A Revision of the Pachydactylus Serval and P. Weberi Groups (Reptilia: Gekkota: Gekkonidae) of Southern Africa, with the Description of Eight New Species

Total Page:16

File Type:pdf, Size:1020Kb

A Revision of the Pachydactylus Serval and P. Weberi Groups (Reptilia: Gekkota: Gekkonidae) of Southern Africa, with the Description of Eight New Species See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/229042874 A revision of the Pachydactylus serval and P. weberi groups (Reptilia: Gekkota: Gekkonidae) of Southern Africa, with the description of eight new species Article · January 2006 CITATIONS READS 18 419 3 authors: A. M. Bauer Trip Lamb Villanova University East Carolina University 661 PUBLICATIONS 10,121 CITATIONS 82 PUBLICATIONS 4,569 CITATIONS SEE PROFILE SEE PROFILE William R Branch Nelson Mandela University 265 PUBLICATIONS 4,667 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Journal of Animal Diversity (http://jad.lu.ac.ir) View project Trachylepis systematics View project All content following this page was uploaded by Trip Lamb on 03 September 2014. The user has requested enhancement of the downloaded file. PROCEEDINGS OF THE CALIFORNIA ACADEMY OF SCIENCES Fourth Series Volume 57, No. 23, pp. 595–709, 124 figs., Appendix (9 tables). September 15, 2006 A Revision of the Pachydactylus serval and P. weberi Groups (Reptilia: Gekkota: Gekkonidae) of Southern Africa, with the Description of Eight New Species Aaron M. Bauer1,4,Trip Lamb2, and William R. Branch3 1Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, USA; Email: [email protected]; 2Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA; Email: [email protected]; 3Port Elizabeth Museum, P.O. Box 13147, Humewood 6013, Republic of South Africa; Email: [email protected] The Pachydactylus serval and weberi groups constitute a clade of small to moderate sized (typically 40–50 mm SVL), mostly rupicolous geckos that are distributed wide- ly in western South Africa and Namibia, with scattered populations in eastern Namibia and adjacent northwestern Botswana. The taxonomic status of many of the described members of these groups has long been unresolved, and numerous subtly divergent populations have been identified since the last revisionary work was under- taken. Examination of more than 1800 specimens referable to these species groups permits recognition of at least 21 species, clearly divisible into serval and weberi sub- clades. Within these clades, most species are highly morphologically conservative, although there are diagnostic differences in a number of characters, most notably juvenile color pattern. The species boundaries so revealed are supported by phyloge- netic evidence from the cytochrome b mitochondrial gene. The validity of the current- ly recognized species in the P. serval/weberi clade (P. serval, P. weberi, P. fasciatus, P. tsodiloensis, P. waterbergensis) is confirmed, and the taxa P. purcelli, P. acuminatus, P. werneri are elevated from synonymy or subspecific rank to full species. Pachydactylus robertsi, recently removed from the synonymy of P. scutatus, and P. kobosensis are confirmed as valid members of the P. weberi group. Pachydactylus sansteynae, origi- nally described as a subspecies of P. serval, is a valid species but is not a member of P. serval/weberi clade. Pachydactylus montanus is a senior subjective synonym of P. onscepensis and is raised from the synonymy of P. serval. A genetically diverse taxon, P. montanus may include more than one biological species. In addition, eight new species are described and the existence of two additional taxa, each currently known from limited material, is noted. The areas of greatest diversity for the clade as a whole are along the lower Orange River and in southern Namibia. Both the Richtersveld/ Hunsberg region in the west and the Karasberge in the east harbor at least five species in the P. serval/weberi clade. The evolutionary history of the group is proba- bly associated with the fragmentation of rocky substrates and the historical isolation of some regions by changing paleopositions of the drainage of the Orange River. Distribution patterns of geckos in this clade are coincident with those of cordylids and scorpions and together, these groups — all of which have explicit hypotheses of relationships — provide a possible basis for a fine-scaled biogeographic analysis of western portions of the southern African subcontinent. KEY WORDS: Gekkonidae, Pachydactylus, systematics, species description, Namibia, South Africa, molecular phylogeny, biogeography 4 Research Associate, Department of Herpetology, California Academy of Sciences. 595 596 PROCEEDINGS OF THE CALIFORNIA ACADEMY OF SCIENCES Fourth Series, Volume 57, No. 23 The monophyly of the southern African Pachydactylus group of geckos has long been recog- nized on the basis of the unique hyperphalangic condition of digit I of the manus and pes (Haacke 1968, 1976; Russell 1972; Joger 1985; Bauer 1990; Kluge and Nussbaum 1995). Monophyly of Pachydactylus itself, however, has been questioned on the grounds that: 1) it is made paraphyletic by its inclusion of the highly specialized taxa Colopus, Palmatogecko (including Kaokogecko) and Chondrodactylus, and 2) the precloacal pore-bearing P. tuberculosus and P. tetensis are basal to the remainder of Pachydactylus plus Rhoptropus (e.g., Joger 1985). The latter hypothesis has been rejected on the grounds of morphological, allozyme, and molecular evidence that supports Rhoptropus as the sister group of Pachydactylus sensu lato (Bauer and Good 1996; Lamb and Bauer 2001, 2002). The paraphyly of Pachydactylus relative to the burrowing genera Colopus, Palmato- gecko, and Chondrodactylus was raised as a possibility by Haacke (1976) and explicitly proposed by Joger (1985). Bauer (1990) and Kluge and Nussbaum (1995) accepted Joger’s interpretation as likely, but their own analyses were at the generic level and thus incapable of corroborating generic paraphyly. Recently, however, a phylogenetic analysis of the southern African Pachydactylus group based on mitochondrial and nuclear DNA sequence data (Bauer and Lamb 2005; Lamb and Bauer 2006) has confirmed Joger’s (1985) hypothesis and demonstrated that each of the burrowing gecko genera evolved independently within Pachydactylus. Among the taxonomic consequences of this work has been the allocation of several species of Pachydactylus to the genera Elasmodactylus, Chondrodactylus and Colopus. Nonetheless, Pachydactylus remains the most speciose genus of southern African geckos. Within Pachydactylus sensu stricto, a number of species groups have been recognized on the basis of overall morphological similarity (e.g., McLachlan and Spence 1966; Broadley 1977). Several of these groups have been reexamined using combinations of morphological, allozyme, and DNA sequence data, resulting in both the confirmation of the monophyly of these groups and in the recognition of additional species level taxa. In particular, the P. rugosus group, P. capensis group, P. scutatus group, and P. namaquensis group have been the subject of recent reviews and revisions (Branch et al. 1996; Lamb and Bauer 2000; Bauer and Lamb 2002; Bauer et al. 2002; Broadley 2003). The monophyly of all of these groups has been corroborated in two recent molecular phylo- genies (Bauer and Lamb 2005; Lamb and Bauer 2006). In these, the most complete phylogenetic analyses to date, the Pachydactylus serval/weberi group (McLachlan and Spence 1966) was revealed to be the sister group of the P. capensis group. The serval/weberi group has been among the most problematic components of Pachydactylus and, until now, species boundaries within this group have defied resolution. Members of the group are relatively small (typically < 50 mm SVL), primarily rock-dwelling geckos with relatively flat- tened bodies, distributed from the Western Cape Province of South Africa through northern Namibia. Despite being widespread and locally abundant, these geckos have had a long history of taxonomic confusion, stemming in part from the poor sampling that characterized most southern African geckos until the middle third of the 20th century, when V. F. FitzSimons of the Transvaal Museum made important collections throughout much of the arid zones of southwestern Africa. At present only two species, P. weberi Roux, 1907 and P. serval Werner, 1910, are recognized by most authors (e.g., Branch 1998; Griffin 2003), and the non-nominate subspecies P. serval purcelli, P. s. onscepensis, P. weberi acuminatus, and P. w. werneri are sometimes regarded as valid (e.g., Kluge 2001). Pachydactylus sansteynae (formerly sansteyni, see Michels and Bauer 2004) was initially described as a subspecies of P. serval (Steyn and Mitchell 1967) but has long been recognized as specifically distinct (Branch 1988). Most recently, P. robertsi, formerly regarded as a subspecies of P. scutatus, has been demonstrated to be closely allied to the P. weberi complex (Bauer et al. 2002). BAUER ET AL.: REVISION OF PACHYDACTYLUS SERVAL AND P. WEBERI GECKOS 597 HISTORICAL RESUMÉ OF THE P. SERVAL AND P. WEBERI GROUPS TO 1943.— Prior to the major revisionary works of FitzSimons (1943) and Loveridge (1947), a great deal of taxonomic confusion existed with respect to various members of the P. serval and P. weberi groups and other small-bod- ied Pachydactylus (sensu Lamb and Bauer 2002). The first specimens referable to the weberi group were reported by Peters (1867), who identified two specimens (ZMB 5711) from Neu Barmen (now Gross Barmen, Namibia) as P. capensis. One of these was subsequently identified as P. formosus by Sternfeld (1911a) and was only much later (Loveridge 1947; Mertens 1955) correctly identified
Recommended publications
  • 6 the Environments Associated with the Proposed Alternative Sites
    6 THE ENVIRONMENTS ASSOCIATED WITH THE PROPOSED ALTERNATIVE SITES The purpose of this section is to describe the environments associated with the proposed alternative sites. The information contained herein was extracted from the relevant specialist studies. Please refer to Section 3.5 for a list of all the relevant specialists and their fields of expertise and to Appendix E for the original specialist reports. 6.1 Brazil Site 6.1.1 Physical (a) Location The Brazil site is situated in the Kleinzee / Nolloth region of the Northern Cape, within the jurisdiction of the Nama-Khoi Municipality ( Figure 16). The site has the following co-ordinates: 29°48’51.40’’S and 17°4’42.21’’E. The Brazil site is situated approximately 500 km north of Cape Town and 100 km west-southwest of Springbok. Kleinzee is located 15 km north, Koiingnaas is 90 km south and Kamieskroon is located 90 km southeast of the Brazil site. Figure 16: Location of the proposed Brazil site in relation to the surrounding areas (Bulman, 2007) Nuclear 1 EIA: Final Scoping Report Eskom Holdings Limited 6-1 Issue 1.0 / July 2008 (b) Topography The topography in the Brazil region is largely flat, with only a gentle slope down to the coast. The coast is composed of both sandy and rocky shores. The topography is characterised by a small fore-dune complex immediately adjacent to the coast with the highest elevation of approximately nine mamsl. Further inland the general elevation depresses to about five mamsl in the middle of the study area and then gradually rises towards the east.
    [Show full text]
  • African Herp News
    African Herp News Newsletter of the Herpetological Association of Africa Number 59 APRIL 2013 HERPETOLOGICAL ASSOCIATION OF AFRICA http://www. wits.ac.za/haa FOUNDED 1965 The HAA is dedicated to the study and conservation of African reptiles and amphibians. Membership is open to anyone with an interest in the African herpetofauna. Members receive the Association’s journal, African Journal of Herpetology (which publishes review papers, research articles, and short communications – subject to peer review) and African Herp News, the Newsletter (which includes short communications, natural history notes, geographical distribution notes, herpetological survey reports, venom and snakebite notes, book reviews, bibliographies, husbandry hints, announcements and news items). NEWSLETTER EDITOR’S NOTE Articles shall be considered for publication provided that they are original and have not been published elsewhere. Articles will be submitted for peer review at the Editor’s discretion. Authors are requested to submit manuscripts by e-mail in MS Word ‘.doc’ or ‘.docx’ format. COPYRIGHT: Articles published in the Newsletter are copyright of the Herpetological Association of Africa and may not be reproduced without permission of the Editor. The views and opinions expressed in articles are not necessarily those of the Editor. COMMITTEE OF THE HERPETOLOGICAL ASSOCIATION OF AFRICA CHAIRMAN Aaron Bauer, Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, USA. [email protected] SECRETARY Jeanne Tarrant, African Amphibian Conservation Research Group, NWU. 40A Hilltop Road, Hillcrest 3610, South Africa. [email protected] TREASURER Abeda Dawood, National Zoological Gardens, Corner of Boom and Paul Kruger Streets, Pretoria 0002, South Africa. [email protected] JOURNAL EDITOR John Measey, Applied Biodiversity Research, Kirstenbosch Research Centre, South African Biodiversity Institute, P/Bag X7, Claremont 7735, South Africa.
    [Show full text]
  • Addo Elephant National Park Reptiles Species List
    Addo Elephant National Park Reptiles Species List Common Name Scientific Name Status Snakes Cape cobra Naja nivea Puffadder Bitis arietans Albany adder Bitis albanica very rare Night adder Causes rhombeatus Bergadder Bitis atropos Horned adder Bitis cornuta Boomslang Dispholidus typus Rinkhals Hemachatus hemachatus Herald/Red-lipped snake Crotaphopeltis hotamboeia Olive house snake Lamprophis inornatus Night snake Lamprophis aurora Brown house snake Lamprophis fuliginosus fuliginosus Speckled house snake Homoroselaps lacteus Wolf snake Lycophidion capense Spotted harlequin snake Philothamnus semivariegatus Speckled bush snake Bitis atropos Green water snake Philothamnus hoplogaster Natal green watersnake Philothamnus natalensis occidentalis Shovel-nosed snake Prosymna sundevalli Mole snake Pseudapsis cana Slugeater Duberria lutrix lutrix Common eggeater Dasypeltis scabra scabra Dappled sandsnake Psammophis notosticus Crossmarked sandsnake Psammophis crucifer Black-bellied watersnake Lycodonomorphus laevissimus Common/Red-bellied watersnake Lycodonomorphus rufulus Tortoises/terrapins Angulate tortoise Chersina angulata Leopard tortoise Geochelone pardalis Green parrot-beaked tortoise Homopus areolatus Marsh/Helmeted terrapin Pelomedusa subrufa Tent tortoise Psammobates tentorius Lizards/geckoes/skinks Rock Monitor Lizard/Leguaan Varanus niloticus niloticus Water Monitor Lizard/Leguaan Varanus exanthematicus albigularis Tasman's Girdled Lizard Cordylus tasmani Cape Girdled Lizard Cordylus cordylus Southern Rock Agama Agama atra Burrowing
    [Show full text]
  • Agency for Cultural Resource Management
    Agency for Cultural Resource Management Specialists in Archaeological Studies and Heritage Resource Management No. 5 Stuart Road Rondebosch, 7700 Phone/Fax 021- 685 7589 E-mail: [email protected] Cellular: 082 321 0172 RECOMMENDED EXEMPTION FROMFURTHER ARCHAEOLOGICALSTUDIES: THE PROPOSED NAMAQUA REGIONAL WATER SUPPLY SCHEME BETWEEN HENKRIES AND STEINKOPF, NORTHERN CAPE PROVINCE July 2012 1. OUTLINE OF THE DEVELOPMENT The proposed project entails the replacement of the existing water supply pipeline from Henkries to Steinkopf (Nama Khoi Municipality) in the Namaqualand region of the Northern Cape Province (Figures 1& 2). Henkries is located about 3 kms south of the Orange River, while Steinkopf is located 25 kms north of Springbok, which is about 550 kms north of Cape Town, alongside the N7. A separate application for a new water supply pipeline between Bulletrap and Okiep and between Rooiwinkel and Nababeep has already been subjected to an archaeological impact and scoping assessment (Kaplan 2011a, b).Historically, both Okiep and Nababeep are important towns in the history of copper mining in Namaqualand (Smallberger 1995). The larger project ultimately entails replacing the entire ± 200 km network of water supply pipelines in the region, which extends all the way to Kleinzee on the Richtersveld coast. The existing 200 km long water supply pipeline between Henkries and Kleinzee was installed in 1973 and its condition has deteriorated rapidly since 1992. The pipeline is the main potable water supply pipeline from the Orange River that supplies numerous small towns in the region, including Henkries, Steinkopf, Bulletrap, Nababeep, Okiep, Carolousberg, Concordia, Springbok and Kleinzee. The steel and asbestos pipes have an average age of about 38 years, and most of the distribution pipes are currently in need of urgent repair and replacement as a result of frequent breakages and leakages.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Reptiles and Amphibians of the Goegap Nature Reserve
    their time underground in burrows. These amphibians often leave their burrows after heavy rains that are seldom. Reptiles And Amphibians Of The There are reptiles included in this report, which don’t occur here in Goegap but at the Augrabies Falls NP. So you can find here also the Nile monitor and the flat liz- Goegap Nature Reserve ard. Measuring reptiles By Tanja Mahnkopf In tortoises and terrapins the length is measured at the shell. Straight along the mid- line of the carapace. The SV-Length is the length of head and body (Snout to Vent). In lizards it easier to look for this length because their tail may be a regenerated one Introduction and these are often shorter than the original one. The length that is mentioned for the The reptiles are an ancient class on earth. The earliest reptile fossils are about 315 species in this report is the average to the maximum length. For the snakes I tried to million years old. During the aeons of time they evolved a great diversity of extinct give the total length because it is often impossible to say where the tail begins and and living reptiles. The dinosaurs and their relatives dominated the earth 150 million the body ends without holding the snake. But there was not for every snake a total years ago. Our living reptiles are remnants of that period or from a period after the length available. dinosaurs were extinct. Except of the chameleons (there are only two) you can find all reptiles in the appen- Obviously it looks like reptiles are not as successful as mammals.
    [Show full text]
  • Description of a New Flat Gecko (Squamata: Gekkonidae: Afroedura) from Mount Gorongosa, Mozambique
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320043814 Description of a new flat gecko (Squamata: Gekkonidae: Afroedura) from Mount Gorongosa, Mozambique Article in Zootaxa · September 2017 DOI: 10.11646/zootaxa.4324.1.8 CITATIONS READS 2 531 8 authors, including: William R Branch Jennifer Anna Guyton Nelson Mandela University Princeton University 250 PUBLICATIONS 4,231 CITATIONS 7 PUBLICATIONS 164 CITATIONS SEE PROFILE SEE PROFILE Andreas Schmitz Michael Barej Natural History Museum of Geneva Museum für Naturkunde - Leibniz Institute for Research on Evolution and Biodiver… 151 PUBLICATIONS 2,701 CITATIONS 38 PUBLICATIONS 274 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Monitoring and Managing Biodiversity Loss in South-East Africa's Montane Ecosystems View project Ad hoc herpetofauna observations View project All content following this page was uploaded by Jennifer Anna Guyton on 27 September 2017. The user has requested enhancement of the downloaded file. Zootaxa 4324 (1): 142–160 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4324.1.8 http://zoobank.org/urn:lsid:zoobank.org:pub:B4FF9A5F-94A7-4E75-9EC8-B3C382A9128C Description of a new flat gecko (Squamata: Gekkonidae: Afroedura) from Mount Gorongosa, Mozambique WILLIAM R. BRANCH1,2,13, JENNIFER A. GUYTON3, ANDREAS SCHMITZ4, MICHAEL F. BAREJ5, PIOTR NASKRECKI6,7, HARITH FAROOQ8,9,10,11, LUKE VERBURGT12 & MARK-OLIVER RÖDEL5 1Port Elizabeth Museum, P.O. Box 13147, Humewood 6013, South Africa 2Research Associate, Department of Zoology, Nelson Mandela University, P.O.
    [Show full text]
  • Proposed Aggeneis-Paulputs 400 Kv Transmission Powerline and Substation Upgrades, Namaqua & Siyanda Districts, Northern Cape Province
    PALAEONTOLOGICAL HERITAGE ASSESSMENT: DESKTOP STUDY Proposed AggeneIs-Paulputs 400 kV TransmIssion PowerlIne and SubstatIon Upgrades, Namaqua & SIyanda DistrIcts, Northern Cape ProvInce John E. Almond PhD (Cantab.) Natura Viva cc, PO Box 12410 Mill Street, Cape Town 8010, RSA [email protected] November 2017 EXECUTIVE SUMMARY Eskom is proposing to construct a new 400 kV transmission powerline of about 100 km length between the existing Aggeneis substation near Aggeneys to the existing Paulputs substation near Pofadder, Namaqua & Siyanda Districts, Northern Cape Province. Three route alignments (Corridors 1, 2 & 3) are currently under consideration, with a possible short deviation (3A) in the case of Corridor 3. The electrical infrastructure project will also entail upgrading the existing Aggeneis and Paulputs Substations with concomitant small increases in their footprints. The powerline and substation study area is underlain at depth by igneous and metamorphic basement rocks of Precambrian age as well as by a mantle of varied superficial deposits such as aeolian sands, gravels and alluvium of the Pleistocene to Recent Kalahari Group. In terms of palaeontological sensitivity outcrop areas of basement rocks are negligible while the overlying Late Caenozoic superficial deposits are generally of low to very low sensitivity. No highly-sensitive palaeontological sites or no-go areas have been identified within the 400 kV powerline and substation study area. The ancient Koa River Palaeovalley area near Aggenys, largely buried beneath younger cover sands (Fig. 1), may feature important Tertiary fossils at depth but these are very unlikely to be directly impacted by the shallow excavations envisaged for the present electrical infrastructure project.
    [Show full text]
  • Annotated Checklist and Provisional Conservation Status of Namibian Reptiles
    Annotated Checklist - Reptiles Page 1 ANNOTATED CHECKLIST AND PROVISIONAL CONSERVATION STATUS OF NAMIBIAN REPTILES MICHAEL GRIFFIN BIODIVERSITY INVENTORY MINISTRY OF ENVIRONMENT AND TOURISM PRIVATE BAG 13306 WINDHOEK NAMIBIA Annotated Checklist - Reptiles Page 2 Annotated Checklist - Reptiles Page 3 CONTENTS PAGE ABSTRACT 5 INTRODUCTION 5 METHODS AND DEFINITIONS 6 SPECIES ACCOUNTS Genus Crocodylus Nile Crocodile 11 Pelomedusa Helmeted Terrapin 11 Pelusios Hinged Terrapins 12 Geochelone Leopard Tortoise 13 Chersina Bowsprit Tortoise 14 Homopus Nama Padloper 14 Psammobates Tent Tortoises 15 Kinixys Hinged Tortoises 16 Chelonia GreenTurtle 16 Lepidochelys Olive Ridley Turtle 17 Dermochelys Leatherback Turtle 17 Trionyx African Soft-shelled Turtle 18 Afroedura Flat Geckos 19 Goggia Dwarf Leaf-toed Geckos 20 Afrogecko Marbled Leaf-toed Gecko 21 Phelsuma Namaqua Day Gecko 22 Lygodactylus Dwarf Geckos 23 Rhoptropus Namib Day Geckos 25 Chondrodactylus Giant Ground Gecko 27 Colopus Kalahari Ground Gecko 28 Palmatogecko Web-footed Geckos 28 Pachydactylus Thick-toed Geckos 29 Ptenopus Barking Geckos 39 Narudasia Festive Gecko 41 Hemidactylus Tropical House Geckos 41 Agama Ground Agamas 42 Acanthocercus Tree Agama 45 Bradypodion Dwarf Chameleons 46 Chamaeleo Chameleons 47 Acontias Legless Skinks 48 Typhlosaurus Blind Legless Skinks 48 Sepsina Burrowing Skinks 50 Scelotes Namibian Dwarf Burrowing Skink 51 Typhlacontias Western Burrowing Skinks 51 Lygosoma Sundevall’s Writhing Skink 53 Mabuya Typical Skinks 53 Panaspis Snake-eyed Skinks 60 Annotated
    [Show full text]
  • A New Species of Pachydactylus (Squamata: Gekkonidae) from the Otavi Highlands of Northern Namibia
    Bonn zoological Bulletin Volume 57 Issue 2 pp. 257–266 Bonn, November 2010 A new species of Pachydactylus (Squamata: Gekkonidae) from the Otavi Highlands of northern Namibia Aaron M. Bauer Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, USA; E-mail: [email protected] Abstract. A new species of the “northwestern clade” of Pachydactylus is described from the Otavi Highlands of north- eastern Namibia. It is distinguishable from all other members of this clade and from the superficially similar members of the Pachydactylus serval/weberi group on the basis of its inclusion of the rostral in the nostril rim, the possession of a maximum of only four undivided scansors beneath the digits of the pes, is 16 rows of strongly keeled, rounded, juxta- posed dorsal trunk tubercles, its projecting, keeled, lanceolate caudal tubercles, and its complex dorsal trunk patterning. Its probable closest relative is P. otaviensis, also form the Otavi Highlands. These are the only known endemic reptiles from this dolomitic area and their existence points both to an unappreciated area of diversity and endemism in northeast- ern Namibia and to the need for additional herpetological work in even well-known parts of the country. Key words. Gekkonidae, Pachydactylus, Namibia, new species. INTRODUCTION Pachydactylus Wiegmann, 1834 is the most species-rich northwestern Botswana, and P. otaviensis Bauer, Lamb & genus of geckos in southern Africa, with more than 50 Branch, 2006 and an undescribed species (‘Pachydacty- species currently recognized (Bauer & Lamb 2005; Bauer lus sp. 2’, Bauer et al. 2006a) – both from the Otavi High- et al.
    [Show full text]
  • The Herpetological Journal
    Volume 2, Number 3 July 1992 ISSN 0268-0130 THE HERPETOLOGICAL JOURNAL Published by Indexed in THE BRITISH HERPETOLOGICAL SOCIETY Current Contents The Herpetological Journal is published quarterly by the British Herpetological Society and is issued free to members. Applications to purchase copies and/or for details of membership should be made to the Hon. Secretary, British Herpetological Society, The Zoological Society of London, Regent's Park, London NWl 4RY, U.K. Instructions to authors are printed inside the back cover. All contributions should be addressed to the Editor (address below), Editor: Richard A. Griffiths, The Durrell Institute of Conservation and Ecology, The University of Kent, Canterbury CT2 7NX, U.K. Assistant Editor: Margret M. Bray, Department of Biochemistry and Biological Sciences, Wye College (University of London), Nr. Ashford, Kent, TN25 5AH, UK. Editorial Board: Pim Arntzen (Leicester) Donald Broadley (Zimbabwe) John Cooper (Tanzania) John Davenport (Millport) Tim Halliday (Milton Keynes) Michael Klemens (New York) Colin McCarthy (London) Andrew Milner (London) Henk Strijbosch (Nijmegen) Richard Tinsley (London) BRITISH HERPETOLOGICAL SOCIETY Copyright It is a fundamental condition that submitted manuscripts have not been published and will not be simultaneously submitted or published elsewhere. By submitting a manuscript, the authors agree that the copyright for their article is transferred to the publisher if and when the article is accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and photographic reproductions. Permission for any such activities must be sought in advance from the Editor. ADVERTISEMENTS The Herpetological Journal accepts advertisements subject to approval of contents by the Editor, to whom enquiries should be addressed.
    [Show full text]
  • Navorsinge Van Die Nasionale Museum Bloemfontein
    ISSN 0067-9208 NAVORSINGE VAN DIE NASIONALE MUSEUM BLOEMFONTEIN NATURAL SCIENCES VOLUME 6, PART 7 OCTOBER 1989 TAIL-BREAK FREQUENCY, TAIL SIZE AND THE EXTENT OF CAUDAL AUTOTOMY IN THE CAPE THICK-TOED GECKO, PACHYDACTYLUS CAPENSIS CAPENSIS (SAURIA: GEKKONIDAE) by M.F.BATES National Museum, Bloemfontein (With 8 figures) ABSTRACT Bates, M.F. 1989. Tail-break frequency, tail size and the extent of caudal autotomy in the Cape thick-toed gecko, Pacltydactyllls capensis capensis (Sauria: Gekkonidae). Navors. nas. Mus., Bloemfontein 6(7): 223-242. The tails of geckos in three samples from widely separated areas in southern Africa (I'iz. Botswana/northern Transvaal, Pretoria and Orange Free State) were examined to determine tail-break frequencies, tail size and the extent of caudal autotomy. Tail-break frequencies in all samples. were relatively high (51,5%, 52,9% and 68,8% respectively) when compared to most other African gekkonids and suggest the effectiveness of caudal autotomy for predator escape. There were no broken tails in the smaller specimens of each sample, after which tail-break frequency increased with increasing snout-vent length. The percentage of tail autotomized tends to increase with increasing SVL, suggesting a high occurrence of multiple tail breaks. There was no significant difference in tail­ break frequencies between geckos from two microhabitat types in the Orange Free State. Growth in length of the original tail relative to SVL was symmetric, whereas growth in width of the original tail relati"e to SVL suggested a partial trend towards allometric growth. In a sample of geckos from the O.F.S., 64,1% of all specimens with regenerated or regenerating tails had autotomized over 80% of the tail length, suggesting that caudal autotomy commonly results in the loss of a large proportion of the tail in nature.
    [Show full text]