ 08540 USA Manish Vachharajani [email protected] Department of Electrical and Computer Engineering University of Colorado at Boulder Boulder, CO 80309 USA David I. August [email protected] Department of Computer Science Princeton University Princeton, NJ 08540 USA Abstract To meet the performance demands of modern architectures, compilers incorporate an ever- increasing number of aggressive code transformations. Since most of these transformations are not universally beneficial, compilers traditionally control their application through predictive heuris- tics, which attempt to judge an optimization’s effect on final code quality a priori. However, com- plex target architectures and unpredictable optimization interactions severely limit the accuracy of these judgments, leading to performance degradation because of poor optimization decisions. This performance loss can be avoided through the iterative compilation approach, which ad- vocates exploring many optimization options and selecting the best one a posteriori. However, existing iterative compilation systems suffer from excessive compile times and narrow application domains. By overcoming these limitations, Optimization-Space Exploration (OSE) becomes the first iterative compilation technique suitable for general-purpose production compilers. OSE nar- rows down the space of optimization options explored through limited use of heuristics. A compiler tuning phase further limits the exploration space. At compile time, OSE prunes the remaining opti- mization configurations in the search space by exploiting feedback from earlier configurations tried. Finally, rather than measuring actual runtimes, OSE compares optimization outcomes through static performance estimation, further enhancing compilation speed.
    [Show full text]
  • XL Fortran: Getting Started
    IBM XL Fortran for AIX, V12.1 Getting Started with XL Fortran Ve r s i o n 12.1 GC23-8898-00 IBM XL Fortran for AIX, V12.1 Getting Started with XL Fortran Ve r s i o n 12.1 GC23-8898-00 Note Before using this information and the product it supports, read the information in “Notices” on page 29. First edition This edition applies to IBM XL Fortran for AIX, V12.1 (Program number 5724-U82) and to all subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product. © Copyright International Business Machines Corporation 1996, 2008. All rights reserved. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents About this document . .v Architecture and processor support . .12 Conventions . .v Performance and optimization . .13 Related information . .ix Other new or changed compiler options . .15 IBM XL Fortran information . .ix Standards and specifications . .x Chapter 3. Setting up and customizing Other IBM information. .xi XL Fortran . .17 Technical support . .xi Using custom compiler configuration files . .17 How to send your comments . .xi Chapter 4. Developing applications Chapter 1. Introducing XL Fortran . .1 with XL Fortran . .19 Commonality with other IBM compilers . .1 The compiler phases . .19 Hardware and operating system support . .1 Editing Fortran source files . .19 A highly configurable compiler . .1 Compiling with XL Fortran . .20 Language standards compliance . .2 Invoking the compiler . .22 Source-code migration and conformance checking 3 Compiling parallelized XL Fortran applications 22 Tools and utilities .
    [Show full text]
  • Machine Learning in Compiler Optimisation Zheng Wang and Michael O’Boyle
    1 Machine Learning in Compiler Optimisation Zheng Wang and Michael O’Boyle Abstract—In the last decade, machine learning based com- hope of improving performance but could in some instances pilation has moved from an an obscure research niche to damage it. a mainstream activity. In this article, we describe the rela- Machine learning predicts an outcome for a new data point tionship between machine learning and compiler optimisation and introduce the main concepts of features, models, training based on prior data. In its simplest guise it can be considered and deployment. We then provide a comprehensive survey and a from of interpolation. This ability to predict based on prior provide a road map for the wide variety of different research information can be used to find the data point with the best areas. We conclude with a discussion on open issues in the outcome and is closely tied to the area of optimisation. It is at area and potential research directions. This paper provides both this overlap of looking at code improvement as an optimisation an accessible introduction to the fast moving area of machine learning based compilation and a detailed bibliography of its problem and machine learning as a predictor of the optima main achievements. where we find machine-learning compilation. Optimisation as an area, machine-learning based or other- Index Terms—Compiler, Machine Learning, Code Optimisa- tion, Program Tuning wise, has been studied since the 1800s [8], [9]. An interesting question is therefore why has has the convergence of these two areas taken so long? There are two fundamental reasons.
    [Show full text]
  • An Optimization-Driven Incremental Inline Substitution Algorithm for Just-In-Time Compilers
    An Optimization-Driven Incremental Inline Substitution Algorithm for Just-in-Time Compilers Aleksandar Prokopec Gilles Duboscq David Leopoldseder Thomas Würthinger Oracle Labs, Switzerland Oracle Labs, Switzerland JKU Linz, Austria Oracle Labs, Switzerland [email protected] [email protected] [email protected] [email protected] Abstract—Inlining is one of the most important compiler mization prediction by incrementally exploring and specializing optimizations. It reduces call overheads and widens the scope of the program’s call tree, and clusters the callsites before inlining. other optimizations. But, inlining is somewhat of a black art of an We report the following new observations: optimizing compiler, and was characterized as a computationally intractable problem. Intricate heuristics, tuned during countless • In many programs, there is an impedance between the hours of compiler engineering, are often at the core of an logical units of code (i.e. subroutines) and the optimizable inliner implementation. And despite decades of research, well- units of code (groups of subroutines). It is therefore established inlining heuristics are still missing. beneficial to inline specific clusters of callsites, instead In this paper, we describe a novel inlining algorithm for of a single callsite at a time. We describe how to identify JIT compilers that incrementally explores a program’s call graph, and alternates between inlining and optimizations. We such callsite clusters. devise three novel heuristics that guide our inliner: adaptive • When deciding when to stop inlining, using an adaptive decision thresholds, callsite clustering, and deep inlining trials. threshold function (rather than a fixed threshold value) We implement the algorithm inside Graal, a dynamic JIT produces more efficient programs.
    [Show full text]
  • A Unified Approach to Global Program Optimization
    A UNIFIED APPROACH TO GLOBAL PROGRAM OPTIMIZATION Gary A. Kildall Computer Science Group Naval Postgraduate School Monterey, California Abstract A technique is presented for global analysie of program structure in order to perform compile time optimization of object code generated for expressions. The global expression optimization presented includes constant propagation, common subexpression elimination, elimination of redundant register load operations, and live expression analysis. A general purpose program flow analysis algorithm is developed which depends upon the existence of an “optimizing function.” The algorithm is defined formally using a directed graph model of program flow structure, and is shown to be correct, Several optimizing functions are defined which, when used in conjunction with the flow analysis algorithm, provide the various forms of code optimization. The flow analysis algorithm is sufficiently general that additional functions can easily be defined for other forms of globa~ cod: optimization. 1. INTRODUCTION of the graph represent program control flow Dossi- bilities between the nodes at execution–time. A number of techniques have evolved for the compile-time analysis of program structure in order to locate redundant computations, perform constant computations, and reduce the number of store–load sequences between memory and high-speed registers. Some of these techniques provide analysis of only entry’ ~:=j straight-line sequences of instructions [5,6,9,14, o 17,18,19,20,27,29,34,36,38,39,43,45 ,46], while B others take the program branching structure into &() account [2,3,4,10,11,12,13,15,23,30, 32,33,35]. The purpose here is to describe a single program c flow analysis algorithm which extends all of b=2 these straight-line optimizing techniques to in- D clude branching structure.
    [Show full text]
  • XL C/C++: Optimization and Programming Guide About This Document
    IBM XL C/C++ for Linux, V16.1.1 IBM Optimization and Programming Guide Version 16.1.1 SC27-8046-01 IBM XL C/C++ for Linux, V16.1.1 IBM Optimization and Programming Guide Version 16.1.1 SC27-8046-01 Note Before using this information and the product it supports, read the information in “Notices” on page 121. First edition This edition applies to IBM XL C/C++ for Linux, V16.1.1 (Program 5765-J13, 5725-C73) and to all subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product. © Copyright IBM Corporation 1996, 2018. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents About this document ......... v Optimizing at level 4 .......... 26 Who should read this document........ v Optimizing at level 5 .......... 27 How to use this document.......... v Tuning for your system architecture ...... 28 How this document is organized ....... v Getting the most out of target machine options 28 Conventions .............. vi Using high-order loop analysis and transformations 29 Related information ............ ix Getting the most out of -qhot ....... 30 Available help information ........ ix Using shared-memory parallelism (SMP) .... 31 Standards and specifications ........ xi Getting the most out of -qsmp ....... 32 Technical support ............ xi Using interprocedural analysis ........ 33 How to send your comments ........ xii Getting the most from -qipa ........ 35 Using profile-directed feedback ........ 36 Chapter 1. Using XL C/C++ with Fortran 1 Compiling with -qpdf1 ......... 37 Training with typical data sets ......
    [Show full text]
  • Demand-Driven Inlining Heuristics in a Region-Based Optimizing Compiler for ILP Architectures
    Demand-driven Inlining Heuristics in a Region-based Optimizing Compiler for ILP Architectures Tom Way, Ben Breech, Wei Du and Lori Pollock Department of Computer and Information Sciences University of Delaware, Newark, DE 19716, USA ¡ email: way,breech,wei,pollock ¢ @cis.udel.edu ABSTRACT compilation unit size and content. In addition to expos- While scientists and engineers have been taking on the ing opportunities for interprocedural instruction schedul- challenge of converting their applications into parallel ing and optimization, the size of the resulting regions (i.e., programs, compilers are charged with identifying op- compilation units) has been shown to be smaller than func- portunities and transforming codes to exploit the avail- tions, and can be limited to any desired size, in order to able instruction-level parallelism (ILP) offered by today’s reduce the impact of the quadratic algorithmic complexity uniprocessors, even within a parallel computing environ- of the applied optimization transformations [14]. ment. Region-based compilation repartitions a program The key component of a region-based compiler is the into more desirable compilation units for optimization and region formation phase which partitions the program into ILP scheduling. With region-based compilation, the com- regions using heuristics with the intent that the optimizer piler can control problem size and complexity by control- will be invoked with a scope that is limited to a single re- ling region size and contents, and expose interprocedu- gion at a time. Thus, the quality of the generated code ral scheduling and optimization opportunities without in- depends greatly upon the ability of the region formation terprocedural analysis or large function bodies.
    [Show full text]
  • Analysis and Optimization of Scientific Applications Through Set and Relation Abstractions M
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2017 Analysis and Optimization of Scientific Applications through Set and Relation Abstractions M. Tohid (Rastegar Tohid, Mohammed) Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Electrical and Computer Engineering Commons Recommended Citation Tohid (Rastegar Tohid, Mohammed), M., "Analysis and Optimization of Scientific Applications through Set and Relation Abstractions" (2017). LSU Doctoral Dissertations. 4404. https://digitalcommons.lsu.edu/gradschool_dissertations/4404 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. ANALYSIS AND OPTIMIZATION OF SCIENTIFIC APPLICATIONS THROUGH SET AND RELATION ABSTRACTIONS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The School of Electrical Engineering and Computer Science by Mohammad Rastegar Tohid M.Sc., Newcastle University, 2008 B.Sc., Azad University (S. Tehran Campus), 2006 May 2017 Dedication Dedicated to my parents who have dedicated their lives to their children. ii Acknowledgments I thank my advisor Dr. Ramanujam for valueing independent research and allowing me to work on topics that geniunely intrigued me while never lettig me go off the rail. His optimism and words of encouragement always aspired me. It has been a great pleasure to have known and worked with him.
    [Show full text]
  • Object Code Optimization Analysis of Source Code and Produces the Most Efficient Object Code of Any Compiler Presently Known to the Writers
    R. M. McCLURE, Editor Object Code Optimization analysis of source code and produces the most efficient object code of any compiler presently known to the writers. For small loops of a few statements, it very often EDWARD S. LOWRY AND C. W. MEDLOCK* produces perfect code. The efficiency is limited mainly by International Business Machines Corp., Poughkeepsie, N. Y. the (rather unnecessary) restrictions on the types of data organization that can be described in FORTRAN and the inability to combine subprograms in a single compilation. Methods of analyzing the control flow and data flow of pro- Of course the optimization does not compensate for in- grams during compilation are applied to transforming the pro- efficient source coding except in minor ways. The methods gram to improve object time efficiency. Dominance relation- will apply to almost any other procedural language, ships, indicating which statements are necessarily executed but they are not effective for interpretive systems or for before others, are used to do global common expression object code that relies heavily on precoded library sub- elimination and loop identification. Implementation of these routines. and other optimizations in OS/360 FORTRAN H are described. Most optimization can be optionally bypassed to gain a 40 percent reduction in compilation time. However, KEY WORDS AND PHRASES: compilers, data flow analysis, dominancee this expands the object code by about 25 percent, and efficiency, FORTRAN, graph theory, loop structure, machine instructions, execution times are increased threefold. object code, optimization, redundancy elimination, register assignment, System/360 Compiler Organization CR CATEGORIES: 4.12, 5.24, 5.32 The optimization within the FORTRAN I-I compiler Introduction proceeds as follows.
    [Show full text]