On Bounds of the Sine and Cosine Along Straight Lines on the Complex Plane
Total Page:16
File Type:pdf, Size:1020Kb
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2018 doi:10.20944/preprints201809.0365.v1 Peer-reviewed version available at Acta Universitatis Sapientiae, Mathematica 2019, 11, 371-379; doi:10.2478/ausm-2019-0027 ON BOUNDS OF THE SINE AND COSINE ALONG STRAIGHT LINES ON THE COMPLEX PLANE FENG QI Institute of Mathematics, Henan Polytechnic University, Jiaozuo, Henan, 454010, China College of Mathematics, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, 028043, China Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin, 300387, China E-mail: [email protected], [email protected] URL: https: // qifeng618. wordpress. com Abstract. In the paper, the author discusses and computes bounds of the sine and cosine along straight lines on the complex plane. 1. Motivations In the theory of complex functions, the sine and cosine on the complex plane C are denoted and defined by eiz − e−iz e−iz + e−iz sin z = and cos z = ; 2i 2 where z = x + iy and x; y 2 R. When z = x 2 R, these two functions become sin x and cos x which satisfy the periodicity and boundedness sin(x + 2kπ) = sin x; cos(x + 2kπ) = cos x; j sin xj ≤ 1; j cos xj ≤ 1 for k 2 Z. On the other hand, when z = iy for y 2 R, e−y − ey e−y + ey sin(iy) = ! ±i1 and cos(iy) = ! +1 2i 2 as y ! ±∞. These imply that the sine and cosine are bounded on the real x-axis, but unbounded on the imaginary y-axis. Motivated by the above boundedness, we naturally guess that the complex func- tions sin z and cos z for z 2 C are (1) bounded on all straight lines parallel to the real x-axis, (2) unbounded on all straight lines whose slopes are not horizontal. In this paper, we will verify the above guesses and compute bounds for sin z and cos z on all straight lines parallel to the real x-axis. 2010 Mathematics Subject Classification. Primary 33B10; Secondary 30A10. Key words and phrases. bound; sine; cosine; horizontal straight line; vertical straight line; complex plane; slope. This paper was typeset using AMS-LATEX. 1 © 2018 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2018 doi:10.20944/preprints201809.0365.v1 Peer-reviewed version available at Acta Universitatis Sapientiae, Mathematica 2019, 11, 371-379; doi:10.2478/ausm-2019-0027 2 F. QI 2. Unboundedness of sine and cosine Let y = α + βx for constants α 2 R and β 6= 0. On this straight line on the complex plane, by the triangle inequality for complex numbers, we have i[x+i(α+βx)] −i[x+i(α+βx)] e − e j sin zj = j sin(x + i(α + βx))j = 2i [ix−(α+βx)] −[ix−(α+βx)] e − e 1 [ix−(α+βx)] −[ix−(α+βx)] = ≥ e − e 2i 2 1 −(α+βx) (α+βx) = e − e ! +1; x ! ±∞ 2 and i[x+i(α+βx)] −i[x+i(α+βx)] e + e j cos zj = j cos(x + i(α + βx))j = 2 [ix−(α+βx)] −[ix−(α+βx)] e + e 1 [ix−(α+βx)] −[ix−(α+βx)] = ≥ e − e 2 2 1 −(α+βx) (α+βx) = e − e ! +1; x ! ±∞: 2 Consequently, the functions sin z and cos z are not bounded along any straight line whose slope is not horizontal. On the vertical line x = γ for any constant γ 2 R on the complex plane, by the triangle inequality for complex numbers, we have i(γ+iy) −i(γ+iy) e − e j sin zj = j sin(γ + iy)j = 2i 1 i(γ+iy) −i(γ+iy) 1 −y y ≥ je j − je j = je − e j ! +1; y ! ±∞ 2 2 and i(γ+iy) −i(γ+iy) e + e j cos zj = j cos(γ + iy)j = 2 1 i(γ+iy) −i(γ+iy) 1 −y y ≥ je j − je j = je − e j ! +1; y ! ±∞: 2 2 Consequently, the functions sin z and cos z are not bounded along any vertical line. 3. Boundedness of the sine On the horizontal straight line y = α for any constant α 2 R on the complex plane C, by the triangle inequality for complex numbers, we have i(x+iα) −i(x+iα) e − e j sin zj = j sin(x + iα)j = 2i (ix−α) −(ix−α) ix e − e 1 e −ix α = = − e e 2i 2 eα ix 1 e −ix α 1 1 α ≤ + e e = + e 2 eα 2 eα and i(x+iα) −i(x+iα) e − e j sin zj = j sin(x + iα)j = 2i Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2018 doi:10.20944/preprints201809.0365.v1 Peer-reviewed version available at Acta Universitatis Sapientiae, Mathematica 2019, 11, 371-379; doi:10.2478/ausm-2019-0027 ON BOUNDS OF SINE AND COSINE ALONG STRAIGHT LINES 3 (ix−α) −(ix−α) ix e − e 1 e −ix α = = − e e 2i 2 eα ix 1 e −ix α 1 1 α ≥ − e e = − e : 2 eα 2 eα Therefore, it follows that 1 1 α 1 1 α − e ≤ j sin(x + iα)j ≤ + e ; x; α 2 R: 2 eα 2 eα When z = 2kπ + iα for k 2 Z, we have ei(2kπ+iα) − e−i(2kπ+iα) i 1 sin z = sin(2kπ + iα) = = − − eα : 2i 2 eα π When z = 2kπ + 2 + iα for k 2 Z, we have π ei(2kπ+π=2+iα) − e−i(2kπ+π=2+iα) sin z = sin 2kπ + + iα = 2 2i ei(π=2+iα) − e−i(π=2+iα) e−α + eα 1 1 = = = + eα : 2i 2 2 eα When z = (2k + 1)π + iα for k 2 Z, we have ei((2k+1)π+iα) − e−i((2k+1)π+iα) sin z = sin((2k + 1)π + iα) = 2i ei(π+iα) − e−i(π+iα) 1 1 i 1 = = eα − = − eα − : 2i 2i eα 2 eα π When z = (2k + 1)π + 2 + iα for k 2 Z, we have π ei((2k+1)π+π=2+iα) − e−i((2k+1)π+π=2+iα) sin z = sin (2k + 1)π + + iα = 2 2i ei(3π=2+iα) − e−i(3π=2+iα) e−α + eα 1 1 = = − = − + eα : 2i 2 2 eα 4. Boundedness of the cosine On the horizontal straight line y = α for any constant α 2 R on the complex plane C, by the triangle inequality for complex numbers, we have i(x+iα) −i(x+iα) e + e j cos zj = j cos(x + iα)j = 2 (ix−α) −(ix−α) ix e + e 1 e −ix α = = + e e 2 2 eα ix 1 e −ix α 1 1 α ≤ + e e = + e 2 eα 2 eα and i(x+iα) −i(x+iα) e + e j cos zj = j cos(x + iα)j = 2 (ix−α) −(ix−α) ix e + e 1 e −ix α = = + e e 2 2 eα Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2018 doi:10.20944/preprints201809.0365.v1 Peer-reviewed version available at Acta Universitatis Sapientiae, Mathematica 2019, 11, 371-379; doi:10.2478/ausm-2019-0027 4 F. QI ix 1 e −ix α 1 1 α ≥ − e e = − e : 2 eα 2 eα Therefore, it follows that 1 1 α 1 1 α − e ≤ j cos(x + iα)j ≤ + e ; x; α 2 R: 2 eα 2 eα When z = 2kπ + iα for k 2 Z, we have ei(2kπ+iα) + e−i(2kπ+iα) 1 1 cos z = cos(2kπ + iα) = = + eα : 2 2 eα π When z = 2kπ + 2 + iα for k 2 Z, we have π ei(2kπ+π=2+iα) + e−i(2kπ+π=2+iα) cos z = cos 2kπ + + iα = 2 2 ei(π=2+iα) + e−i(π=2+iα) ie−α − ieα i 1 = = = − eα : 2 2 2 eα When z = (2k + 1)π + iα for k 2 Z, we have ei((2k+1)π+iα) + e−i((2k+1)π+iα) cos z = cos((2k + 1)π + iα) = 2 ei(π+iα) + e−i(π+iα) 1 1 = = − + eα : 2 2 eα π When z = (2k + 1)π + 2 + iα for k 2 Z, we have π ei((2k+1)π+π=2+iα) + e−i((2k+1)π+π=2+iα) cos z = cos (2k + 1)π + + iα = 2 2 ei(3π=2+iα) + e−i(3π=2+iα) −ie−α + ieα i 1 = = = − − eα : 2 2 2 eα 5. Conclusions On the sloped straight line y = α + βx for α 2 R and β 6= 0 on the complex plane C, the trigonometric functions sin z = sin(x + i(α + βx)) and cos z = cos(x + i(α + βx)) are unbounded. On the vertical line x = γ for any scalar γ 2 R on the complex plane C, the trigonometric functions sin z = sin(γ + iy) and cos z = cos(γ + iy) are unbounded. On the horizontal line y = α for any constant α 2 R on the complex plane C, the trigonometric functions sin z = sin(x + iα) and cos z = cos(x + iα) are bounded by the double inequalities j sinh αj ≤ j sin(x + iα)j ≤ cosh α; x; α 2 R (1) and j sinh αj ≤ j cos(x + iα)j ≤ cosh α; x; α 2 R (2) whose equalities are attained at points π 3π 2kπ + iα; 2kπ + + iα; (2k + 1)π + iα; 2kπ + + iα 2 2 with concrete values 3π sin(2kπ + iα) = cos 2kπ + + iα = i sinh α; 2 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2018 doi:10.20944/preprints201809.0365.v1 Peer-reviewed version available at Acta Universitatis Sapientiae, Mathematica 2019, 11, 371-379; doi:10.2478/ausm-2019-0027 ON BOUNDS OF SINE AND COSINE ALONG STRAIGHT LINES 5 π sin 2kπ + + iα = cos(2kπ + iα) = cosh α; 2 π sin((2k + 1)π + iα) = cos 2kπ + + iα = −i sinh α; 2 3π sin 2kπ + + iα = cos((2k + 1)π + iα) = − cosh α 2 for k 2 Z.