TRANSIT the Newsletter Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
THE STAR FORMATION NEWSLETTER an Electronic Publication Dedicated to Early Stellar Evolution and Molecular Clouds
THE STAR FORMATION NEWSLETTER An electronic publication dedicated to early stellar evolution and molecular clouds No. 90 — 27 March 2000 Editor: Bo Reipurth ([email protected]) Abstracts of recently accepted papers The Formation and Fragmentation of Primordial Molecular Clouds Tom Abel1, Greg L. Bryan2 and Michael L. Norman3,4 1 Harvard Smithsonian Center for Astrophysics, MA, 02138 Cambridge, USA 2 Massachusetts Institute of Technology, MA, 02139 Cambridge, USA 3 LCA, NCSA, University of Illinois, 61801 Urbana/Champaign, USA 4 Astronomy Department, University of Illinois, Urbana/Champaign, USA E-mail contact: [email protected] Many questions in physical cosmology regarding the thermal history of the intergalactic medium, chemical enrichment, reionization, etc. are thought to be intimately related to the nature and evolution of pregalactic structure. In particular the efficiency of primordial star formation and the primordial IMF are of special interest. We present results from high resolution three–dimensional adaptive mesh refinement simulations that follow the collapse of primordial molecular clouds and their subsequent fragmentation within a cosmologically representative volume. Comoving scales from 128 kpc down to 1 pc are followed accurately. Dark matter dynamics, hydrodynamics and all relevant chemical and radiative processes (cooling) are followed self-consistently for a cluster normalized CDM structure formation model. Primordial molecular clouds with ∼ 105 solar masses are assembled by mergers of multiple objects that have formed −4 hydrogen molecules in the gas phase with a fractional abundance of ∼< 10 . As the subclumps merge cooling lowers the temperature to ∼ 200 K in a “cold pocket” at the center of the halo. Within this cold pocket, a quasi–hydrostatically > 5 −3 contracting core with mass ∼ 200M and number densities ∼ 10 cm is found. -
Not Surprising That the Method Begins to Break Down at This Point
152 ASTRONOMY: W. S. ADAMS hanced lines in the early F stars are normally so prominent that it is not surprising that the method begins to break down at this point. To illustrate the use of the formulae and curves we may select as il- lustrations a few stars of different spectral types and magnitudes. These are collected in Table II. The classification is from Mount Wilson determinations. TABLE H ~A M PARAIuAX srTATYP_________________ (a) I(b) (C) (a) (b) c) Mean Comp. Ob. Pi 10U96.... 7.6F5 -0.7 +0.7 +3.0 +6.5 4.7 5.8 5.7 +0#04 +0.04 Sun........ GO -0.5 +0.5 +3.0 +5.6 4.3 5.8 5.2 Lal. 38287.. 7.2 G5 -1.8 +1.5 +3.5 +7.4 +6.3 +6.2 7.3 +0.10 +0.09 a Arietis... 2.2K0O +2.5 -2.4 +0.2 +1.0 1.3 +0.2 0.8 +0.05 +0.09 aTauri.... 1.1K5 +3.0 -2.0 +0.5 -0.4 +1.9 +0.5 0.7 +0.08 +0.07 61' Cygni...6.3K8 -1.8 +5.8 +7.7 +8.2 9.3 8.9 8.8 +0.32 +0.31 Groom. 34..8.2 Ma -2.2 +6.8 +9.2 +10.2 10.5 10.4 10.4 +0.28 +0.28 The parallaxes are computed from the absolute magnitudes by the formula, to which reference has already been made, 5 logr = M - m - 5. The results are given in the next to the last column of the table, and the measured parallaxes in the final column. -
Binocular Double Star Logbook
Astronomical League Binocular Double Star Club Logbook 1 Table of Contents Alpha Cassiopeiae 3 14 Canis Minoris Sh 251 (Oph) Psi 1 Piscium* F Hydrae Psi 1 & 2 Draconis* 37 Ceti Iota Cancri* 10 Σ2273 (Dra) Phi Cassiopeiae 27 Hydrae 40 & 41 Draconis* 93 (Rho) & 94 Piscium Tau 1 Hydrae 67 Ophiuchi 17 Chi Ceti 35 & 36 (Zeta) Leonis 39 Draconis 56 Andromedae 4 42 Leonis Minoris Epsilon 1 & 2 Lyrae* (U) 14 Arietis Σ1474 (Hya) Zeta 1 & 2 Lyrae* 59 Andromedae Alpha Ursae Majoris 11 Beta Lyrae* 15 Trianguli Delta Leonis Delta 1 & 2 Lyrae 33 Arietis 83 Leonis Theta Serpentis* 18 19 Tauri Tau Leonis 15 Aquilae 21 & 22 Tauri 5 93 Leonis OΣΣ178 (Aql) Eta Tauri 65 Ursae Majoris 28 Aquilae Phi Tauri 67 Ursae Majoris 12 6 (Alpha) & 8 Vul 62 Tauri 12 Comae Berenices Beta Cygni* Kappa 1 & 2 Tauri 17 Comae Berenices Epsilon Sagittae 19 Theta 1 & 2 Tauri 5 (Kappa) & 6 Draconis 54 Sagittarii 57 Persei 6 32 Camelopardalis* 16 Cygni 88 Tauri Σ1740 (Vir) 57 Aquilae Sigma 1 & 2 Tauri 79 (Zeta) & 80 Ursae Maj* 13 15 Sagittae Tau Tauri 70 Virginis Theta Sagittae 62 Eridani Iota Bootis* O1 (30 & 31) Cyg* 20 Beta Camelopardalis Σ1850 (Boo) 29 Cygni 11 & 12 Camelopardalis 7 Alpha Librae* Alpha 1 & 2 Capricorni* Delta Orionis* Delta Bootis* Beta 1 & 2 Capricorni* 42 & 45 Orionis Mu 1 & 2 Bootis* 14 75 Draconis Theta 2 Orionis* Omega 1 & 2 Scorpii Rho Capricorni Gamma Leporis* Kappa Herculis Omicron Capricorni 21 35 Camelopardalis ?? Nu Scorpii S 752 (Delphinus) 5 Lyncis 8 Nu 1 & 2 Coronae Borealis 48 Cygni Nu Geminorum Rho Ophiuchi 61 Cygni* 20 Geminorum 16 & 17 Draconis* 15 5 (Gamma) & 6 Equulei Zeta Geminorum 36 & 37 Herculis 79 Cygni h 3945 (CMa) Mu 1 & 2 Scorpii Mu Cygni 22 19 Lyncis* Zeta 1 & 2 Scorpii Epsilon Pegasi* Eta Canis Majoris 9 Σ133 (Her) Pi 1 & 2 Pegasi Δ 47 (CMa) 36 Ophiuchi* 33 Pegasi 64 & 65 Geminorum Nu 1 & 2 Draconis* 16 35 Pegasi Knt 4 (Pup) 53 Ophiuchi Delta Cephei* (U) The 28 stars with asterisks are also required for the regular AL Double Star Club. -
Nov 2016 Newsletter
Volume22, Issue 3 NWASNEWS November 2016 Newsletter for the Wiltshire, Swindon, Beckington WHAT DO WANT FROM YOUR SOCIETY? Astronomical Societies and Salisbury Plain Firstly can I welcome our returning In the early years there may have been Wiltshire Society Page 2 speaker Philip Perkins who last came to more beginners experiences, especially us when we met over the road in the WI where I was learning the hard way myself, Swindon Stargazers 3 hall. not worried about putting my mistakes to the society so, hopefully, they may learn Beckington and SPOG 4 His imaging of the night sky is really in- from my mistakes. spirational, making the transition from Space Place What kind of plan- 5 film (hyposensitising film was no joke) Would somebody like to write a beginners ets could be at Proxima then moving over to digital. piece every month? It doesn't have to be Centauri. all your own work. His work can be seen on his website Space News: Falcon X, 6-13 Astrocruise.com. He has an observatory Saturn’s hex changes colour. in the south of France, but also does a lot At last we have our darker skies with Mars probe crash site. of imaging from here in Wiltshire near longer nights, it may bring cold and some How many planets in Milky Way Aldbourne. cloud, but did you know there are more Pluto and Charon data at last cloudy nights in August than in Decem- Argentine 30tonne meteorite ber? It is just a case of wrapping up warm Formation of the Earth What I have noticed is the drop in sub- and getting out there. -
Downloads/ Astero2007.Pdf) and by Aerts Et Al (2010)
This work is protected by copyright and other intellectual property rights and duplication or sale of all or part is not permitted, except that material may be duplicated by you for research, private study, criticism/review or educational purposes. Electronic or print copies are for your own personal, non- commercial use and shall not be passed to any other individual. No quotation may be published without proper acknowledgement. For any other use, or to quote extensively from the work, permission must be obtained from the copyright holder/s. i Fundamental Properties of Solar-Type Eclipsing Binary Stars, and Kinematic Biases of Exoplanet Host Stars Richard J. Hutcheon Submitted in accordance with the requirements for the degree of Doctor of Philosophy. Research Institute: School of Environmental and Physical Sciences and Applied Mathematics. University of Keele June 2015 ii iii Abstract This thesis is in three parts: 1) a kinematical study of exoplanet host stars, 2) a study of the detached eclipsing binary V1094 Tau and 3) and observations of other eclipsing binaries. Part I investigates kinematical biases between two methods of detecting exoplanets; the ground based transit and radial velocity methods. Distances of the host stars from each method lie in almost non-overlapping groups. Samples of host stars from each group are selected. They are compared by means of matching comparison samples of stars not known to have exoplanets. The detection methods are found to introduce a negligible bias into the metallicities of the host stars but the ground based transit method introduces a median age bias of about -2 Gyr. -
Arxiv:0706.2206V1 [Astro-Ph] 14 Jun 2007 1983; Beichman Et Al
Accepted to the Astrophysical Journal Supplemental Series Preprint typeset using LATEX style emulateapj v. 08/22/09 A CASE STUDY OF LOW-MASS STAR FORMATION Jonathan J. Swift Institute for Astronomy, 2680 Woodlawn Dr., Honolulu, HI 96822-1897: [email protected] William J. Welch Department of Astronomy and Radio Astronomy Laboratory, University of California, 601 Campbell Hall, Berkeley, CA 94720-3411 Accepted to the Astrophysical Journal Supplemental Series ABSTRACT This article synthesizes observational data from an extensive program aimed toward a comprehensive understanding of star formation in a low-mass star-forming molecular cloud. New observations and published data spanning from the centimeter wave band to the near infrared reveal the high and low density molecular gas, dust, and pre-main sequence stars in L1551. The total cloud mass of ∼ 160 M contained within a 0.9 pc has a dynamical timescale, tdyn = 1:1 Myr. Thirty-five pre-main sequence stars with masses from ∼ 0:1 to 1.5 M are selected to be members of the L1551 association constituting a total of 22 ± 5 M of stellar mass. The observed star formation efficiency, SFE = 12%, while the total efficiency, SFEtot, is estimated to fall between 9 and 15%. L1551 appears to have been forming stars for several tdyn with the rate of star formation increas- ing with time. Star formation has likely progressed from east to west, and there is clear evidence that another star or stellar system will form in the high column density region to the northwest of L1551 IRS5. High-resolution, wide-field maps of L1551 in CO isotopologue emission display the structure of the molecular cloud at 1600 AU physical resolution. -
January 2015 BRAS Newsletter
January, 2015 Next Meeting: January 12th at 7PM at HRPO Artist concept of New Horizons. For more info on it and its mission to Pluto, click on the image. What's In This Issue? President's Message Astro Short: Wild Weather on WASP -43b Secretary's Summary Message From HRPO IYL and 20/20 Vision Campaign Recent BRAS Forum Entries Observing Notes by John Nagle President's Message Welcome to a new year. I can see lots to be excited about this year. First up are the Rockafeller retreat and Hodges Gardens Star Party. Go to our website for details: www.brastro.org Almost like a Christmas present from heaven, Comet Lovejoy C/2014 Q2 underwent a sudden brightening right before Christmas. Initially it was expected to be about magnitude 8 at its brightest but right after Christmas it became visible to the naked eye. At the time of this writing, it may become as bright as magnitude 4.5 or 4. As January progresses, the comet will move farther north, and higher in the sky for us. Now all we need is for these clouds to move out…. If any of you received (or bought yourself) any astronomical related goodies for Christmas and would like to show them off, bring them to the next meeting. Interesting geeky goodies qualify also, like that new drone or 3D printer. BRAS members are invited to a star party hosted by a group called the Lake Charles Free Thinkers. It will be January 24, 2015 from 3:00 PM on, at 5335 Hwy. -
Vigorous Atmospheric Motions in the Red Supergiant Supernova Progenitor Antares
Vigorous atmospheric motions in the red supergiant supernova progenitor Antares K. Ohnaka1, G. Weigelt2 & K.-H. Hofmann2 1. Instituto de Astronom´ıa, Universidad Catolica´ del Norte, Avenida Angamos 0610, Antofagasta, Chile 2. Max-Planck-Institut fur¨ Radioastronomie, Auf dem Hugel¨ 69, 53121 Bonn, Germany Red supergiants represent a late stage of the evolution of stars more massive than about 9 solar masses. At this evolutionary stage, massive stars develop complex, multi-component at- mospheres. Bright spots were detected in the atmosphere of red supergiants by interferometric imaging1–5. Above the photosphere, the molecular outer atmosphere extends up to about two stellar radii6–14. Furthermore, the hot chromosphere (5,000–8,000 K) and cool gas (<3,500 K) are coexisting within ∼3 stellar radii15–18. The dynamics of the complex atmosphere have been probed by ultraviolet and optical spectroscopy19–22. However, the most direct, unambiguous approach is to measure the velocity at each position over the image of stars as in observations of the Sun. Here we report mapping of the velocity field over the surface and atmosphere of the prototypical red supergiant Antares. The two-dimensional velocity field map obtained from our near-infrared spectro-interferometric imaging reveals vigorous upwelling and downdraft- ing motions of several huge gas clumps at velocities ranging from about −20 to +20 km s−1 in the atmosphere extending out to ∼1.7 stellar radii. Convection alone cannot explain the ob- served turbulent motions and atmospheric extension, suggesting the operation of a yet-to-be identified process in the extended atmosphere. +35 Antares is a well-studied, close red supergiant (RSG) at a distance of 170−25 pc (based on the parallax of 5:891:00 milliarcsecond = mas, ref. -
About Ten Stars Orbit Eclipsing Binary XZ
About ten stars orbit eclipsing binary XZ Andromedae Lauri Jetsu Department of Physics, P.O. Box 64, FI-00014, University of Helsinki, Finland; email: lauri.jetsu@helsinki.fi June 2, 2020 Abstract A third body in an eclipsing binary system causes regular periodic changes in the observed (O) minus the computed (C) eclipse epochs. Fourth bodies have rarely been detected from the O-C data. We apply the new Discrete Chi-square Method (DCM) to the O-C data of the eclipsing binary XZ Andromedae. These data contain the periodic signatures of at least ten wide orbit stars (WOSs). Their orbital periods are between 1.6 and 91.7 years. Since no changes have been observed in the eclipses of XZ And during the past 127 years, the orbits of all these WOSs are most probably co-planar. We give detailed instructions of how the professional and the amateur astronomers can easily repeat all stages of our DCM analysis with an ordinary PC, as well as apply this method to the O-C data of other eclipsing binaries. Key words: methods: data analysis - methods: numerical - methods: statistical - binaries: eclipsing 1 Introduction 2 Data In September 2019, we retrieved the observed (O) minus the Naked eye observations of Algol’s eclipses have been recorded computed (C) primary eclipse epochs of XZ And from the into the Ancient Egyptian Calendar of Lucky and Un- Lichtenknecker-Database of the BAV. These data had lucky days (Jetsu and Porceddu, 2015; Jetsu et al., 2013; been computed from the ephemeris Porceddu et al., 2018, 2008). -
Culmination of a Constellation
Culmination of a Constellation Over any night, stars and constellations in the sky will appear to move from east to west due to the Earth’s rotation on its axis. A constellation will culminate (reach its highest point in the sky for your location) when it centres on the meridian - an imaginary line that runs across the sky from north to south and also passes through the zenith (the point high in the sky directly above your head). For example: When to Observe Constellations The taBle shows the approximate time (AEST) constellations will culminate around the middle (15th day) of each month. Constellations will culminate 2 hours earlier for each successive month. Note: add an hour to the given time when daylight saving time is in effect. The time “12” is midnight. Sunrise/sunset times are rounded off to the nearest half an hour. Sun- Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Rise 5am 5:30 6am 6am 7am 7am 7am 6:30 6am 5am 4:30 4:30 Set 7pm 6:30 6pm 5:30 5pm 5pm 5pm 5:30 6pm 6pm 6:30 7pm And 5am 3am 1am 11pm 9pm Aqr 5am 3am 1am 11pm 9pm Aql 4am 2am 12 10pm 8pm Ara 4am 2am 12 10pm 8pm Ari 5am 3am 1am 11pm 9pm Aur 10pm 8pm 4am 2am 12 Boo 3am 1am 11pm 9pm 7pm Cnc 1am 11pm 9pm 7pm 3am CVn 3am 1am 11pm 9pm 7pm CMa 11pm 9pm 7pm 3am 1am Cap 5am 3am 1am 11pm 9pm 7pm Car 2am 12 10pm 8pm 6pm Cen 4am 2am 12 10pm 8pm 6pm Cet 4am 2am 12 10pm 8pm Cha 3am 1am 11pm 9pm 7pm Col 10pm 8pm 4am 2am 12 Com 3am 1am 11pm 9pm 7pm CrA 3am 1am 11pm 9pm 7pm CrB 4am 2am 12 10pm 8pm Crv 3am 1am 11pm 9pm 7pm Cru 3am 1am 11pm 9pm 7pm Cyg 5am 3am 1am 11pm 9pm 7pm Del -
Macrocosmo Nº24
A PRIMEIRA REVISTA ELETRÔNICA BRASILEIRA EXCLUSIVA DE ASTRONOMIA macroCOSMO .com ISSN 1808-0731 Ano II - Edição n° 24 - Novembro de 2005 Eclipse Anular 3 de outubro de 2005 O O ^^Q uando a W Lua S o l oculta o w l Cratera de Colônia 25 anos da Aspectos Gerais The Planetary Society revista macroCOSMO .com Ano II - Edição n° 24 - Novembro de 2005 Editorial Redação [email protected] Assim como tantos outros fenômenos naturais, para as primeiras civilizações, os eclipses já foram atribuídos à sinais de múltiplas Diretor Editor Chefe divindades. Eclipses Solares e Lunares, eventos estes repentinos que Hemerson Brandão quebravam a imutabilidade do céu, eram interpretados como [email protected] manifestações de ira dos deuses, predizendo morte de chefes de estado, grandes catástrofes, guerras, e várias pragas. Diagramadores Mesmo nos dias de hoje, com toda a tecnologia e conhecimento Hemerson Brandão adquirido é comum pessoas ficarem receosas com o desaparecimento [email protected] repentino temporário do Sol ou da Lua. Exemplo disso são alguns cristãos Rodolfo Saccani fanáticos, que afirmam que os eclipses são indícios do “fim do mundo”. [email protected] Durante a história, enquanto alguns povos nômades cultivavam um Sharon Camargo temor mítico por esses fenômenos, povos sedentários se empenhavam [email protected] em entender sobre a periodicidade desses fenômenos raros, tentando encontrar padrões que permitissem a previsão dos eclipses. Para isso, Revisão muitos povos erigiram grandes templos e observatórios para estudo e Tasso Napoleão previsão de eclipses além de outros fenômenos celestes. Há quem afirme [email protected] que as pedras megalíticas de Stonehenge, nas ilhas britânicas, estão Walkiria Schulz dispostas numa posição que permitia ao povo que o construiu, prever [email protected] eclipses, há mais de 3700 anos. -
Lecture 26 Pre-Main Sequence Evolution
Lecture 26 Low-Mass Young Stellar Objects 1. Nearby Star Formation 2. General Properties of Young Stars 3. T Tauri Stars 4. Herbig Ae/Be Stars References Adams, Lizano & Shu ARAA 25 231987 Lada OSPS 1999 Stahler & Palla Chs. 17 & 18 Local Star Forming Regions Much of our knowledge of star formation comes from a few nearby regions Taurus-Auriga & Perseus – 150 pc low mass (sun-like) stars Orion – 450 pc high & low mass stars [Grey – Milky Way Black – Molecular clouds] Representative for the Galaxy as a whole? Stahler & Palla Fig 1.1 PERSEUS with famous objects AURIGA NGC 1579 B5 IC 348 NGC 1333 TMC-1 T Tau L1551 TAURUS Taurus, Auriga & Perseus • A cloud complex rich in cores & YSOs • NGC1333/IC 348 • Pleiades •TMC-1,2 • T Tauri & other TTSs • L 1551 Ophiuchus Wilking et al. 1987 AJ 94 106 CO Andre PP IV Orion L1630 L1630 star clusters L1630 in Orion NIR star clusters on CS(2-1) map E Lada, ApJ 393 25 1992 4 M(L1630) ~ 8x10 Msun 5 massive cores (~ 200 Msun) associated with NIR star clusters 2. General Properties Young stars are associated with molecular clouds. Observations are affected by extinction, which decreases with increasing wavelength. Loosely speaking, we can distinguish two types: Embedded stars - seen only at NIR or longer wavelengths, usually presumed to be very young Revealed stars - seen at optical wavelengths or shorter, usually presumed to be older What makes young stars particularly interesting is Circumstellar gas and dust – both flowing in as well as out, e.g., jets, winds, & disks.