Polynomial Statistics, Necklace Polynomials, and the Arithmetic Dynamical Mordell-Lang Conjecture by Trevor Hyde A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mathematics) in The University of Michigan 2019 Doctoral Committee: Professor Jeffrey Lagarias, Co-Chair Professor Michael Zieve, Co-Chair Professor Kartik Prasanna Professor John Schotland Professor John Stembridge Trevor Hyde
[email protected] ORCID 0000-0002-9380-1928 © Trevor Hyde 2019 Dedication This thesis is dedicated to Aarthi and my parents Steve and Kathy. Thank you for all the years of unwavering love and support. ii Acknowledgments The author is grateful for the guidance and encouragement of his advisers Jeff Lagarias and Mike Zieve. I am also happy to thank Weiyan Chen, Benson Farb, Nir Gadish, Jonathan Gerhard, Ofir Gorodetsky, Rafe Jones, Bob Lutz, Andy Odesky, Karen Smith, Sheila Sundaram and Phil Tosteson for their help with and interest in my work over the past six years. The author was supported by NSF grant DMS-1162181 in the summer of 2017, the Rackham One-Term Dissertation Fellowship in the winter of 2017, the NSF grant DMS- 1701576 in the summer of 2018, and the Rackham Predoctoral Fellowship for the 2018-19 academic year. iii List of Figures 4.1 2-colorings of S3............................... 96 4.2 All primitive 2-colorings of S3........................ 96 iv List of Tables 2.1 Expected values of quadratic excess. 20 3.1 Low degree terms of M3;n¹qº......................... 35 3.2 First moments of linear factor statistic. 39 v Table of Contents Dedication . ii Acknowledgements .