The Pacific Meridional Mode and ENSO: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modulation of ENSO Teleconnection on the Relationship Between Arctic Oscillation and Wintertime Temperature Variation in South Korea
atmosphere Article Modulation of ENSO Teleconnection on the Relationship between Arctic Oscillation and Wintertime Temperature Variation in South Korea Sung-Ho Woo, Jahyun Choi and Jee-Hoon Jeong * Department of Oceanography, Chonnam National University, Gwang-ju 61186, Korea; [email protected] (S.-H.W.); [email protected] (J.C.) * Correspondence: [email protected]; Tel.: +82-62-530-3466 Received: 25 July 2020; Accepted: 4 September 2020; Published: 6 September 2020 Abstract: Despite progressing global warming, extreme cold events in East Asia are still occurring frequently with temperature variability enhanced. To understand this situation, it is necessary to determine external and internal climatic factors and their modulation effects that influence regional temperature variability. We found that the positive correlation between Arctic Oscillation (AO) and surface air temperature (SAT) in South Korea during winter is modulated strongly by tropical influences associated with El Niño Southern Oscillation (ENSO). In the case of a negative (positive) SAT anomaly in South Korea during the positive (negative) AO phase, a state that is opposite to the typical relationship between AO and SAT, the tropical sea surface temperature shows a typical negative (positive) ENSO-like pattern. The atmospheric teleconnection associated with the negative (positive) ENSO conditions contributes to a deepening (flattening) of the climatological East Asian trough and an enhancing (weakening) of the East Asian jet, which leads to negative (positive) SAT anomalies in South Korea. This modulation effect is robustly observed in the historical simulations of three different models of CMIP5. Keywords: El Niño southern oscillation; Arctic Oscillation; wintertime temperature; East Asia; teleconnection; East Asian jet 1. -
Emerging Risks from Marine Heat Waves
COMMENT DOI: 10.1038/s41467-018-03163-6 OPEN Emerging risks from marine heat waves Thomas L. Frölicher1,2 & Charlotte Laufkötter 1,2 Recent marine heat waves have caused devastating impacts on marine ecosystems. Sub- stantial progress in understanding past and future changes in marine heat waves and their risks for marine ecosystems is needed to predict how marine systems, and the goods and 1234567890():,; services they provide, will evolve in the future. Extreme climate and weather events shape the structure of terrestrial biological systems and affect the biogeochemical functions and services they provide for society in a fundamental manner1. There is overwhelming evidence that atmospheric heat waves over land are changing under global warming, increasing the risk of severe, pervasive and in some cases irreversible impacts on natural and socio-economic systems2. In contrast, we know little how extreme events in the ocean, especially those associated with warming will change under global warming, and how they will impact marine organisms. This knowledge gap is of particular concern as some of the recent observed marine heat waves (MHWs) demonstrated the high vulnerability of marine organisms and ecosystems services to such extreme climate events. Definition, observations, and key processes A marine heat wave is usually defined as a coherent area of extreme warm sea surface tem- perature (SST) that persists for days to months3. MHWs have been observed in all major ocean basins over the recent decade, but only a few MHWs have been documented and analyzed extensively (Fig. 1). One of the first MHW that has been characterized in the literature occurred in 2003 in the northwestern Mediterranean Sea with SSTs reaching 3–5 °C above the 1982–2016 reference period4. -
Impacts of Four Northern-Hemisphere Teleconnection Patterns on Atmospheric Circulations Over Eurasia and the Pacific
Theor Appl Climatol DOI 10.1007/s00704-016-1801-2 ORIGINAL PAPER Impacts of four northern-hemisphere teleconnection patterns on atmospheric circulations over Eurasia and the Pacific Tao Gao 1,2 & Jin-yi Yu2 & Houk Paek2 Received: 30 July 2015 /Accepted: 31 March 2016 # Springer-Verlag Wien 2016 Abstract The impacts of four teleconnection patterns on at- in summer could be driven, at least partly, by the Atlantic mospheric circulation components over Eurasia and the Multidecadal Oscillation, which to some degree might trans- Pacific region, from low to high latitudes in the Northern mit the influence of the Atlantic Ocean to Eurasia and the Hemisphere (NH), were investigated comprehensively in this Pacific region. study. The patterns, as identified by the Climate Prediction Center (USA), were the East Atlantic (EA), East Atlantic/ Western Russia (EAWR), Polar/Eurasia (POLEUR), and 1 Introduction Scandinavian (SCAND) teleconnections. Results indicate that the EA pattern is closely related to the intensity of the sub- As one of the major components of teleconnection patterns, tropical high over different sectors of the NH in all seasons, atmospheric extra-long waves influence climatic evolutionary especially boreal winter. The wave train associated with this processes. Abnormal oscillations of these extra-long waves pattern serves as an atmospheric bridge that transfers Atlantic generally result in regional or wider-scale irregular atmo- influence into the low-latitude region of the Pacific. In addi- spheric circulations that can lead to abnormal climatic tion, the amplitudes of the EAWR, SCAND, and POLEUR events elsewhere in the world. Therefore, because of their patterns were found to have considerable control on the importance in climate research, considerable attention is given “Vangengeim–Girs” circulation that forms over the Atlantic– to teleconnection patterns on various timescales. -
Strong Modulation of the Pacific Meridional Mode On
1OCTOBER 2018 G A O E T A L . 7739 Strong Modulation of the Pacific Meridional Mode on the Occurrence of Intense Tropical Cyclones over the Western North Pacific SI GAO AND LANGFENG ZHU Key Laboratory of Meteorological Disaster of Ministry of Education/Joint International Research Laboratory on Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China WEI ZHANG IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa ZHIFAN CHEN Key Laboratory of Meteorological Disaster of Ministry of Education/Joint International Research Laboratory on Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China (Manuscript received 8 December 2017, in final form 21 May 2018) ABSTRACT This study finds a significant positive correlation between the Pacific meridional mode (PMM) index and the frequency of intense tropical cyclones (TCs) over the western North Pacific (WNP) during the peak TC season (June–November). The PMM influences the occurrence of intense TCs mainly by modulating large- scale dynamical conditions over the main development region. During the positive PMM phase, anomalous off-equatorial heating in the eastern Pacific induces anomalous low-level westerlies (and cyclonic flow) and upper-level easterlies (and anticyclonic flow) over a large portion of the main development region through a Matsuno–Gill-type Rossby wave response. The resulting weaker vertical wind shear and larger low-level relative vorticity favor the genesis of intense TCs over the southeastern part of the WNP and their subsequent intensification over the main development region. -
Identifying Teleconnections and Multidecadal Variability of East Asian Surface Temperature During the Last Millennium in CMIP5 Simulations
Clim. Past, 15, 1825–1844, 2019 https://doi.org/10.5194/cp-15-1825-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Identifying teleconnections and multidecadal variability of East Asian surface temperature during the last millennium in CMIP5 simulations Satyaban B. Ratna1, Timothy J. Osborn1, Manoj Joshi1, Bao Yang2, and Jianglin Wang2 1Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK 2Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China Correspondence: Satyaban B. Ratna ([email protected]) Received: 26 November 2018 – Discussion started: 10 December 2018 Revised: 10 September 2019 – Accepted: 14 September 2019 – Published: 16 October 2019 Abstract. We examine the relationships in models and re- Asian temperature can partly ameliorate this confounding constructions between the multidecadal variability of surface effect. Nevertheless, these approaches still yield differences temperature in East Asia and two extratropical modes of vari- between the forced and control simulations and they cannot ability: the Atlantic Multidecadal Oscillation (AMO) and the always be applied to paleoclimate reconstructions. Thus, we Pacific Decadal Oscillation (PDO). We analyse the spatial, recommend caution when interpreting teleconnections diag- temporal and spectral characteristics of the climate modes nosed from reconstructions that contain both forced and in- in the last millennium, historical and pre-industrial con- ternal variations. trol simulations of seven Coupled Model Intercomparison Project phase 5 (CMIP5)/Paleoclimate Model Intercompari- son Project phase 3 (PMIP3) global climate models (GCMs) 1 Introduction to assess the relative influences of external forcing and un- forced variability. -
Resampling of ENSO Teleconnections: Accounting for Cold Season Evolution Reduces Uncertainty in the North Atlantic Martin P
https://doi.org/10.5194/wcd-2021-15 Preprint. Discussion started: 9 March 2021 c Author(s) 2021. CC BY 4.0 License. Resampling of ENSO teleconnections: accounting for cold season evolution reduces uncertainty in the North Atlantic Martin P. King1,2,3, Camille Li2,3, and Stefan Sobolowski1,3 1NORCE Norwegian Research Centre, Bergen, Norway 2Geophysical Institute, University of Bergen, Bergen, Norway 3Bjerknes Centre for Climate Research, Bergen, Norway Correspondence: Martin P. King ([email protected]) Abstract. We re-examine the uncertainty of the El Niño–Southern Oscillation teleconnection to the North Atlantic follow- ing the investigation of Deser et al. (2017) (DES2017). Our analyses are performed on the November-December (ND) and January-February (JF) means separately, and for a geographical area that covers a larger extent in the midlatitude North At- lantic than DES2017. The motivation for splitting the cold season in this way arises from the fact that the teleconnection 5 patterns and underlying physical mechanisms are different in late fall compared to mid-winter. As in DES2017, our main technique in quantifying the uncertainty is bootstrap resampling. Amplitudes and spatial correlations of the bootstrap samples are presented together effectively using Taylor diagrams. In addition to the confidence intervals calculated from Student’s t tests and the percentiles of anomalous sea-level pressure (SLP) values in the bootstrap samples, we also investigate additional confidence intervals using techniques that are not widely used in climate research, but have different advantages. In contrast to 10 the interpretation by DES2017, our results indicate that we can have some confidence in the signs of the teleconnection SLP anomalies. -
System Identification Techniques for Detection of Teleconnections Within Climate Models
https://doi.org/10.5194/gmd-2020-228 Preprint. Discussion started: 5 August 2020 c Author(s) 2020. CC BY 4.0 License. System identification techniques for detection of teleconnections within climate models Bethany Sutherland1, Ben Kravitz2,3, Philip J. Rasch3, and Hailong Wang3 1Marine, Earth, and Atmospheric Sciences Department, North Carolina State University, Raleigh, NC, USA 2Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN, USA 3Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA Correspondence: Bethany Sutherland, 2800 Faucette Drive, 1125 Jordan Hall, Campus Box 8208, NC State University, Raleigh, NC 27695, USA ([email protected]) Abstract. Quantifying teleconnections and discovering new ones is a complex, difficult process. Using transfer functions, we introduce a new method of identifying teleconnections in climate models on arbitrary timescales. We validate this method by perturbing temperature in the Niño3.4 region in a climate model. Temperature and precipitation responses in the model match known El Niño-Southern Oscillation (ENSO)-like teleconnection features, consistent with modes of tropical variability. Per- 5 turbing the Niño3.4 region results in temperature responses consistent with the Pacific Meridional Mode, the Pacific Decadal Oscillation, and the Indian Ocean Dipole, all of which have strong ties to ENSO. Some precipitation features are also con- sistent with these modes of variability, although because precipitation is noisier than temperature, obtaining robust responses is more difficult. While much work remains to develop this method further, transfer functions show promise in quantifying teleconnections or, perhaps, identifying new ones. 10 1 Introduction Climate system teleconnections are a category of features whereby a forcing in one region of the globe can trigger a response far away through propagation or a cascade of physical mechanisms. -
Exploration of Teleconnection Indices for Long-Range Seasonal Temperature Forecasts
Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-2002 Exploration of Teleconnection Indices for Long-Range Seasonal Temperature Forecasts Robb M. Randall Follow this and additional works at: https://scholar.afit.edu/etd Part of the Meteorology Commons Recommended Citation Randall, Robb M., "Exploration of Teleconnection Indices for Long-Range Seasonal Temperature Forecasts" (2002). Theses and Dissertations. 4499. https://scholar.afit.edu/etd/4499 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. Statistical Exploration of Global EXPLORATION OF TELECONNECTION INDICES FOR LONG-RANGE SEASONAL TEMPERATURE FORECASTS THESIS Robb M. Randall, Captain, USAF AFIT/GM/ENP/02M-08 DEPARTMENT OF THE AIR FORCE AIR UNIVE RSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. Report Documentation Page Report Date Report Type Dates Covered (from... to) 11 Mar 02 Final Jun 01 - Mar 02 Title and Subtitle Contract Number Exploration of Teleconnection Indices for Long-Range Seasonal Temperature Forecasts Grant Number Program Element Number Author(s) Project Number Captain Robb M. Randall, USAF Task Number Work Unit Number Performing Organization Name(s) and Performing Organization Report Number Address(es) AFIT/GM/ENP/02M-08 Air Force Institute of Technology Graduate School of Engineering and Management (AFIT/EN) 2950 P Street, Bldg 640 WPAFB OH 45433-7765 Sponsoring/Monitoring Agency Name(s) and Sponsor/Monitor’s Acronym(s) Address(es) AFCCC/DOO ATTN: Mr. -
Explaining the Trends and Variability in the United States Tornado Records
www.nature.com/scientificreports OPEN Explaining the trends and variability in the United States tornado records using climate teleconnections and shifts in observational practices Niloufar Nouri1*, Naresh Devineni1,2*, Valerie Were2 & Reza Khanbilvardi1,2 The annual frequency of tornadoes during 1950–2018 across the major tornado-impacted states were examined and modeled using anthropogenic and large-scale climate covariates in a hierarchical Bayesian inference framework. Anthropogenic factors include increases in population density and better detection systems since the mid-1990s. Large-scale climate variables include El Niño Southern Oscillation (ENSO), Southern Oscillation Index (SOI), North Atlantic Oscillation (NAO), Pacifc Decadal Oscillation (PDO), Arctic Oscillation (AO), and Atlantic Multi-decadal Oscillation (AMO). The model provides a robust way of estimating the response coefcients by considering pooling of information across groups of states that belong to Tornado Alley, Dixie Alley, and Other States, thereby reducing their uncertainty. The infuence of the anthropogenic factors and the large-scale climate variables are modeled in a nested framework to unravel secular trend from cyclical variability. Population density explains the long-term trend in Dixie Alley. The step-increase induced due to the installation of the Doppler Radar systems explains the long-term trend in Tornado Alley. NAO and the interplay between NAO and ENSO explained the interannual to multi-decadal variability in Tornado Alley. PDO and AMO are also contributing to this multi-time scale variability. SOI and AO explain the cyclical variability in Dixie Alley. This improved understanding of the variability and trends in tornadoes should be of immense value to public planners, businesses, and insurance-based risk management agencies. -
The Tale of a Surprisingly Cold Blob in the North Atlantic
VARIATIONSUS CLIVAR VARIATIONS CUS CLIVAR lim ity a bil te V cta ariability & Predi Spring 2016 • Vol. 14, No. 2 A Tale of Two Blobs The evolution and known atmospheric Editors: forcing mechanisms behind the 2013-2015 Kristan Uhlenbrock & Mike Patterson North Pacific warm anomalies From 2013 to 2015, the scientific 1 2 community and the media were Dillon J. Amaya Nicholas E. Bond , enthralled with two anomalous Arthur J. Miller1, and Michael J. DeFlorio3 sea surface temperature events, both getting the moniker 1Scripps Institution of Oceanography the “Blob,” although one was 2 warm and one was cold. These University of Washington 3 events occurred during a Jet Propulsion Laboratory, California Institute of Technology period of record-setting global mean surface temperatures. This edition focuses on the timing and extent, possible mechanisms, and impacts ear-to-year variations in the El Niño Southern Oscillation (ENSO) indices of these unusual ocean heat Ygenerate significant interest throughout the general public and the scientific anomalies, and what we might community due to the sometimes destructive nature of this climate mode. For expect in the future as climate example, so-called “Godzilla” ENSOs can generate billions of dollars in damages changes. from the US agricultural industry alone due to unanticipated flooding or drought The “Warm Blob” feature (Adams et al. 1999). However, in the winter of 2013/2014, North Pacific sea surface appeared in the North Pacific temperature (SST) anomalies exceeded three standard deviations above the mean during winter 2013 and was over a large region, shifting focus away from the tropics and onto the extratropics first identified by Nick Bond, as the associated atmospheric circulation patterns helped exacerbate the most University of Washington. -
2018 Monsoon Outlook Albuquerque for Central & Northern New Mexico WEATHER FORECAST OFFICE
2018 Monsoon Outlook Albuquerque For Central & Northern New Mexico WEATHER FORECAST OFFICE Figure 1. What brings about an above to well above average North American Monsoon (NAM)? Is it all thermally driven? Does low snowpack in the Southern Rockies make a difference? The answer is quite complex and not fully understood but the common denominator seems to be the Walker Circulation, a pattern in the tropical Pacific of air rising in the west and sinking in the east with westward moving air at the surface. Anomalous ocean warming in the central and eastern Pacific (orange) help to shift the rising branch of the Walker Circulation westward to near 180°, while the compensating (or associated) sinking branches shift to just west of the Maritime continent and far southeastern North America. NOAA Climate.gov drawing by Fiona Martin. 2018 Monsoon Outlook Albuquerque North American Monsoon (NAM) – What is it? WEATHER FORECAST OFFICE Courtesy: Todd Shoemake The North American Monsoon (NAM), like its much stronger cousin the Asian or Indian Monsoon, is the result of the polar jet stream and sub-tropical upper-level highs migrating northward during the warm season. The word “monsoon” comes from the Arabic word mausim, meaning season. Essentially, it describes a seasonal wind shift over a region that is usually accompanied by an increase in moisture and precipitation, accounting for nearly half of annual precipitation for much of New Mexico. Source regions for the moisture include, the Gulf of Mexico, Gulf of California and the eastern Pacific Ocean. Monsoon onset dates in the U.S. Southwest typically begin in mid to late June in northwest Mexico (Sonora, Chihuahua, Sinaloa, and Durango) and early July in New Mexico and Arizona. -
State of the California Current 2014–15: Impacts of the Warm-Water “Blob” Andrew W
STATE OF THE CALIFORNIA CURRENT CalCOFI Rep., Vol. 56, 2015 STAte of the California Current 2014–15: IMPACTS OF THE WARM-WAter “BloB” ANDREW W. LEISING, WILLIAM T. PETERSON, JARROD A. SANTORA, ISAAC D. SCHROEDER, RICHARD D. BRODEUR WILLIAM J. SYDEMAN STEVEN J. BOGRAD Northwest Fisheries Science Center Farallon Institute for Environmental Research Division National Marine Fisheries Service Advanced Ecosystem Research National Marine Fisheries Service Hatfield Marine Science Center 101 H Street 99 Pacific St., Suite 255A Newport, OR 97365 Petaluma, CA 94952 Monterey, CA 93940-7200 CaREN BARCELÓ SHARON R. MELIN JEFFREY ABELL College of Earth, Ocean and National Marine Fisheries Service Department of Oceanography Atmospheric Sciences Alaska Fisheries Science Center Humboldt State University Oregon State University National Marine Mammal Laboratory Corvallis, OR 97330 NOAA REGINALDO DURAZO1, 7600 Sand Point Way N. E. GILBERTO GAXIOLA-CaSTRO2,§ TOBY D. AUTH1,ELIZABETH A. DalY2 Seattle, WA 98115 1UABC-Facultad de Ciencias Marinas 1Pacific States Marine Fisheries Commission Carretera Ensenada-Tijuana No. 3917 Hatfield Marine Science Center FRANCISCO P. CHAVEZ Zona Playitas, Ensenada 2030 Marine Science Drive Monterey Bay Aquarium Research Institute Baja California, México Newport, OR 97365 7700 Sandholdt Road 2CICESE 2Cooperative Institute for Moss Landing, CA 95039 Departamento de Oceanografía Biológica Marine Resources Studies Oregon State University RICHARD T. GOLIGHTLY, Carretera Ensenada Tijuana No. 3918 STEPHANIE R. SCHNEIDER Zona Playitas, Ensenada Hatfield Marine Science Center Baja California, México 2030 Marine Science Drive Department of Wildlife § Newport, OR 97365 Humboldt State University Monterey Bay Aquarium Research Institute 1 Harpst Street Moss Landing, California (Sabbatical) ROBERT M. SURYAN1, Arcata, CA 95521 1 ERIC P.