Debris Disks and the Search for Life in the Universe
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathematical Anthropology and Cultural Theory
UCLA Mathematical Anthropology and Cultural Theory Title SOCIALITY IN E. O. WILSON’S GENESIS: EXPANDING THE PAST, IMAGINING THE FUTURE Permalink https://escholarship.org/uc/item/7p343150 Journal Mathematical Anthropology and Cultural Theory, 14(1) ISSN 1544-5879 Author Denham, Woodrow W Publication Date 2019-10-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California MATHEMATICAL ANTHROPOLOGY AND CULTURAL THEORY: AN INTERNATIONAL JOURNAL VOLUME 14 NO. 1 OCTOBER 2019 SOCIALITY IN E. O. WILSON’S GENESIS: EXPANDING THE PAST, IMAGINING THE FUTURE. WOODROW W. DENHAM, Ph. D. RETIRED INDEPENDENT SCHOLAR [email protected] COPYRIGHT 2019 ALL RIGHTS RESERVED BY AUTHOR SUBMITTED: AUGUST 16, 2019 ACCEPTED: OCTOBER 1, 2019 MATHEMATICAL ANTHROPOLOGY AND CULTURAL THEORY: AN INTERNATIONAL JOURNAL ISSN 1544-5879 DENHAM: SOCIALITY IN E. O. WILSON’S GENESIS WWW.MATHEMATICALANTHROPOLOGY.ORG MATHEMATICAL ANTHROPOLOGY AND CULTURAL THEORY: AN INTERNATIONAL JOURNAL VOLUME 14, NO. 1 PAGE 1 OF 37 OCTOBER 2019 Sociality in E. O. Wilson’s Genesis: Expanding the Past, Imagining the Future. Woodrow W. Denham, Ph. D. Abstract. In this article, I critique Edward O. Wilson’s (2019) Genesis: The Deep Origin of Societies from a perspective provided by David Christian’s (2016) Big History. Genesis is a slender, narrowly focused recapitulation and summation of Wilson’s lifelong research on altruism, eusociality, the biological bases of kinship, and related aspects of sociality among insects and humans. Wilson considers it to be among the most important of his 35+ published books, one of which created the controversial discipline of sociobiology and two of which won Pulitzer Prizes. -
Dust and Gas in the Disk of Hl Tauri: Surface Density, Dust Settling, and Dust-To-Gas Ratio C
The Astrophysical Journal, 816:25 (12pp), 2016 January 1 doi:10.3847/0004-637X/816/1/25 © 2016. The American Astronomical Society. All rights reserved. DUST AND GAS IN THE DISK OF HL TAURI: SURFACE DENSITY, DUST SETTLING, AND DUST-TO-GAS RATIO C. Pinte1,2, W. R. F. Dent3, F. Ménard1,2, A. Hales3,4, T. Hill3, P. Cortes3,4, and I. de Gregorio-Monsalvo3 1 UMI-FCA, CNRS/INSU, France (UMI 3386), and Dept. de Astronomía, Universidad de Chile, Santiago, Chile; [email protected] 2 Univ. Grenoble Alpes, IPAG, F-38000 Grenoble, France CNRS, IPAG, F-38000 Grenoble, France 3 Atacama Large Millimeter/Submillimeter Array, Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763-0355, Santiago, Chile 4 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475, USA Received 2015 March 22; accepted 2015 September 8; published 2015 December 29 ABSTRACT The recent ALMA observations of the disk surrounding HL Tau reveal a very complex dust spatial distribution. We present a radiative transfer model accounting for the observed gaps and bright rings as well as radial changes of the emissivity index. We find that the dust density is depleted by at least a factor of 10 in the main gaps compared to the surrounding rings. Ring masses range from 10–100 M⊕ in dust, and we find that each of the deepest gaps is consistent with the removal of up to 40 M⊕ of dust. If this material has accumulated into rocky bodies, these would be close to the point of runaway gas accretion. -
Saving the Information Commons a New Public Intere S T Agenda in Digital Media
Saving the Information Commons A New Public Intere s t Agenda in Digital Media By David Bollier and Tim Watts NEW AMERICA FOUNDA T I O N PUBLIC KNOWLEDGE Saving the Information Commons A Public Intere s t Agenda in Digital Media By David Bollier and Tim Watts Washington, DC Ack n owl e d g m e n t s This report required the support and collaboration of many people. It is our pleasure to acknowledge their generous advice, encouragement, financial support and friendship. Recognizing the value of the “information commons” as a new paradigm in public policy, the Ford Foundation generously supported New America Foundation’s Public Assets Program, which was the incubator for this report. We are grateful to Gigi Sohn for helping us develop this new line of analysis and advocacy. We also wish to thank The Open Society Institute for its important support of this work at the New America Foundation, and the Center for the Public Domain for its valuable role in helping Public Knowledge in this area. Within the New America Foundation, Michael Calabrese was an attentive, helpful colleague, pointing us to useful literature and knowledgeable experts. A special thanks to him for improv- ing the rigor of this report. We are also grateful to Steve Clemons and Ted Halstead of the New America Foundation for their role in launching the Information Commons Project. Our research and writing of this report owes a great deal to a network of friends and allies in diverse realms. For their expert advice, we would like to thank Yochai Benkler, Jeff Chester, Rob Courtney, Henry Geller, Lawrence Grossman, Reed Hundt, Benn Kobb, David Lange, Jessica Litman, Eben Moglen, John Morris, Laurie Racine and Carrie Russell. -
Protoplanetary Disks and Debris Disks
Protoplanetary Disks and Debris Disks David J. Wilner Harvard-Smithsonian Center for Astrophysics Sean Andrews Meredith Hughes Chunhua Qi June 12, 2009 Millimeter and Submillimeter Astronomy, Taipei Image: NASA/JPL-Caltech/T. Pyle (SSC) Circumstellar Disks • inevitable consequence of gravity + angular momentum • integral part of star and planet formation paradigm 4 10 yr 105 yr 7 10 yr 108 yr 100 AU cloud collapse protostar protoplanetary disk planetary system and debris disk Marrois et al. 2008 J. Jørgensen Isella et al. 2007 Alves et al. 2001 2 This Talk • context: “protoplanetary” and “debris” disks • tool: submillimeter dust continuum emission • some recent SMA studies and implications 1. high resolution ρ Oph disk imaging survey - S. Andrews, D. Wilner, A.M. Hughes, C. Qi, K. Dullemond (arxiv:0906.0730) 2. resolved disk polarimetry: TW Hya, HD 163296 - A.M. Hughes, D. Wilner, J. Cho, D. Marrone, A. Lazarian, S. Andrews, R. Rao 3. debris disk imaging: HD 107146 - D. Wilner, J. Williams, S. Andrews, A.M. Hughes, C. Qi 3 “Protoplanetary” → “Debris” McCaughrean et al. 1995; Burrows et al. 1996 Corder et al 2009; Greaves et al. 2005 V. Pietu; Isella et al. 2007 Kalas et al. 2008; Marois et al. 2008 • age ~1 to 10 Myr • age up to Gyrs • gas and trace dust • dust and trace gas • dust particles are sticking, • planetesimals are colliding, growing into planetesimals creating new dust particles • mass 0.001 to 0.1 M • mass <1 Mmoon • mass distribution? • dust distribution → planets? • accretion/dispersal physics? • dynamical history? 4 Submillimeter Dust Emission x-ray uv optical infrared submm cm hot gas/accr. -
RADIAL VELOCITIES in the ZODIACAL DUST CLOUD
A SURVEY OF RADIAL VELOCITIES in the ZODIACAL DUST CLOUD Brian Harold May Astrophysics Group Department of Physics Imperial College London Thesis submitted for the Degree of Doctor of Philosophy to Imperial College of Science, Technology and Medicine London · 2007 · 2 Abstract This thesis documents the building of a pressure-scanned Fabry-Perot Spectrometer, equipped with a photomultiplier and pulse-counting electronics, and its deployment at the Observatorio del Teide at Izaña in Tenerife, at an altitude of 7,700 feet (2567 m), for the purpose of recording high-resolution spectra of the Zodiacal Light. The aim was to achieve the first systematic mapping of the MgI absorption line in the Night Sky, as a function of position in heliocentric coordinates, covering especially the plane of the ecliptic, for a wide variety of elongations from the Sun. More than 250 scans of both morning and evening Zodiacal Light were obtained, in two observing periods – September-October 1971, and April 1972. The scans, as expected, showed profiles modified by components variously Doppler-shifted with respect to the unshifted shape seen in daylight. Unexpectedly, MgI emission was also discovered. These observations covered for the first time a span of elongations from 25º East, through 180º (the Gegenschein), to 27º West, and recorded average shifts of up to six tenths of an angstrom, corresponding to a maximum radial velocity relative to the Earth of about 40 km/s. The set of spectra obtained is in this thesis compared with predictions made from a number of different models of a dust cloud, assuming various distributions of dust density as a function of position and particle size, and differing assumptions about their speed and direction. -
Exotic Beasts
Searching for Extraterrestrial Intelligence Beyond the Milky Way The first Swedish SETI project Erik Zackrisson Department of Astronomy Oskar Klein Centre Searching for Extraterrestrial Intelligence (SETI) – A Brief History I • 1959 – Cocconi & Morrison (Nature): ”Try the hydrogen frequency (1.42 GHz)” • 1960 – Project Ozma • 1961 – Schwartz & Townes (Nature): ”Try optical laser” • 1977 – The Wow signal Searching for Extraterrestrial Intelligence (SETI) – A Brief History II • 1984 – The SETI Institute • Late 1990s – Optical SETI becomes popular • 1999 – SETI@home • 2007 – Allen Telescope Array • 2012 – SETI Live The Fermi Paradox • No signals from E.T. despite 50 years of SETI • The Milky Way can be colonized in 1% of its current age – why are we not already colonized? • Where is everybody? 50+ possible solutions are known (e.g. Brin 1983, Webb 2002) A Few Possible Explanations • Everybody is staying at home and nobody is transmitting – Virtual worlds more exciting than space exploration? – Berserkers Transmission = Doom • Wrong search strategy – Try artefacts, Bracewell probes, IR laser, internet, DNA, Dyson spheres… • Intelligent life is extremely rare – Try extragalactic SETI Beyond the Milky Way • Carl Sagan: ”More stars in the Universe than grains of sand on all the beaches on Earth” • Stars in Milky Way 1011 • Stars in observable Universe 1023 Only a handful of extragalactic SETI projects carried out so far! Earth-like planets in a cosmological context I Millenium simulation + Semi-analytic galaxy models + Metallicity-dependent -
Astro2020 Science White Paper Modeling Debris Disk Evolution
Astro2020 Science White Paper Modeling Debris Disk Evolution Thematic Areas Planetary Systems Formation and Evolution of Compact Objects Star and Planet Formation Cosmology and Fundamental Physics Galaxy Evolution Resolved Stellar Populations and their Environments Stars and Stellar Evolution Multi-Messenger Astronomy and Astrophysics Principal Author András Gáspár Steward Observatory, The University of Arizona [email protected] 1-(520)-621-1797 Co-Authors Dániel Apai, Jean-Charles Augereau, Nicholas P. Ballering, Charles A. Beichman, Anthony Boc- caletti, Mark Booth, Brendan P. Bowler, Geoffrey Bryden, Christine H. Chen, Thayne Currie, William C. Danchi, John Debes, Denis Defrère, Steve Ertel, Alan P. Jackson, Paul G. Kalas, Grant M. Kennedy, Matthew A. Kenworthy, Jinyoung Serena Kim, Florian Kirchschlager, Quentin Kral, Sebastiaan Krijt, Alexander V. Krivov, Marc J. Kuchner, Jarron M. Leisenring, Torsten Löhne, Wladimir Lyra, Meredith A. MacGregor, Luca Matrà, Dimitri Mawet, Bertrand Mennes- son, Tiffany Meshkat, Amaya Moro-Martín, Erika R. Nesvold, George H. Rieke, Aki Roberge, Glenn Schneider, Andrew Shannon, Christopher C. Stark, Kate Y. L. Su, Philippe Thébault, David J. Wilner, Mark C. Wyatt, Marie Ygouf, Andrew N. Youdin Co-Signers Virginie Faramaz, Kevin Flaherty, Hannah Jang-Condell, Jérémy Lebreton, Sebastián Marino, Jonathan P. Marshall, Rafael Millan-Gabet, Peter Plavchan, Luisa M. Rebull, Jacob White Abstract Understanding the formation, evolution, diversity, and architectures of planetary systems requires detailed knowledge of all of their components. The past decade has shown a remarkable increase in the number of known exoplanets and debris disks, i.e., populations of circumstellar planetes- imals and dust roughly analogous to our solar system’s Kuiper belt, asteroid belt, and zodiacal dust. -
Condensation of the Solar Nebular
Formation of the Sun-like Stars • Collapse of a portion of a molecular cloud 4.5-4.6 Ga – Star dusts in primitive meteorites provide – Fingerprints of neaby stars that preceded our Sun – Stars like our Sun can form in a large number (hundreds to thousands) and close to each other (0.1 pc or ~0.3 lightyear, much closer than the Sun’s neighbor stars) as seen in the Orion Nebular. – Modern molecular clouds also has circumstellar disks, where planets form. – Gas in the molecular clouds is cold (~4K) and relatively dense (104 atoms/cm3). 1 Formation of the Sun-like Stars • Young stars emits more infrared radiation than a blackbody of the same size –Due to dark (opaque) disks around them. –Such disks are dubbed “proplyds” (proto-planetary disks). • Planets in the solar system orbit the Sun in the same direction and the orbits are roughly coplanar. –Suggests the solar system originated from a disk-shaped region of material referred to as the solar nebular. –An old idea conceived at least 2 centuries ago. –Discovery of proplyds now provide strong support. 2 Formation of the Sun-like Stars • Not clear what triggers the collapse of the densest portion of the cloud (“core”) to form stars. – Sequential ages of stars in close proximity in a molecular cloud suggests that formation and evolution of some stars trigger the formation of additional stars. • Gas around the collapsing core of the molecular cloud is moving – Too much angular momentum binary star – Otherwise, a single protostar called a T Tauri star or a pre-main sequence star. -
Edwin S. Kite [email protected] Sseh.Uchicago.Edu Citizenship: US, UK Appointments: University of Chicago: January 2015 – Assistant Professor
Edwin S. Kite [email protected] sseh.uchicago.edu Citizenship: US, UK Appointments: University of Chicago: January 2015 { Assistant Professor. Princeton University: January 2014 { December 2014 Harry Hess Fellow. Joint postdoc, Astrophysics and Geoscience departments. California Institute of Technology: January 2012 { January 2014 O.K. Earl Fellow (Divisional fellowship), Division of Geological & Planetary Sciences Education: M.Sci & B.A. Cambridge University: June 2007 M.Sci Natural Sciences Tripos (Geological Sciences). First Class. B.A. Natural Sciences Tripos (Geological Sciences). First Class. Ph.D. University of California, Berkeley: December 2011 Berkeley Fellowship. Awards and Distinctions: National Academy of Sciences - Committee on Astrobiology and Planetary Science 2017- American Geophysical Union - Greeley Early Career Award in Planetary Science 2016. Caltech O.K. Earl Postdoctoral Fellowship 2012-2013 (Division-wide fellowship). AAAS Newcomb Cleveland Prize 2009 (most outstanding Science paper; shared). Papers 58. Kite, E.S. & Barnett, M.N., 2020, \Exoplanet Secondary Atmosphere Loss and Revival," Proceedings of the National Academy of Sciences, 117(31), 18264- = mentee 18271 (2020) 57. Kite, E.S., Steele, L.J., Mischna, M.A., & Richardson, M.I., \Strong Water Ice Cloud Greenhouse Warming In a 3D Model of Early Mars," (in revision) 56. Warren, A.O., Holo, S., Kite, E.S., & Wilson, S.A. \Overspilling Small Craters On A Dry Mars: Insights From Breach Erosion Modeling," Earth & Plan- etary Science Letters (in review) 55. Fan, B., Shaw, T.A., Tan, Z., & Kite, E.S., \Regime Transition of Tropi- cal Precipitation From Moist Climates to Desert-Planet Climates." Geophysical Research Letters (to be submitted) 54. Kite, E.S., Fegley, B., Schaefer, L., & Ford, E.B., \Atmosphere Origins for Exoplanet Sub-Neptunes," Astrophysical Journal, 891:111 (16 pp) (2020) 53. -
Exep Science Plan Appendix (SPA) (This Document)
ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 1 of 61 Created By: David A. Breda Date Program TDEM System Engineer Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology Dr. Nick Siegler Date Program Chief Technologist Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology Concurred By: Dr. Gary Blackwood Date Program Manager Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology EXOPDr.LANET Douglas Hudgins E XPLORATION PROGRAMDate Program Scientist Exoplanet Exploration Program ScienceScience Plan Mission DirectorateAppendix NASA Headquarters Karl Stapelfeldt, Program Chief Scientist Eric Mamajek, Deputy Program Chief Scientist Exoplanet Exploration Program JPL CL#19-0790 JPL Document No: 1735632 ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 2 of 61 Approved by: Dr. Gary Blackwood Date Program Manager, Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory Dr. Douglas Hudgins Date Program Scientist Exoplanet Exploration Program Science Mission Directorate NASA Headquarters Created by: Dr. Karl Stapelfeldt Chief Program Scientist Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory California Institute of Technology Dr. Eric Mamajek Deputy Program Chief Scientist Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory California Institute of Technology This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. © 2018 California Institute of Technology. Government sponsorship acknowledged. Exoplanet Exploration Program JPL CL#19-0790 ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 3 of 61 Table of Contents 1. -
Pro.Ffress D &Dentsdc Raddo
Pro.ffress d_ &dentSdc Raddo FIFTEENTH GENERAL ASSEMBLY OF THE INTERNATIONAL SCIENTIFIC RADIO UNION September 5-15, 1966 Munich, Germany REPORT OF THE U.S.A. NATIONAL COMMITTEE OF THE INTERNATIONAL SCIENTIFIC RADIO UNION Publication 1468 NATIONAL ACADEMY OF SCIENCES NATIONAL RESEARCH COUNCIL Washington, D.C. 1966 Library of Congress Catalog Card No. 55-31605 Available from Printing and Publishing Office National Academy of Sciences 2101 Constitution Avenue Washington, D.C. 20418 Price: $10.00 October28,1966 Dear Dr. Seitz: I ampleasedto transmitherewitha full report to the NationalAcademy of Sciences--NationalResearchCouncil,onthe 15thGeneralAssemblyof URSIwhichwasheldin Munich,September5-15, 1966. TheUnitedStatesNationalCommitteeof URSIhasparticipatedin the affairs of the Unionfor forty-five years. It hashadmuchinfluenceonthe Unionas,.for example,in therecent creationof a Commissiononthe Mag- netosphere.ThisnewCommission,whichis nowvery strong,demonstrates the ability of theUnion,oneof ICSU'sthree oldest,to respondto the changingneedsof its field. AlthoughtheUnitedStatessendsthelargest delegationsof anycountry to the GeneralAssembliesof URSI,theyare neverthelessrelatively small becauseof thestrict mannerin whichURSIcontrolsthe size of its Assem- blies. This is donein order to preventineffectivenessthroughuncontrolled participationbyvery largenumbersof delegates.Accordingly,our delega- tions are carefully selected,andcomprisepeoplequalifiedto prepareand presentour NationalReportto the Assembly.Thepre-Assemblyreport is a report of progressin -
Mighty Eagle: the Development and Flight Testing of an Autonomous Robotic Lander Test Bed
Mighty Eagle: The Development and Flight Testing of an Autonomous Robotic Lander Test Bed Timothy G. McGee, David A. Artis, Timothy J. Cole, Douglas A. Eng, Cheryl L. B. Reed, Michael R. Hannan, D. Greg Chavers, Logan D. Kennedy, Joshua M. Moore, and Cynthia D. Stemple PL and the Marshall Space Flight Center have been work- ing together since 2005 to develop technologies and mission concepts for a new generation of small, versa- tile robotic landers to land on airless bodies, including the moon and asteroids, in our solar system. As part of this larger effort, APL and the Marshall Space Flight Center worked with the Von Braun Center for Science and Innovation to construct a prototype monopropellant-fueled robotic lander that has been given the name Mighty Eagle. This article provides an overview of the lander’s architecture; describes the guidance, navi- gation, and control system that was developed at APL; and summarizes the flight test program of this autonomous vehicle. INTRODUCTION/PROJECT BACKGROUND APL and the Marshall Space Flight Center (MSFC) technology risk-reduction efforts, illustrated in Fig. 1, have been working together since 2005 to develop have been performed to explore technologies to enable technologies and mission concepts for a new genera- low-cost missions. tion of small, autonomous robotic landers to land on As part of this larger effort, MSFC and APL also airless bodies, including the moon and asteroids, in our worked with the Von Braun Center for Science and solar system.1–9 This risk-reduction effort is part of the Innovation (VCSI) and several subcontractors to con- Robotic Lunar Lander Development Project (RLLDP) struct the Mighty Eagle, a prototype monopropellant- that is directed by NASA’s Planetary Science Division, fueled robotic lander.