An Introduction to the Mass Transportation Theory and Its Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Extremal Dependence Concepts
Extremal dependence concepts Giovanni Puccetti1 and Ruodu Wang2 1Department of Economics, Management and Quantitative Methods, University of Milano, 20122 Milano, Italy 2Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON N2L3G1, Canada Journal version published in Statistical Science, 2015, Vol. 30, No. 4, 485{517 Minor corrections made in May and June 2020 Abstract The probabilistic characterization of the relationship between two or more random variables calls for a notion of dependence. Dependence modeling leads to mathematical and statistical challenges and recent developments in extremal dependence concepts have drawn a lot of attention to probability and its applications in several disciplines. The aim of this paper is to review various concepts of extremal positive and negative dependence, including several recently established results, reconstruct their history, link them to probabilistic optimization problems, and provide a list of open questions in this area. While the concept of extremal positive dependence is agreed upon for random vectors of arbitrary dimensions, various notions of extremal negative dependence arise when more than two random variables are involved. We review existing popular concepts of extremal negative dependence given in literature and introduce a novel notion, which in a general sense includes the existing ones as particular cases. Even if much of the literature on dependence is focused on positive dependence, we show that negative dependence plays an equally important role in the solution of many optimization problems. While the most popular tool used nowadays to model dependence is that of a copula function, in this paper we use the equivalent concept of a set of rearrangements. -
Wasserstein Distance W2, Or to the Kantorovich-Wasserstein Distance W1, with Explicit Constants of Equivalence
THE EQUIVALENCE OF FOURIER-BASED AND WASSERSTEIN METRICS ON IMAGING PROBLEMS G. AURICCHIO, A. CODEGONI, S. GUALANDI, G. TOSCANI, M. VENERONI Abstract. We investigate properties of some extensions of a class of Fourier-based proba- bility metrics, originally introduced to study convergence to equilibrium for the solution to the spatially homogeneous Boltzmann equation. At difference with the original one, the new Fourier-based metrics are well-defined also for probability distributions with different centers of mass, and for discrete probability measures supported over a regular grid. Among other properties, it is shown that, in the discrete setting, these new Fourier-based metrics are equiv- alent either to the Euclidean-Wasserstein distance W2, or to the Kantorovich-Wasserstein distance W1, with explicit constants of equivalence. Numerical results then show that in benchmark problems of image processing, Fourier metrics provide a better runtime with respect to Wasserstein ones. Fourier-based Metrics; Wasserstein Distance; Fourier Transform; Image analysis. AMS Subject Classification: 60A10, 60E15, 42A38, 68U10. 1. Introduction In computational applied mathematics, numerical methods based on Wasserstein distances achieved a leading role over the last years. Examples include the comparison of histograms in higher dimensions [6,9,22], image retrieval [21], image registration [4,11], or, more recently, the computations of barycenters among images [7, 15]. Surprisingly, the possibility to identify the cost function in a Wasserstein distance, together with the possibility of representing images as histograms, led to the definition of classifiers able to mimic the human eye [16, 21, 24]. More recently, metrics which are able to compare at best probability distributions were introduced and studied in connection with machine learning, where testing the efficiency of new classes of loss functions for neural networks training has become increasingly important. -
Five Lectures on Optimal Transportation: Geometry, Regularity and Applications
FIVE LECTURES ON OPTIMAL TRANSPORTATION: GEOMETRY, REGULARITY AND APPLICATIONS ROBERT J. MCCANN∗ AND NESTOR GUILLEN Abstract. In this series of lectures we introduce the Monge-Kantorovich problem of optimally transporting one distribution of mass onto another, where optimality is measured against a cost function c(x, y). Connections to geometry, inequalities, and partial differential equations will be discussed, focusing in particular on recent developments in the regularity theory for Monge-Amp`ere type equations. An ap- plication to microeconomics will also be described, which amounts to finding the equilibrium price distribution for a monopolist marketing a multidimensional line of products to a population of anonymous agents whose preferences are known only statistically. c 2010 by Robert J. McCann. All rights reserved. Contents Preamble 2 1. An introduction to optimal transportation 2 1.1. Monge-Kantorovich problem: transporting ore from mines to factories 2 1.2. Wasserstein distance and geometric applications 3 1.3. Brenier’s theorem and convex gradients 4 1.4. Fully-nonlinear degenerate-elliptic Monge-Amp`eretype PDE 4 1.5. Applications 5 1.6. Euclidean isoperimetric inequality 5 1.7. Kantorovich’s reformulation of Monge’s problem 6 2. Existence, uniqueness, and characterization of optimal maps 6 2.1. Linear programming duality 8 2.2. Game theory 8 2.3. Relevance to optimal transport: Kantorovich-Koopmans duality 9 2.4. Characterizing optimality by duality 9 2.5. Existence of optimal maps and uniqueness of optimal measures 10 3. Methods for obtaining regularity of optimal mappings 11 3.1. Rectifiability: differentiability almost everywhere 12 3.2. From regularity a.e. -
The Geometry of Optimal Transportation
THE GEOMETRY OF OPTIMAL TRANSPORTATION Wilfrid Gangbo∗ School of Mathematics, Georgia Institute of Technology Atlanta, GA 30332, USA [email protected] Robert J. McCann∗ Department of Mathematics, Brown University Providence, RI 02912, USA and Institut des Hautes Etudes Scientifiques 91440 Bures-sur-Yvette, France [email protected] July 28, 1996 Abstract A classical problem of transporting mass due to Monge and Kantorovich is solved. Given measures µ and ν on Rd, we find the measure-preserving map y(x) between them with minimal cost | where cost is measured against h(x − y)withhstrictly convex, or a strictly concave function of |x − y|.This map is unique: it is characterized by the formula y(x)=x−(∇h)−1(∇ (x)) and geometrical restrictions on . Connections with mathematical economics, numerical computations, and the Monge-Amp`ere equation are sketched. ∗Both authors gratefully acknowledge the support provided by postdoctoral fellowships: WG at the Mathematical Sciences Research Institute, Berkeley, CA 94720, and RJM from the Natural Sciences and Engineering Research Council of Canada. c 1995 by the authors. To appear in Acta Mathematica 1997. 1 2 Key words and phrases: Monge-Kantorovich mass transport, optimal coupling, optimal map, volume-preserving maps with convex potentials, correlated random variables, rearrangement of vector fields, multivariate distributions, marginals, Lp Wasserstein, c-convex, semi-convex, infinite dimensional linear program, concave cost, resource allocation, degenerate elliptic Monge-Amp`ere 1991 Mathematics -
(Measure Theory for Dummies) UWEE Technical Report Number UWEETR-2006-0008
A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 UWEE Technical Report Number UWEETR-2006-0008 May 2006 Department of Electrical Engineering University of Washington Box 352500 Seattle, Washington 98195-2500 PHN: (206) 543-2150 FAX: (206) 543-3842 URL: http://www.ee.washington.edu A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 University of Washington, Dept. of EE, UWEETR-2006-0008 May 2006 Abstract This tutorial is an informal introduction to measure theory for people who are interested in reading papers that use measure theory. The tutorial assumes one has had at least a year of college-level calculus, some graduate level exposure to random processes, and familiarity with terms like “closed” and “open.” The focus is on the terms and ideas relevant to applied probability and information theory. There are no proofs and no exercises. Measure theory is a bit like grammar, many people communicate clearly without worrying about all the details, but the details do exist and for good reasons. There are a number of great texts that do measure theory justice. This is not one of them. Rather this is a hack way to get the basic ideas down so you can read through research papers and follow what’s going on. Hopefully, you’ll get curious and excited enough about the details to check out some of the references for a deeper understanding. -
Free Complete Wasserstein Algebras
FREE COMPLETE WASSERSTEIN ALGEBRAS RADU MARDARE, PRAKASH PANANGADEN, AND GORDON D. PLOTKIN Abstract. We present an algebraic account of the Wasserstein distances Wp on complete metric spaces, for p ≥ 1. This is part of a program of a quantitative algebraic theory of effects in programming languages. In particular, we give axioms, parametric in p, for algebras over metric spaces equipped with probabilistic choice operations. The axioms say that the operations form a barycentric algebra and that the metric satisfies a property typical of the Wasserstein distance Wp. We show that the free complete such algebra over a complete metric space is that of the Radon probability measures with finite moments of order p, equipped with the Wasserstein distance as metric and with the usual binary convex sums as operations. 1. Introduction The denotational semantics of probabilistic programs generally makes use of one or another monad of probability measures. In [18, 10], Lawvere and Giry provided the first example of such a monad, over the category of measurable spaces; Giry also gave a second example, over Polish spaces. Later, in [15, 14], Jones and Plotkin provided a monad of evaluations over directed complete posets. More recently, in [12], Heunen, Kammar, et al provided such a monad over quasi-Borel spaces. Metric spaces (and nonexpansive maps) form another natural category to consider. The question then arises as to what metric to take over probability measures, and the Kantorovich-Wasserstein, or, more generally, the Wasserstein distances of order p > 1 (generalising from p = 1), provide natural choices. A first result of this kind was given in [2], where it was shown that the Kantorovich distance provides a monad over the sub- category of 1-bounded complete separable metric spaces. -
Statistical Aspects of Wasserstein Distances
Statistical Aspects of Wasserstein Distances Victor M. Panaretos∗and Yoav Zemely June 8, 2018 Abstract Wasserstein distances are metrics on probability distributions inspired by the problem of optimal mass transportation. Roughly speaking, they measure the minimal effort required to reconfigure the probability mass of one distribution in order to recover the other distribution. They are ubiquitous in mathematics, with a long history that has seen them catal- yse core developments in analysis, optimization, and probability. Beyond their intrinsic mathematical richness, they possess attractive features that make them a versatile tool for the statistician: they can be used to de- rive weak convergence and convergence of moments, and can be easily bounded; they are well-adapted to quantify a natural notion of pertur- bation of a probability distribution; and they seamlessly incorporate the geometry of the domain of the distributions in question, thus being useful for contrasting complex objects. Consequently, they frequently appear in the development of statistical theory and inferential methodology, and have recently become an object of inference in themselves. In this review, we provide a snapshot of the main concepts involved in Wasserstein dis- tances and optimal transportation, and a succinct overview of some of their many statistical aspects. Keywords: deformation map, empirical optimal transport, Fr´echet mean, goodness-of-fit, inference, Monge{Kantorovich problem, optimal coupling, prob- ability metric, transportation of measure, warping and registration, Wasserstein space AMS subject classification: 62-00 (primary); 62G99, 62M99 (secondary) arXiv:1806.05500v3 [stat.ME] 9 Apr 2019 1 Introduction Wasserstein distances are metrics between probability distributions that are inspired by the problem of optimal transportation. -
A Theory of Radon Measures on Locally Compact Spaces
A THEORY OF RADON MEASURES ON LOCALLY COMPACT SPACES. By R. E. EDWARDS. 1. Introduction. In functional analysis one is often presented with the following situation: a locally compact space X is given, and along with it a certain topological vector space • of real functions defined on X; it is of importance to know the form of the most general continuous linear functional on ~. In many important cases, s is a superspace of the vector space ~ of all reul, continuous functions on X which vanish outside compact subsets of X, and the topology of s is such that if a sequence (]n) tends uniformly to zero and the ]n collectively vanish outside a fixed compact subset of X, then (/~) is convergent to zero in the sense of E. In this case the restriction to ~ of any continuous linear functional # on s has the property that #(/~)~0 whenever the se- quence (/~) converges to zero in the manner just described. It is therefore an important advance to determine all the linear functionals on (~ which are continuous in this eense. It is customary in some circles (the Bourbaki group, for example) to term such a functional # on ~ a "Radon measure on X". Any such functional can be written in many ways as the difference of two similar functionals, euch having the additional property of being positive in the sense that they assign a number >_ 0 to any function / satisfying ] (x) > 0 for all x E X. These latter functionals are termed "positive Radon measures on X", and it is to these that we may confine our attention. -
Optimal Transportation: Duality Theory
Optimal Transportation: Duality Theory David Gu Yau Mathematics Science Center Tsinghua University Computer Science Department Stony Brook University [email protected] August 15, 2020 David Gu (Stony Brook University) Computational Conformal Geometry August 15, 2020 1 / 56 Motivation David Gu (Stony Brook University) Computational Conformal Geometry August 15, 2020 2 / 56 Why dose DL work? Problem 1 What does a DL system really learn ? 2 How does a DL system learn ? Does it really learn or just memorize ? 3 How well does a DL system learn ? Does it really learn everything or have to forget something ? Till today, the understanding of deep learning remains primitive. David Gu (Stony Brook University) Computational Conformal Geometry August 15, 2020 3 / 56 Why does DL work? 1. What does a DL system really learn? Probability distributions on manifolds. 2. How does a DL system learn ? Does it really learn or just memorize ? Optimization in the space of all probability distributions on a manifold. A DL system both learns and memorizes. 3. How well does a DL system learn ? Does it really learn everything or have to forget something ? Current DL systems have fundamental flaws, mode collapsing. David Gu (Stony Brook University) Computational Conformal Geometry August 15, 2020 4 / 56 Manifold Distribution Principle We believe the great success of deep learning can be partially explained by the well accepted manifold distribution and the clustering distribution principles: Manifold Distribution A natural data class can be treated as a probability distribution defined on a low dimensional manifold embedded in a high dimensional ambient space. Clustering Distribution The distances among the probability distributions of subclasses on the manifold are far enough to discriminate them. -
Introduction to Optimal Transport Theory Filippo Santambrogio
Introduction to Optimal Transport Theory Filippo Santambrogio To cite this version: Filippo Santambrogio. Introduction to Optimal Transport Theory. 2009. hal-00519456 HAL Id: hal-00519456 https://hal.archives-ouvertes.fr/hal-00519456 Preprint submitted on 20 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Introduction to Optimal Transport Theory Filippo Santambrogio∗ Grenoble, June 15th, 2009 Revised version : March 23rd, 2010 Abstract These notes constitute a sort of Crash Course in Optimal Transport Theory. The different features of the problem of Monge-Kantorovitch are treated, starting from convex duality issues. The main properties of space of probability measures endowed with the distances Wp induced by optimal transport are detailed. The key tools to put in relation optimal transport and PDEs are provided. AMS Subject Classification (2010): 00-02, 49J45, 49Q20, 35J60, 49M29, 90C46, 54E35 Keywords: Monge problem, linear programming, Kantorovich potential, existence, Wasserstein distances, transport equation, Monge-Amp`ere, regularity Contents 1 Primal and dual problems 3 1.1 KantorovichandMongeproblems. ........ 3 1.2 Duality ......................................... 4 1.3 The case c(x,y)= |x − y| ................................. 6 1.4 c(x,y)= h(x − y) with h strictly convex and the existence of an optimal T .... -
BOUNDING the SUPPORT of a MEASURE from ITS MARGINAL MOMENTS 1. Introduction Inverse Problems in Probability Are Ubiquitous in Se
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 139, Number 9, September 2011, Pages 3375–3382 S 0002-9939(2011)10865-7 Article electronically published on January 26, 2011 BOUNDING THE SUPPORT OF A MEASURE FROM ITS MARGINAL MOMENTS JEAN B. LASSERRE (Communicated by Edward C. Waymire) Abstract. Given all moments of the marginals of a measure μ on Rn,one provides (a) explicit bounds on its support and (b) a numerical scheme to compute the smallest box that contains the support of μ. 1. Introduction Inverse problems in probability are ubiquitous in several important applications, among them shape reconstruction problems. For instance, exact recovery of two- dimensional objects from finitely many moments is possible for polygons and so- called quadrature domains as shown in Golub et al. [5] and Gustafsson et al. [6], respectively. But so far, there is no inversion algorithm from moments for n- dimensional shapes. However, more recently Cuyt et al. [3] have shown how to approximately recover numerically an unknown density f defined on a compact region of Rn, from the only knowledge of its moments. So when f is the indicator function of a compact set A ⊂ Rn one may thus recover the shape of A with good accuracy, based on moment information only. The elegant methodology developed in [3] is based on multi-dimensional homogeneous Pad´e approximants and uses a nice Pad´e slice property, the analogue for the moment approach of the Fourier slice theorem for the Radon transform (or projection) approach; see [3] for an illuminating discussion. In this paper we are interested in the following inverse problem. -
Tightness Criteria for Laws of Semimartingales Annales De L’I
ANNALES DE L’I. H. P., SECTION B P. A. MEYER W. A. ZHENG Tightness criteria for laws of semimartingales Annales de l’I. H. P., section B, tome 20, no 4 (1984), p. 353-372 <http://www.numdam.org/item?id=AIHPB_1984__20_4_353_0> © Gauthier-Villars, 1984, tous droits réservés. L’accès aux archives de la revue « Annales de l’I. H. P., section B » (http://www.elsevier.com/locate/anihpb) implique l’accord avec les condi- tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti- lisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Henri Poincaré, Vol. 20, n° 4, 1984, p. 353-372.353 Probabilités et Statistiques Tightness criteria for laws of semimartingales P. A. MEYER Institut de Mathematique, Universite de Strasbourg, F-67084 Strasbourg-Cedex, (Lab. Associe au CNRS) W. A. ZHENG Same address and East China Normal University, Shangai, People’s Rep. of China ABSTRACT. - When the space of cadlag trajectories is endowed with the topology of convergence in measure (much weaker that Skorohod’s topology), very convenient criteria of compactness are obtained for bounded sets of laws of quasimartingales and semi-martingales. Stability of various classes of processes for that type of convergence is also studied. RESUME. - On montre que si l’on munit l’espace des trajectoires cad- _ làg de la topologie de la convergence en mesure (beaucoup plus faible que la topologie de Skorohod) on obtient des critères très commodes de compacité étroite pour des ensembles bornés de lois de quasimartin- gales et de semimartingales.