Black-Silicon Ultraviolet Photodiodes Achieve External Quantum Efficiency Above 130%
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Measurement of Quantum Efficiency of a Photo Diode Using Radiation
Measuring the quantum efficiency of a photo diode using radiation pressure Scott Rager Penn State University Abstract Quantification of the performance of instruments used in taking scientific data is important in determining the amount of error and reliability of the data taken using these instruments. The goal of this project is to measure the quantum efficiency of a photo diode, which describes how well the photo diode converts light photons into electric current. The common method of measuring quantum efficiency utilizes a power meter to measure a laser's power along with the photo diode. This paper describes the theory and implementation of an experiment that attempts to determine quantum efficiency using radiation pressure. This experiment is a novel approach that utilizes a Michelson interferometer and very light mirror with a mass of only 20 mg. If successful, this project will be able to determine the photo diode's quantum efficiency with an error of less than 1 %, a dramatic improvement over the common method of measurement using a power meter. 1. Introduction Experimental scientists rely on a variety of instruments to record data from experiments. Without these instruments, developing and proving scientific theories would be impossible. With modern technology, the ability to develop instruments that exhibit better performance and accuracy has dramatically increased. With any real device, however, some sources of imperfections will always cause a source of error in any experimental data taken. Knowing this fact, scientists need to know the accuracy and the limitations of their data-taking devices in order to have an understanding of how accurate their actual data is. -
Optical Properties of Black Silicon - an Analysis
New Jersey Institute of Technology Digital Commons @ NJIT Theses Electronic Theses and Dissertations Spring 5-31-2015 Optical properties of black silicon - an analysis Suramya Sekhri New Jersey Institute of Technology Follow this and additional works at: https://digitalcommons.njit.edu/theses Part of the Materials Science and Engineering Commons Recommended Citation Sekhri, Suramya, "Optical properties of black silicon - an analysis" (2015). Theses. 244. https://digitalcommons.njit.edu/theses/244 This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve -
Review Application of Nanostructured Black Silicon Jian Lv1, Ting Zhang1, Peng Zhang1, Yingchun Zhao2 and Shibin Li1*
Lv et al. Nanoscale Research Letters (2018) 13:110 https://doi.org/10.1186/s11671-018-2523-4 NANO REVIEW Open Access Review Application of Nanostructured Black Silicon Jian Lv1, Ting Zhang1, Peng Zhang1, Yingchun Zhao2 and Shibin Li1* Abstract As a widely used semiconductor material, silicon has been extensively used in many areas, such as photodiode, photodetector, and photovoltaic devices. However, the high surface reflectance and large bandgap of traditional bulk silicon restrict the full use of the spectrum. To solve this problem, many methods have been developed. Among them, the surface nanostructured silicon, namely black silicon, is the most efficient and widely used. Due to its high absorption in the wide range from UV-visible to infrared, black silicon is very attractive for using as sensitive layer of photodiodes, photodetector, solar cells, field emission, luminescence, and other photoelectric devices. Intensive study has been performed to understand the enhanced absorption of black silicon as well as the response extended to infrared spectrum range. In this paper, the application of black silicon is systematically reviewed. The limitations and challenges of black silicon material are also discussed. This article will provide a meaningful introduction to black silicon and its unique properties. Keywords: Black silicon, High absorption, SF6, Internal quantum efficiency, Application Background With high absorptance in visible and infrared wave- The high reflectance of traditional silicon, which is higher lengths, black silicon can be used in visible and infrared than 40%, severely limits the applications of silicon-based photodetectors, solar cells, night vision cameras, and photon sensitive devices. The large bandgap of 1.07 eV near-infrared (near-IR) avalanche photodiode (APD). -
Recent Progress of Black Silicon: from Fabrications to Applications
nanomaterials Review Recent Progress of Black Silicon: From Fabrications to Applications Zheng Fan 1, Danfeng Cui 1, Zengxing Zhang 1, Zhou Zhao 1, Hongmei Chen 1, Yanyun Fan 1, Penglu Li 1, Zhidong Zhang 1 , Chenyang Xue 1,* and Shubin Yan 2,3,* 1 Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China; [email protected] (Z.F.); [email protected] (D.C.); [email protected] (Z.Z.); [email protected] (Z.Z.); [email protected] (H.C.); [email protected] (Y.F.); [email protected] (P.L.); [email protected] (Z.Z.) 2 The School of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China 3 Zhejiang-Belarus Joint Laboratory of Intelligent Equipment and System for Water Conservancy and Hydropower Safety Monitoring, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China * Correspondence: [email protected] (C.X.); [email protected] (S.Y.) Abstract: Since black silicon was discovered by coincidence, the special material was explored for many amazing material characteristics in optical, surface topography, and so on. Because of the material property, black silicon is applied in many spheres of a photodetector, photovoltaic cell, photo-electrocatalysis, antibacterial surfaces, and sensors. With the development of fabrication technology, black silicon has expanded in more and more applications and has become a research hotspot. Herein, this review systematically summarizes the fabricating method of black silicon, including nanosecond or femtosecond laser irradiation, metal-assisted chemical etching (MACE), reactive ion etching (RIE), wet chemical etching, electrochemical method, and plasma immersion ion implantation (PIII) methods. -
Black Silicon: Fabrication Methods, Properties and Solar Energy Applications Cite This: Energy Environ
Energy & Environmental Science View Article Online REVIEW View Journal | View Issue Black silicon: fabrication methods, properties and solar energy applications Cite this: Energy Environ. Sci.,2014,7, 3223 Xiaogang Liu,ab Paul R. Coxon,c Marius Peters,b Bram Hoex,b Jacqueline M. Cole*ad and Derek J. Frayc Black silicon (BSi) represents a very active research area in renewable energy materials. The rise of BSi as a focus of study for its fundamental properties and potentially lucrative practical applications is shown by several recent results ranging from solar cells and light-emitting devices to antibacterial coatings and gas-sensors. In this paper, the common BSi fabrication techniques are first reviewed, including electrochemical HF etching, stain etching, metal-assisted chemical etching, reactive ion etching, laser irradiation and the molten salt Fray-Farthing-Chen-Cambridge (FFC-Cambridge) process. The utilization of BSi as an anti-reflection coating in solar cells is then critically examined and appraised, based upon strategies towards higher efficiency renewable solar energy modules. Methods of incorporating BSi in advanced solar cell architectures and the production of ultra-thin and flexible BSi wafers are also Creative Commons Attribution 3.0 Unported Licence. surveyed. Particular attention is given to routes leading to passivated BSi surfaces, which are essential for improving the electrical properties of any devices incorporating BSi, with a special focus on atomic layer deposition of Al2O3. Finally, three potential research directions worth exploring for practical solar cell Received 12th April 2014 applications are highlighted, namely, encapsulation effects, the development of micro-nano dual-scale Accepted 1st August 2014 BSi, and the incorporation of BSi into thin solar cells. -
The Renaissance of Dye-Sensitized Solar Cells Brian E
REVIEW ARTICLES | FOCUS FOCUS | REVIEW ARTICLES PUBLISHED ONLINE: 29 FEBRUARY 2012 | DOI: 10.1038/NPHOTON.2012.22 PUBLISHED ONLINE: 29 FEBRUARY 2012 | DOI: 10.1038/NPHOTON.2012.22 The renaissance of dye-sensitized solar cells Brian E. Hardin1, Henry J. Snaith2 and Michael D. McGehee3* Several recent major advances in the design of dyes and electrolytes for dye-sensitized solar cells have led to record power- conversion efficiencies. Donor–pi–acceptor dyes absorb much more strongly than commonly employed ruthenium-based dyes, thereby allowing most of the visible spectrum to be absorbed in thinner films. Light-trapping strategies are also improving photon absorption in thin films. New cobalt-based redox couples are making it possible to obtain higher open-circuit voltages, leading to a new record power-conversion efficiency of 12.3%. Solid-state hole conductor materials also have the potential to increase open-circuit voltages and are making dye-sensitized solar cells more manufacturable. Engineering the interface between the titania and the hole transport material is being used to reduce recombination and thus attain higher photocurrents and open-circuit voltages. The combination of these strategies promises to provide much more efficient and stable solar cells, paving the way for large-scale commercialization. ye-sensitized solar cells (DSCs) are attractive because they components allows for relatively fast diffusion within the mes- are made from cheap materials that do not need to be highly opores, and the two-electron system allows for a greater current purified and can be printed at low cost1. DSCs are unique to be passed for a given electrolyte concentration. -
Anti-Reflectance Investigation of a Micro-Nano Hybrid Structure Fabricated by Dry/Wet Etching Methods
www.nature.com/scientificreports OPEN Anti-refectance investigation of a micro-nano hybrid structure fabricated by dry/wet etching Received: 14 December 2017 Accepted: 2 May 2018 methods Published: xx xx xxxx Xiao Tan1,2,3, Zhi Tao1,2,3, Mingxing Yu1,2,3, Hanxiao Wu1,2,3 & Haiwang Li1,2,3 Black silicon fabrication and manipulation have been well reported by institutes around the world and are quite useful for solar absorption and photovoltaic conversion. In this study, silicon micro-nano hybrid structures were fabricated, and the morphologies of the hybrid structures were analyzed. This paper studied nanostructures formed on tips, pits and a fat surface using a dry etching method and a wet etching method. In terms of nanostructure morphology, nanostructures etched by the wet etching method (13 μm) were taller than those etched by the dry etching method (1 μm), but the wet etched morphology was less organized. After the nanostructures were grown, six samples with nano sturctures and three samples with micro sturctures were measured by a photometer for refectivity testing. The nine samples were compared and analyzed using the integral of refectivity and solar emissivity at the earth’s surface. The results show that the nanostructures grown on a tip surface using the wet etching method had the minimum refectivity in the wavelength range of 300 nm–1100 nm, in consideration of the forbidden energy gap of silicon. Solar cells are essential in applications of energy harvesting and energy storage. To enhance the efciency of a solar cell, low surface refectance of solar cells is required to maximize the number of incident photons absorbed by the semiconductor that converts light to electrical energy. -
Amorphous/Crystalline Silicon Heterojunction Solar Cells with Black Silicon Texture
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HZB Repository Amorphous/crystalline silicon heterojunction solar cells with black silicon texture Mathias Mews,1, a) Caspar Leendertz,1 Michael Algasinger,2 Svetoslav Koynov,2 and Lars Korte1 1)Helmholtz-Zentrum Berlin, Institute of Silicon Photovoltaics, Kekul´estraße 5, D-12489 Berlin, Germany 2)Walter Schottky Institut, Technische Universit¨atM¨unchen,D-85748 Garching, Germany (Dated: 19 December 2017) Excellent passivation of black silicon surfaces by thin amorphous silicon layers deposited with plasma enhanced chemical vapor deposition is demonstrated. Minority charge carrier lifetimes of 1.3 milliseconds, enabling an implied open circuit voltage of 714 mV, were achieved. The influence of amorphous silicon parasitic epitaxial growth and thickness, as well as of the texture depth is investigated. Furthermore quantum efficiency gains for wavelenghts above 600 nm, as compared to random textured solar cells, are demonstrated in 17.2 % efficient amorphous-crystalline silicon-heterojunction solar cells with black silicon texture. I. INTRODUCTION wafers, as described in earlier work8. Only one sample surface was textured, while the other remained planar. The random, high aspect ratio nanoscale surface tex- The samples were stripped of their native oxide in HF ture, which is commonly called black silicon, has excel- (5 %). One nanometer of gold was evaporated, leading lent anti-reflection and light scattering properties and its to isolated gold islands on the samples. Texture etch- successful application on the front surface of solar cells ing was carried out in a 1:5:20 solution of HF (50%), has recently been shown1{3. -
Increasing the Quantum Efficiency of Inas/Gaas QD Arrays for Solar Cells Grown by MOVPE Without Using Strain-Balance Technology Nikolay A
Increasing the quantum efficiency of InAs/GaAs QD arrays for solar cells grown by MOVPE without using strain-balance technology Nikolay A. Kalyuzhnyy , Sergey A. Mintairov , Roman A. Salii , Alexey M. Nadtochiy Alexey S. Payusov , Pavel N. Brunkov , Vladimir N. Nevedomsky , Maxim Z. Shvarts , Antonio Marti , Viacheslav M. Andreev and Antonio Luque ABSTRACT Research into the formation of InAs quantum dots (QDs) in GaAs using the metalorganic vapor phase epitaxy technique is presented. This technique is deemed to be cheaper than the more often used and studied molecular beam epitaxy. The best conditions for obtaining a high photoluminescence response, indicating a good material quality, have been found among a wide range of possibilities. Solar cells with an excellent quantum efficiency have been obtained, with a sub-bandgap photo-response of 0.07 mA/cm per QD layer, the highest achieved so far with the InAs/GaAs system, proving the potential of this technology to be able to increase the efficiency of lattice-matched multi-junction solar cells and contributing to a better understanding of QD technology toward the achievement of practical intermediate-band solar cells. KEYWORDS MOVPE; solar cells; quantum dots; InAs/GaAs; QD array; photoluminescence; photocurrent 1. INTRODUCTION [3,4], and they are related by fundamental consider ations [5]. Considerable scientific progress has been A great deal of interest came about at the beginning of made in both concepts [6,7], but they are still in a re this new century in the so-called third-generation solar search phase prior to their possible practical cells (SCs) [1]. One of these concepts was the application. -
The Fantastical Discoveries of Astronomy Made Possible by the Wonderful Properties of II-VI Materials
The Fantastical Discoveries of Astronomy made possible by the Wonderful Properties of II-VI Materials Presentation to the Rochester Institute of Technology Virtual Detector Workshop 26 March 2012 James W. Beletic, Ph.D. Senior Director Space & Astronomy Teledyne Imaging Sensors Crystals are excellent detectors of light • Simple model of atom – Protons (+) and neutrons in the nucleus with electrons (-) orbiting • Electrons are trapped in the crystal lattice – by electric field of protons • Light energy (or thermal energy) can free an electron from the grip of the protons, allowing the electron to roam about the crystal – creates an “electron-hole” pair. • The photocharge can be collected and amplified, so that light is detected • The photon energy required to free an Silicon crystal lattice electron depends on the material. The Astronomer’s Periodic Table 1 H 2 He METALS II III IV V VI Detector Families Si - IV semiconductor HgCdTe - II-VI semiconductor InGaAs & InSb - III-V semiconductors InAs + GaSb - III-V Type 2 Strained Layer Superlattice (SLS) Tunable Wavelength: Valuable property of HgCdTe Hg1-xCdxTe Modify ratio of Mercury and Cadmium to “tune” the bandgap energy The Golden Age of Astronomy Galileo Galilei and 2 cm refractor (1609) Hubble Space Telescope • 2.4 meter European Southern Observatory Paranal Observatory • Four 8.2 meter telescopes • Four 1.8 meter auxiliary telescopes • 4 meter infrared survey telescope • 2.6 meter optical survey telescope Orion – In visible and infrared light Orion - visible Orion – by IRAS The Eagle Nebula as seen with Hubble The Eagle Nebula as seen by HST The Eagle Nebula as seen in the infrared M. -
Imaging Sensor Technologies for Astronomy, Planetary Exploration & Earth Observation
Imaging Sensor Technologies for Astronomy, Planetary Exploration & Earth Observation (and possibly also for particle accelerators and synchrotrons) Fermi National Accelerator Laboratory Teledyne March 10, 2009 Providing the best images James W. Beletic of the Universe Teledyne – NASA’s Partner in Astronomy HST WISE JWST Chart 2 NICMOS, WFC3, ACS Repair Bands 1 & 2 NIRCam, NIRSpec, FGS Hubble Ultra Deep Field Rosetta Mars Deep Impact New Horizons Reconnaissance & EPOXI Orbiter JDEM Joint Dark Energy Mission Lander (çiva) CRISM (Vis & IR) IR spectrograph IR spectrograph JWST - James Webb Space Telescope 15 Teledyne 2K×2K infrared arrays on board (~63 million pixels) • International collaboration 6.5m mirror • 6.5 meter primary mirror and tennis court size sunshield • 2013 launch on Ariane 5 rocket • L2 orbit (1.5 million km from Earth) JWST will find the “first light” objects after the Big Bang, and NIRCam will study how galaxies, stars (Near Infrared Camera) and planetary systems form Earth sunshield NIRSpec FGS (Near Infrared Spectrograph) (Fine Guidance Sensors) Two 2x2 mosaics Two individual 3 individual MWIR 2Kx2K 1x2 mosaic of MWIR 2Kx2K of SWIR 2Kx2K MWIR 2Kx2K • Acquisition and guiding • Spectrograph • Wide field imager • Images guide stars for telescope • Measures chemical composition, • Studies morphology of objects stabilization temperature and velocity and structure of the universe • Canadian Space Agency • European Space Agency / NASA • U. Arizona / Lockheed Martin 3 Wide Field Camera 3 Hubble Space Telescope • High quality, -
Ultraefficient Thermophotovoltaic Power Conversion by Band-Edge Spectral Filtering
Lawrence Berkeley National Laboratory Recent Work Title Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering. Permalink https://escholarship.org/uc/item/2kh465km Journal Proceedings of the National Academy of Sciences of the United States of America, 116(31) ISSN 0027-8424 Authors Omair, Zunaid Scranton, Gregg Pazos-Outón, Luis M et al. Publication Date 2019-07-16 DOI 10.1073/pnas.1903001116 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering Zunaid Omaira,b,1, Gregg Scrantona,b,1, Luis M. Pazos-Outóna,2, T. Patrick Xiaoa,b, Myles A. Steinerc, Vidya Ganapatid, Per F. Petersone, John Holzrichterf, Harry Atwaterg, and Eli Yablonovitcha,b,2 aDepartment of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720; bMaterial Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; cNational Renewable Energy Laboratory, Golden, CO 80401; dDepartment of Engineering, Swarthmore College, Swarthmore, PA 19081; eDepartment of Nuclear Engineering, University of California, Berkeley, CA 94720; fPhysical Insights Associates, Berkeley, CA 94705; and gApplied Physics, California Institute of Technology, Pasadena, CA 91125 Contributed by Eli Yablonovitch, June 10, 2019 (sent for review February 27, 2019; reviewed by James Harris and Richard R. King) Thermophotovoltaic power conversion utilizes thermal radiation Here, we present experimental results on a thermophotovoltaic from a local heat source to generate electricity in a photovoltaic cell. cell with 29.1 ± 0.4% power conversion efficiency at an emitter It was shown in recent years that the addition of a highly reflective temperatureof1,207°C.Thisisarecordforthermophotovoltaic rear mirror to a solar cell maximizes the extraction of luminescence.