Synthesis and Characterization of a Metal-Salen Base Pair for the Assembly of Programmed Metal Arrays Inside the DNA Double Helix

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis and Characterization of a Metal-Salen Base Pair for the Assembly of Programmed Metal Arrays Inside the DNA Double Helix Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians Universität München Synthesis and Characterization of a Metal-Salen Base Pair for the Assembly of Programmed Metal Arrays inside the DNA Double Helix Synthese und Charakterisierung eines Metall-Salen Basenpaars für den Aufbau von programmierten Metallanordnungen im Inneren von DNA-Doppelhelices Guido Clever aus Bad Neuenahr 2006 1 2 Erklärung Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung der LMU München vom 29. Januar 1998 von Prof. Dr. T. Carell betreut. Ehrenwörtliche Versicherung Diese Dissertation wurde selbstständig, ohne unerlaubte Hilfe erarbeitet. München, den 23.11.06 Guido Clever Dissertation eingereicht am 24.11.06 1. Gutachter: Prof. Dr. T. Carell 2. Gutachter: Prof. Dr. P. Klüfers Mündliche Prüfung am 19.12.06 3 4 Ltd. Doolittle: „Wenn Zusammenhänge logisch sind, dann sind sie das unabhängig von ihrem Ursprung.“ Bombe # 20: „Hmmm…“ Dark Star (John Carpenter, 1974) Meiner Familie und Michi gewidmet. 5 Parts of this work were published or presented on conferences G. H. Clever, K. Polborn, T. Carell, Angew. Chem. Int. Ed. 2005, 44, 7204 - 7208. “A Highly DNA-Duplex-Stabilizing Metal-Salen Base Pair” G. H. Clever, Y. Söltl, H. Burks, W. Spahl, T. Carell, Chem. Eu. J. 2006, 12, 8708 - 8718. “Metal-Salen-Base-Pair Complexes Inside DNA: Complexation Overrides Sequence Information“ G. H. Clever, T. Carell, Angew. Chem. 2006, in press (DOI: anie.200603099). “Controlled Stacking of 10 Transition Metal Ions inside a DNA Duplex” K. Tanaka*, G. H. Clever*, Y. Takezawa, Y. Yamada, C. Kaul, M. Shionoya, T. Carell, Nature Nanotech. 2006, in press (DOI: 10.1038/nnano.2006.141). „Programmable Self-Assembly of Metal Ions inside Artificial DNA Duplexes“ G. H. Clever, T. Carell, Coll. Symp. Ser. (M. Hocek, Ed), Vol 7, p. 389 - 391. Institute of Org. Chem and Biochem., Academy Of Sciences of the Czech Rep., Prague 2005. “Assembly of a Highly DNA-Duplex-Stabilizing Metal-Salen Base Pair” Poster presentations on JCF meeting, Heidelberg 2004 (poster prize); ORCHEM, Bad Nauheim 2004; Nanobionics III, Marburg 2005; NAC XIII, Prague 2005; Summer School FrontChem, Tokyo 2006; Int. COE Symposium, Tokyo 2006. Oral presentations on Volkswagen Foundation meeting, Aachen 2005; “Roche Symposium for Leading Scientists of the next decade”; Basel 2005, FCI stipend meeting, Munich 2006. 6 Table of contents 1 Summary ............................................................................................................. 9 2 Zusammenfassung............................................................................................ 13 3 Introduction........................................................................................................ 16 3.1 Bionanotechnology..................................................................................... 16 3.1.1 Structure and function of biopolymers................................................. 16 3.1.2 Nature as paragon for nanotechnology ............................................... 18 3.1.3 Examples of oligonucleotide-based nanoscale objects ....................... 20 3.2 Hypermodification of the DNA backbone and bases .................................. 27 3.3 Metal coordination inside/to nucleic acids .................................................. 28 3.3.1 Metal coordination to unmodified DNA................................................ 28 3.3.2 The metal-base pair concept and examples........................................ 30 3.4 Coordination chemistry: salen complexes and metal stacking ................... 37 3.4.1 Monomeric and oligomeric salen complexes....................................... 37 3.4.2 Interaction of metal-salen complexes with DNA .................................. 39 3.4.3 Metal stacks and arrays in solid state structures and in solution......... 39 4 Part I: Coordination of metals inside the DNA duplex........................................ 43 4.1 Aims of project (part I) ................................................................................ 43 4.2 Synthesis of ligand nucleosides ................................................................. 44 4.2.1 Synthesis of the salicylic aldehyde nucleobase................................... 44 4.2.2 Synthesis and X-ray structure of a monomeric Cu2+-salen-base pair.. 54 4.2.3 Attempts to prepare a hydroxyphenyl-oxazoline nucleoside ............... 58 4.2.4 Incorporation of an oxazolinylidene-indolone nucleoside into DNA..... 60 4.2.5 Synthesis of 3’-O-methylxylose-based C-nucleosides ........................ 64 4.3 Incorporation of the salicylic aldehyde nucleoside into oligonucleotides .... 70 4.3.1 Automated DNA synthesis .................................................................. 70 4.3.2 Deprotection of the incorporated nucleosides ..................................... 73 4.3.3 Chromatographic purification of aldehyde carrying oligonucleotides... 74 4.4 Assembly of the metal-salen base pair....................................................... 77 4.4.1 Hybridization and reaction with amines and metal ions....................... 77 4.4.2 Melting point studies ........................................................................... 80 4.4.3 UV-Vis and CD spectroscopy.............................................................. 92 4.4.4 ESI mass spectrometry ....................................................................... 98 4.4.5 Liquid chromatography-mass spectrometry (LC-MS).........................103 4.4.6 EPR spectroscopy..............................................................................104 7 4.5 Interplay of salen complex formation and DNA sequence.........................107 4.5.1 Complex formation in different sequence context ..............................107 4.5.2 Brick-wise elongation of overlapping sequences................................110 4.5.3 (Unspecific) hairpin formation and dynamics......................................111 4.5.4 Reaction of single strands..................................................................115 4.6 Metal stacks and arrays ............................................................................116 4.6.1 Two metal-salen complexes inside one duplex..................................116 4.6.2 Homo-polynuclear metal stacks inside DNA ......................................117 4.6.3 Hetero-polynuclear stacks: controlled mixing of metals inside DNA...121 4.7 Conclusion and outlook (part I) .................................................................130 5 Part II: Coordinating metals on the exterior of the DNA double helix................132 5.1 Aims of project (part II) ..............................................................................132 5.2 Synthesis of ligand-modified uridine compounds ......................................132 5.3 “Clicking” of gold clusters to DNA via glutathione-bisazide .......................139 5.4 Conclusion and outlook (part II).................................................................141 6 Experimental part .............................................................................................142 6.1 Materials and methods ..............................................................................142 6.2 DNA synthesis, cleavage and purification .................................................142 6.3 Melting point experiments .........................................................................143 6.4 UV and CD spectra and titrations..............................................................143 6.5 ESI mass spectrometry .............................................................................144 6.6 Synthesis of the salicylic aldehyde nucleobase.........................................145 6.7 Synthesis of a monomeric copper salen complex .....................................151 6.8 Synthesis of a 3-(2-oxazolidinylidene-)indol-2-one nucleoside..................154 6.9 Synthesis of 3’-O-methyl-xylopyranosyl nucleosides.................................159 6.10 Synthesis of a hydroxyphenyl-oxazoline-uridine nucleoside .....................165 6.11 Synthesis of a benzotriazole-uridine nucleoside .......................................169 6.12 Synthesis of a glutathione-bisazide...........................................................175 7 Appendix ..........................................................................................................177 7.1 Further selected ESI spectra.....................................................................177 7.2 Crystallographic data.................................................................................181 7.3 Abbreviations ............................................................................................186 8 References .......................................................................................................187 8 Chapter 1 Summary 1 Summary The controlled assembly of functional nanoscale materials from molecular entities is regarded as a key subject of future nanotechnology. Currently, the use of DNA, which features superior self organization properties, is heavily investigated. The aim of this work was the development of new systems for the controlled binding of multiple metal ions to the inside or outside of modified DNA double strands. In the “metal-base pair concept”, the natural DNA base pairs are replaced by flat metal complexes. The placement of metals inside the chiral DNA environment may result in enantioselective catalytic
Recommended publications
  • Ion in Fluorescence Tuning of Tridentate Pincers: a Review
    molecules Review The Role of Zinc(II) Ion in Fluorescence Tuning of Tridentate Pincers: A Review Rosita Diana and Barbara Panunzi * Department of Agriculture, University of Napoli Federico II, via Università 100, 80055 Portici NA, Italy; [email protected] * Correspondence: [email protected] Academic Editors: Jorge Bañuelos Prieto and Ugo Caruso Received: 6 October 2020; Accepted: 25 October 2020; Published: 28 October 2020 Abstract: Tridentate ligands are simple low-cost pincers, easy to synthetize, and able to guarantee stability to the derived complexes. On the other hand, due to its unique mix of structural and optical properties, zinc(II) ion is an excellent candidate to modulate the emission pattern as desired. The present work is an overview of selected articles about zinc(II) complexes showing a tuned fluorescence response with respect to their tridentate ligands. A classification of the tridentate pincers was carried out according to the binding donor atom groups, specifically nitrogen, oxygen, and sulfur donor atoms, and depending on the structure obtained upon coordination. Fluorescence properties of the ligands and the related complexes were compared and discussed both in solution and in the solid state, keeping an eye on possible applications. Keywords: zinc ion; fluorescence; tridentate ligand 1. Introduction Over the past 20 years, fluorescence-responsive compounds are increasingly required for many technological applications, from lighting and switch devices to bio-imaging and analytical probes. Materials based on transition metal complexes were advantageously utilized. In this area, interest is growing in the abundant, less expensive, and environmentally “green” zinc(II) metal cation. Today, science is in great demand to address the challenge of sustainability.
    [Show full text]
  • Characterization and Catalytic Activity of Mn(Salen)
    IOSR Journal of Applied Chemistry (IOSR-JAC) e-ISSN: 2278-5736.Volume 8, Issue 1 Ver. I. (Jan. 2015), PP 36-45 www.iosrjournals.org Characterization and catalytic activity of Mn (salen) immobilized on silica by various strategies Tesnime Abou Khalil1, Semy Ben Chaabene1, Souhir boujday2,3, 1,4 Latifa Bergaoui 1Université Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de chimie des matériaux et catalyse, 2092, Tunis, Tunisie. 2Sorbonne Universités, UPMC Univ Paris 6, UMR CNRS 7197, Laboratoire de Réactivité de Surface, F75005Paris, France. 3CNRS, UMR 7197, Laboratoire de Réactivité de Surface, F75005 Paris, France. 4Carthage University, INSAT, Department of Biological and Chemical Engineering, Centre Urbain Nord BP 676, 1080 Tunis, Cedex, Tunisia. Abstract: Different strategies were applied to prepare supported Mn(salen) on fumed silica and to explore the effect of the interaction nature between the active sites and the surface on the catalytic activity. Direct and multistep grafting methods were used: the silica surface was silylated and the metal complex was modified in order to achieve different metal complex/surface interactions. In the speculated strategy, the covalent binding was provided through a cross linker. The resulting systems were characterized by IR in diffuse reflexion mode (DRIFT), thermogravimetric analysis (TG) and chemical analysis. Then, homogenous and heterogeneous catalysts were used for cyclohexene oxidation with tert-Butyl hydroperoxide (TBHP). Results show that organo- metalic complexes are not totally stable during the immobilization procedure when the surface is previously functionalized. The heterogeneous catalyst efficiency is more dependent on the preparation way rather than on the amount of manganese at the surface.
    [Show full text]
  • Redalyc.Immobilization of Jacobsen Type Catalysts on Modified Silica
    Revista Facultad de Ingeniería Universidad de Antioquia ISSN: 0120-6230 [email protected] Universidad de Antioquia Colombia Cubillos, Jairo; Grajales, Edwing; Vásquez, Santiago; Montes de Correa, Consuelo Immobilization of Jacobsen type catalysts on modified silica Revista Facultad de Ingeniería Universidad de Antioquia, núm. 57, enero, 2011, pp. 38-48 Universidad de Antioquia Medellín, Colombia Available in: http://www.redalyc.org/articulo.oa?id=43021212005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Rev. Fac. Ing. Univ. Antioquia N.° 57 pp. 38-48. Enero, 2011 Immobilization of Jacobsen type catalysts on modified silica Inmovilización de catalizadores tipo Jacobsen en sílica modificada Jairo Cubillos1*, Edwing Grajales2, Santiago Vásquez2, Consuelo Montes de Correa2 1Escuela de Ciencias Químicas, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia-UPTC. Avenida Central del Norte- Tunja, Boyacá, Colombia. 2Grupo Catálisis Ambiental, Facultad de Ingeniería, Universidad de Antioquia, Apartado Aéreo 1226, Medellín, Colombia (Recibido el 26 de enero de 2010. Aceptado el 15 de octubre de 2010) Abstract Several immobilized Jacobsen type catalysts were covalently anchored on modified SiO2 using 3-aminopropyltriethoxysilane (3-APTES) as a reactive surface modifier. Characterization of the heterogeneous catalysts, as well as their precursors, by FTIR, DR UV–VIS, TGA and AAS confirms the successful immobilization of chiral Mn(III) salen complexes. These catalysts were examined for the diastereoselective epoxidation of R-(+)-limonene with in situ generated dimethyldioxirane (DMD) as oxidizing agent, yielding 1,2-epoxide as the main product.
    [Show full text]
  • Page 1 of 35 Dalton Transactions
    Dalton Transactions Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/dalton Page 1 of 35 Dalton Transactions Synthesis and aggregation behaviour of luminescent mesomorphic zinc(II) complexes with ‘salen’ type asymmetric Schiff base ligand Sutapa Chakraborty, a Chira R. Bhattacharjee,* a Paritosh Mondal, a S. Krishna Prasad, b and D. S. Shankar Rao b a Department of Chemistry, Assam University, Silchar 788011, Assam, India. b Centre for Nano and Soft Matter Sciences, Jalahalli, Bangalore 560013, India. * Corresponding author. Tel.: +91-03842-270848; fax: +91-03842-270342 Email: [email protected] Manuscript Accepted Transactions Dalton 1 Dalton Transactions Page 2 of 35 Table of Contents Synthesis and aggregation behaviour of luminescent mesomorphic zinc(II) complexes with ‘salen’ type asymmetric Schiff base ligand Sutapa Chakraborty, a Chira R.
    [Show full text]
  • (PGM) Coordinated by Imine Schiff Base Ligands
    International Journal of Molecular Sciences Review Homo- and Hetero-Oligonuclear Complexes of Platinum Group Metals (PGM) Coordinated by Imine Schiff Base Ligands Barbara Miroslaw Department of General and Coordination Chemistry and Crystallography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. Marii Curie-Sklodowskiej 3, 20-031 Lublin, Poland; [email protected]; Tel.: +48-815-375-582 Received: 30 April 2020; Accepted: 13 May 2020; Published: 15 May 2020 Abstract: Chemistry of Schiff base (SB) ligands began in 1864 due to the discovery made by Hugo Schiff (Schiff, H., Justus Liebigs Ann. der Chemie 1864, 131 (1), 118–119). However, there is still a vivid interest in coordination compounds based on imine ligands. The aim of this paper is to review the most recent concepts on construction of homo- and hetero-oligonuclear Schiff base coordination compounds narrowed down to the less frequently considered complexes of platinum group metals (PGM). The combination of SB and PGM in oligonuclear entities has several advantages over mononuclear or polynuclear species. Such complexes usually exhibit better electroluminescent, magnetic and/or catalytic properties than mononuclear ones due to intermetallic interactions and frequently have better solubility than polymers. Various construction strategies of oligodentate imine ligands for coordination of PGM are surveyed including simple imine ligands, non-innocent 1,2-diimines, chelating imine systems with additional N/O/S atoms, classic N2O2-compartmental Schiff bases and their modifications resulting in acyclic fused ligands, macrocycles such as calixsalens, metallohelical structures, nano-sized molecular wheels and hybrid materials incorporating mesoionic species. Co-crystallization and formation of metallophilic interactions to extend the mononuclear entities up to oligonuclear coordination species are also discussed.
    [Show full text]
  • Synthesis, Characterisation and Cytotoxic
    Synthesis, characterisation and cytotoxic activity evaluation of new metal-salen complexes based on the 1,2-bicyclo[2.2.2]octane bridge Pierre Milbeo, François Quintin, Laure Moulat, Claude Didierjean, Jean Martinez, Xavier Bantreil, Monique Calmès, Frédéric Lamaty To cite this version: Pierre Milbeo, François Quintin, Laure Moulat, Claude Didierjean, Jean Martinez, et al.. Syn- thesis, characterisation and cytotoxic activity evaluation of new metal-salen complexes based on the 1,2-bicyclo[2.2.2]octane bridge. Tetrahedron Letters, Elsevier, 2021, 63, pp.152706. 10.1016/j.tetlet.2020.152706. hal-03103305 HAL Id: hal-03103305 https://hal.archives-ouvertes.fr/hal-03103305 Submitted on 22 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Tetrahedron Letters 63 (2021) 152706 Contents lists available at ScienceDirect Tetrahedron Letters journal homepage: www.elsevier.com/locate/tetlet Synthesis, characterisation and cytotoxic activity evaluation of new metal-salen complexes based on the 1,2-bicyclo[2.2.2]octane bridge Pierre Milbeo a, François Quintin a, Laure Moulat a, Claude Didierjean b, Jean Martinez a, Xavier Bantreil a, ⇑ Monique Calmès a, Frédéric Lamaty a, a IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France b Université de Lorraine, CNRS, CRM2, Nancy, France article info abstract Article history: (R)-1,2-Diaminobicyclo[2.2.2]octane was used as a starting material for the preparation, in solution or in Received 25 September 2020 a ball mill, of a salen ligand.
    [Show full text]
  • Study of Ligand Substituent Effects on the Rate and Stereoselectivity Of
    Study of ligand substituent effects on the rate SPECIAL FEATURE and stereoselectivity of lactide polymerization using aluminum salen-type initiators Pimpa Hormnirun, Edward L. Marshall, Vernon C. Gibson*, Robert I. Pugh, and Andrew J. P. White Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AY, United Kingdom Edited by Tobin J. Marks, Northwestern University, Evanston, IL, and approved June 26, 2006 (received for review April 5, 2006) -A series of aluminum salen-type complexes [where salen is N,N؅ bis(salicylaldimine)-1,2-ethylenediamine] bearing ligands that dif- fer in their steric and electronic properties have been synthesized and investigated for the polymerization of rac-lactide. X-ray crystal structures on key precatalysts reveal metal coordination geome- tries intermediate between trigonal bipyramidal and square-based pyramidal. Both the phenoxy substituents and the backbone linker have a significant influence over the polymerization. Electron- withdrawing groups attached to the phenoxy donor generally gave an increased polymerization rate, whereas large ortho sub- stituents generally slowed down the polymerization. The vast majority of the initiators afforded polylactide with an isotactic bias; only one exhibited a bias toward heteroselectivity. Isoselec- tivity generally increases with increased flexibility of the backbone CHEMISTRY linker, which is presumed to be better able to accommodate any potential steric clashes between the propagating polymer chain, the inserting monomer unit, and the substituents on the phenoxy donor. catalysis ͉ polyesters n recent years, Al(salen) complexes [where salen is N,NЈ- Ibis(salicylaldimine)-1,2-ethylenediamine] have been widely in- vestigated for their ability to initiate the stereocontrolled poly- merization of lactide (LA) (1–17) to give a material, polylactide (PLA), which has a range of biomedical, pharmaceutical, and agricultural applications (18–21).
    [Show full text]
  • The Design of New Ligands and Transition Metal Compounds
    THE DESIGN OF NEW LIGANDS AND TRANSITION METAL COMPOUNDS FOR THE OXIDATION OF ORGANIC COMPOUNDS A Dissertation by JOSEPH MICHAEL GRILL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2006 Major Subject: Chemistry THE DESIGN OF NEW LIGANDS AND TRANSITION METAL COMPOUNDS FOR THE OXIDATION OF ORGANIC COMPOUNDS A Dissertation by JOSEPH MICHAEL GRILL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Stephen A. Miller Committee Members, David E. Bergbreiter Marcetta Y. Darensbourg Dragomir B. Bukur Head of the Department, Emile A. Schweikert August 2006 Major Subject: Chemistry iii ABSTRACT The Design of New Ligands and Transition Metal Compounds for the Oxidation of Organic Compounds. (August 2006) Joseph Michael Grill, B.S., University of Illinois at Urbana-Champaign Chair of Advisory Committee: Dr. Stephen A. Miller A review of metal-mediated epoxidation is given. Jacobsen’s catalyst and the Sharpless asymmetric epoxidation catalyst are discussed. The origins of enantio- selectivity are explained using stereochemical models. Several new salen-type ligands were synthesized based on biphenol and binaphthol. The synthesis of these ligands and their subsequent coordination to transition metals were described. The transition metal complexes were structurally characterized by X-ray diffraction of single crystals. The manganese (III) complexes were evaluated for catalytic activity in epoxidation reactions. Despite the fact that these many of these complexes were optically active, little asymmetric induction was observed in any of the epoxidation reactions.
    [Show full text]
  • Download Article (PDF)
    Pure Appl. Chem., Vol. 81, No. 7, pp. 1279–1296, 2009. doi:10.1351/PAC-CON-08-09-07 © 2009 IUPAC, Publication date (Web): 29 June 2009 Vanadium-salen and -salan complexes: Characterization and application in oxygen- transfer reactions* Pedro Adão1, Mannar R. Maurya2, Umesh Kumar2, Fernando Avecilla3, Rui T. Henriques1, Maxim L. Kusnetsov1, João Costa Pessoa1,‡, and Isabel Correia1,‡ 1Centro Química Estrutural, Instituto Superior Técnico, TU Lisbon, Av. Rovísco Pais, 1049-001 Lisbon, Portugal; 2Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India; 3Departamento de Química Fundamental, Universidade da Coruña, Campus da A Zapateira, 15071, A Coruña, Spain Abstract: Salen complexes are a versatile and standard system in oxidation catalysis. Their reduced derivatives, called salan, share their versatility but are still widely unexplored. We report the synthesis of a group of new vanadium-salen and -salan complexes, their charac- terization and application in the oxidation of simple organic molecules with H2O2. The lig- ands are derived from pyridoxal and chiral diamines (1,2-diaminocyclohexane and 1,2-diphenylethylenediamine) and were easily obtained in high yields. The VIV complexes were prepared and characterized in the solid state (Fourier transform infrared, FTIR, and magnetic properties) and in solution by spectroscopic techniques: UV–vis, circular dichro- ism (CD), electron paramagnetic resonance (EPR), and 51V NMR, which provide informa- tion on the coordination geometry. Single crystals suitable for X-ray diffraction studies were obtained from solutions containing the VIV-pyr(S,S-chan) complex: [VVO{pyr(S,S- ؒ μ chen)}]2( -O)2 2(CH3)2NCHO, where the ligand is the “half” Schiff base formed by pyri- V μ V doxal and 1S,2S-diaminocyclohexane.
    [Show full text]
  • DETECTION of SALEN-TYPE TRACERS for SUBTERRANEAN FLUID FLOW MONITORING USING SURFACE- ENHANCED RAMAN SPECTROSCOPY Jenny C
    University of New Mexico UNM Digital Repository Chemistry ETDs Electronic Theses and Dissertations Spring 5-12-2018 DETECTION OF SALEN-TYPE TRACERS FOR SUBTERRANEAN FLUID FLOW MONITORING USING SURFACE- ENHANCED RAMAN SPECTROSCOPY Jenny C. Sanchez University of New Mexico Follow this and additional works at: https://digitalrepository.unm.edu/chem_etds Part of the Inorganic Chemistry Commons, and the Physical Chemistry Commons Recommended Citation Sanchez, Jenny C.. "DETECTION OF SALEN-TYPE TRACERS FOR SUBTERRANEAN FLUID FLOW MONITORING USING SURFACE-ENHANCED RAMAN SPECTROSCOPY." (2018). https://digitalrepository.unm.edu/chem_etds/88 This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Chemistry ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Jenny C. Sanchez Candidate Chemistry and Chemical Biology Department This thesis is approved, and it is acceptable in quality and form for publication: Approved by the Thesis Committee: Richard A. Kemp, Chairperson Terefe G. Habteyes Ramesh Giri i DETECTION OF SALEN-TYPE TRACERS FOR SUBTERRANEAN FLUID FLOW MONITORING USING SURFACE-ENHANCED RAMAN SPECTROSCOPY by JENNY C. SANCHEZ B.S., NEW MEXICO STATE UNIVERSITY, 2004 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Chemistry The University of New Mexico Albuquerque, New Mexico May, 2018 ii DEDICATION This work is lovingly dedicated to my little sister, Vivian. iii ACKNOWLEDGEMENTS I gratefully acknowledge my co-advisors, Dr. Richard Kemp and Dr. Terefe Habteyes, for their support and patience during my time working on this research project.
    [Show full text]
  • Synthesis, Reactivity, and Coordination Chemistry
    SYNTHESIS, REACTIVITY, AND COORDINATION CHEMISTRY RELEVANT TO THE COPOLYMERIZATION OF CO2 AND EPOXIDES BY FIRST ROW TRANSITION METAL SCHIFF BASE COMPLEXES A Dissertation by ERIC BENJAMIN FRANTZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2008 Major Subject: Chemistry SYNTHESIS, REACTIVITY, AND COORDINATION CHEMISTRY RELEVANT TO THE COPOLYMERIZATION OF CO2 AND EPOXIDES BY FIRST ROW TRANSITION METAL SCHIFF BASE COMPLEXES A Dissertation by ERIC BENJAMIN FRANTZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Donald J. Darensbourg Committee Members, Abraham Clearfield Edward D. Harris Francois P. Gabbai Head of Department, David H. Russell August 2008 Major Subject: Chemistry iii ABSTRACT Synthesis, Reactivity, and Coordination Chemistry Relevant to the Copolymerization of CO2 and Epoxides by First Row Transition Metal Schiff Base Complexes. (August 2008) Eric Benjamin Frantz, B.S., University of Houston Chair of Advisory Committee: Dr. Donald J. Darensbourg Excepting agricultural based products, which themselves require a great deal of energy to produce, our supply of natural resources such as minerals, metal ore, fresh water, coal, oil and natural gas are all limited in supply. The depletion of these substances is imminent and this knowledge weighs heavily on humankind. The utilization of CO2 for the production of polycarbonates is one attempt at exploiting a profoundly abundant and renewable resource. The importance of research in this and similar fields justifies the detailed study of the chemicals and procedures involved with this chemistry.
    [Show full text]
  • Bis(Salicylidene)-1,3-Propanediamine (Ni-Salpn)
    Electrochimica Acta 178 (2015) 80–91 Contents lists available at ScienceDirect Electrochimica Acta j ournal homepage: www.elsevier.com/locate/electacta Nickel-N,N’–bis(salicylidene)-1,3-propanediamine (Ni-Salpn) film-modified electrodes. Influence of electrodeposition conditions and of electrode material on electrochemical behaviour in aqueous solution a,b b c a Cibely S. Martin , Carla Gouveia-Caridade , Frank N. Crespilho , Carlos J.L. Constantino , b,∗ Christopher M.A. Brett a Departamento de Física, Química e Biologia, Faculdade de Ciências e Tecnologia, UNESP Univ Estadual Paulista, Presidente Prudente-SP, Brazil b Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal c Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos-SP, Brazil a r t i c l e i n f o a b s t r a c t Article history: Modified electrodes based on films of Schiff base complexes are excellent candidates for sensing appli- Received 11 June 2015 cations. The influence of the electrode material, glassy carbon, platinum, gold or indium tin oxide, Received in revised form 20 July 2015 on the electrodeposition of nickel-N,N’–bis(salicylidene)-1,3-propanediamine (Ni-Salpn) films in 1,2- Accepted 21 July 2015 dichloroethane (DCE) was investigated, and their electrochemical behaviour was evaluated by cyclic Available online 26 July 2015 voltammetry and electrochemical impedance spectroscopy. The effect of the electrodeposition poten- tial and electrodeposition time on the electrochemical behaviour of Ni-Salpn was examined using glassy Keywords: carbon as substrate. The film growth process was investigated using the electrochemical quartz crys- Ni-Salpn films Electrodeposition tal microbalance and UV-vis absorption spectroscopy and structural differences between the Ni-Salpn complex and the Ni-Salpn film were examined by micro-Raman spectroscopy.
    [Show full text]