Prey Size Selectivity in Utricularia Vulgaris

Total Page:16

File Type:pdf, Size:1020Kb

Prey Size Selectivity in Utricularia Vulgaris ABSTRACT PREY SIZE SELECTIVITY IN UTRICULARIA VULGARIS Bladderwort are a genus of carnivorous plants that traps zooplankton of submillimeter size by active suction. They are among the smallest suction feeders, with gapes ranging from 0.2 to 0.9 mm in the species Utriculria vulgaris. Other suction feeders of similar size (larval fish) are relatively ineffective feeders, in contrast to adult fish. Even though small suction feeders such as larval fish are ineffective suction feeders, we wanted to explore if that principle applies to other small suction feeders such as aquatic carnivorous plants. The aim of this study is to explore the prey size selectivity and feeding morphology of bladderwort. Despite the hydrodynamic theory, suction feeding is ineffective in smaller predators, bladderworts were found to be effective suction feeders even due to their microscopic size. Furthermore, previous hydrodynamic theory studies suggest that there is a minimum gape length (lower limit) required to be able to suction feed prey successfully. We found that the traps of U. vulgaris range over one order of magnitude from 0.3 to 3 mm and with gape shape closely isometric with trap size (scaling coefficient 0.95). To explore prey size selectivity, we conducted laboratory feeding trials with ostracods (size range 0.07 to 0.7 mm). We found that larger bladderwort traps catch larger and a wider size range of prey, consistent with findings in fish. Despite their microscopic size, bladderworts are able to overcome the hydrodynamic theory prediction and suction feed prey near the lower size limit. Rayhan Kabir May 2017 PREY SIZE SELECTIVITY IN UTRICULARIA VULGARIS by Rayhan Kabir A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology in the College of Science and Mathematics California State University, Fresno May 2017 APPROVED For the Department of Biology: We, the undersigned, certify that the thesis of the following student meets the required standards of scholarship, format, and style of the university and the student's graduate degree program for the awarding of the master's degree. Rayhan Kabir Thesis Author Ulrike Müller (Chair) Biology Otto Berg Chemistry David Lent Biology For the University Graduate Committee: Dean, Division of Graduate Studies AUTHORIZATION FOR REPRODUCTION OF MASTER’S THESIS X I grant permission for the reproduction of this thesis in part or in its entirety without further authorization from me, on the condition that the person or agency requesting reproduction absorbs the cost and provides proper acknowledgment of authorship. Permission to reproduce this thesis in part or in its entirety must be obtained from me. Signature of thesis author: ACKNOWLEDGMENTS I would like to acknowledge and give great thanks to my mentor and advisor, Dr. Ulrike Müller. Her guidance and support throughout this project has been invaluable. I would also like to thank my committee members Dr. Otto Berg and Dr. David Lent with helping me navigate my thesis project in the right direction. In addition, I would like to thank all the graduates and undergraduates students who have helped me on this research project for the previous two semesters: Nolan Avery, Fatima Hidalgo, Jennifer Espinoza, Magaly Herrera, Jasleen Kaur, Cory Mayfield, Eduardo Meza, Ronnie Odia, Andrea Ramirez, Ricardo Ramirez, and Juan Villalobos. Lastly, I would like to thank the Biology Department for FSSRA funding, graduate travel grants, and IRA funding to help fund this project and/or support me during this project. TABLE OF CONTENTS Page LIST OF TABLES ................................................................................................ viii LIST OF FIGURES ................................................................................................. ix INTRODUCTION .................................................................................................... 1 Motile Aquatic Suction Feeders (Fish) ............................................................. 2 Non-Motile Aquatic Suction Feeders (Bladderwort) ........................................ 3 Bladderwort Trap Mechanism .......................................................................... 3 Predator/Prey Interaction (Bladderwort) ........................................................... 4 Determining Prey Size Selectivity .................................................................... 6 Scientific Questions .......................................................................................... 6 Project Objectives ............................................................................................. 7 HYPOTHESIS AND SPECIFIC AIMS ................................................................... 9 Hypotheses ........................................................................................................ 9 Aims ................................................................................................................ 9 METHODOLOGY ................................................................................................. 10 Aquatic Carnivorous Plant Husbandry ........................................................... 10 Prey Culture Cultivation ................................................................................. 10 Predator/Prey Experiments ............................................................................. 11 Image Analysis: Analyzing the Images Scanned ............................................ 13 Data Analysis .................................................................................................. 14 Methods to Address Aims 1a & 1b ................................................................. 15 Methods to Address Aims 2a, 2b, and 2c ....................................................... 16 RESULTS ............................................................................................................... 17 Mechanisms of Selectivity .............................................................................. 17 vii vii Page Quantification of Selectivity ........................................................................... 18 DISCUSSION ......................................................................................................... 20 Mechanisms of Selectivity .............................................................................. 20 Quantification of Selectivity ........................................................................... 21 Conclusion ....................................................................................................... 22 Future Work .................................................................................................... 22 FIGURES ............................................................................................................... 24 TABLES ................................................................................................................. 45 REFERENCES ....................................................................................................... 48 LIST OF TABLES Page Table 1: Date of experiments, total prey available, prey captures, and percentage of captures per experiment .................................................... 45 Table 2: U. vulgaris body normality statistics....................................................... 46 Table 3: U. vulgaris body normality statistics....................................................... 47 LIST OF FIGURES Page Figure 1: Confocal image of individual U. vulgaris (Bladderwort) using a confocal microscope. .............................................................................. 24 Figure 2. Scanned image (via Canon CanoScan 8600F Flatbed Scanner) of U. vulgaris bladders attached to branches, which are attached to different nodes on a single strand ........................................................... 25 Figure 3. Phantom v12.1 digital high-speed camera (left) and color microscope (right) images of U. vulgaris with loaded (ready to be triggered) bladder can be triggered by using cat whiskers as shown above. ...................................................................................................... 26 Figure 4. After the loaded bladderwort, has been triggered the bladderwort sucks in water causing the (unloaded) bladder itself to inflate shown above in 2 different images; Phantom v12.1 digital high-speed camera (left) & color microscope (right). ............................................... 26 Figure 5. Image captured via color microscope of a bladderwort that has suction fed its prey which is trapped inside the bladder with no escape possible due to the tight seal of the trap. ..................................... 27 Figure 6. Image of 20 gallon U. vulgaris growth tank filled with deionized water, kept at room temperature (21 °C) and is pH slightly below 7.0 to replicate boggy conditions. ................................................................. 28 Figure 7. Image of Ostracod cultivation with the 1-liter mason glass jar filled pond water from the CSU Fresno greenhouse pond. .............................. 29 Figure 8. Color microscope image of the ostracod species used in the predator/prey experiments. ..................................................................... 30 Figure 9. Image of the TetraMin Tropical Granules Fish Food used to provide nutrients for the Ostracod cultivation jar in figure 7. ............................. 31 Figure 10. Using the Canon CanoScan 8600F
Recommended publications
  • The Terrestrial Carnivorous Plant Utricularia Reniformis Sheds Light on Environmental and Life-Form Genome Plasticity
    International Journal of Molecular Sciences Article The Terrestrial Carnivorous Plant Utricularia reniformis Sheds Light on Environmental and Life-Form Genome Plasticity Saura R. Silva 1 , Ana Paula Moraes 2 , Helen A. Penha 1, Maria H. M. Julião 1, Douglas S. Domingues 3, Todd P. Michael 4 , Vitor F. O. Miranda 5,* and Alessandro M. Varani 1,* 1 Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP—Universidade Estadual Paulista, Jaboticabal 14884-900, Brazil; [email protected] (S.R.S.); [email protected] (H.A.P.); [email protected] (M.H.M.J.) 2 Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo 09606-070, Brazil; [email protected] 3 Departamento de Botânica, Instituto de Biociências, UNESP—Universidade Estadual Paulista, Rio Claro 13506-900, Brazil; [email protected] 4 J. Craig Venter Institute, La Jolla, CA 92037, USA; [email protected] 5 Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias, UNESP—Universidade Estadual Paulista, Jaboticabal 14884-900, Brazil * Correspondence: [email protected] (V.F.O.M.); [email protected] (A.M.V.) Received: 23 October 2019; Accepted: 15 December 2019; Published: 18 December 2019 Abstract: Utricularia belongs to Lentibulariaceae, a widespread family of carnivorous plants that possess ultra-small and highly dynamic nuclear genomes. It has been shown that the Lentibulariaceae genomes have been shaped by transposable elements expansion and loss, and multiple rounds of whole-genome duplications (WGD), making the family a platform for evolutionary and comparative genomics studies. To explore the evolution of Utricularia, we estimated the chromosome number and genome size, as well as sequenced the terrestrial bladderwort Utricularia reniformis (2n = 40, 1C = 317.1-Mpb).
    [Show full text]
  • Introduction to Common Native & Invasive Freshwater Plants in Alaska
    Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska Cover photographs by (top to bottom, left to right): Tara Chestnut/Hannah E. Anderson, Jamie Fenneman, Vanessa Morgan, Dana Visalli, Jamie Fenneman, Lynda K. Moore and Denny Lassuy. Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska This document is based on An Aquatic Plant Identification Manual for Washington’s Freshwater Plants, which was modified with permission from the Washington State Department of Ecology, by the Center for Lakes and Reservoirs at Portland State University for Alaska Department of Fish and Game US Fish & Wildlife Service - Coastal Program US Fish & Wildlife Service - Aquatic Invasive Species Program December 2009 TABLE OF CONTENTS TABLE OF CONTENTS Acknowledgments ............................................................................ x Introduction Overview ............................................................................. xvi How to Use This Manual .................................................... xvi Categories of Special Interest Imperiled, Rare and Uncommon Aquatic Species ..................... xx Indigenous Peoples Use of Aquatic Plants .............................. xxi Invasive Aquatic Plants Impacts ................................................................................. xxi Vectors ................................................................................. xxii Prevention Tips .................................................... xxii Early Detection and Reporting
    [Show full text]
  • Aquatic Vascular Plants of New England, Station Bulletin, No.528
    University of New Hampshire University of New Hampshire Scholars' Repository NHAES Bulletin New Hampshire Agricultural Experiment Station 4-1-1985 Aquatic vascular plants of New England, Station Bulletin, no.528 Crow, G. E. Hellquist, C. B. New Hampshire Agricultural Experiment Station Follow this and additional works at: https://scholars.unh.edu/agbulletin Recommended Citation Crow, G. E.; Hellquist, C. B.; and New Hampshire Agricultural Experiment Station, "Aquatic vascular plants of New England, Station Bulletin, no.528" (1985). NHAES Bulletin. 489. https://scholars.unh.edu/agbulletin/489 This Text is brought to you for free and open access by the New Hampshire Agricultural Experiment Station at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in NHAES Bulletin by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. BIO SCI tON BULLETIN 528 LIBRARY April, 1985 ezi quatic Vascular Plants of New England: Part 8. Lentibulariaceae by G. E. Crow and C. B. Hellquist NEW HAMPSHIRE AGRICULTURAL EXPERIMENT STATION UNIVERSITY OF NEW HAMPSHIRE DURHAM, NEW HAMPSHIRE 03824 UmVERSITY OF NEV/ MAMP.SHJM LIBRARY ISSN: 0077-8338 BIO SCI > [ON BULLETIN 528 LIBRARY April, 1985 e.zi quatic Vascular Plants of New England: Part 8. Lentibulariaceae by G. E. Crow and C. B. Hellquist NEW HAMPSHIRE AGRICULTURAL EXPERIMENT STATION UNIVERSITY OF NEW HAMPSHIRE DURHAM, NEW HAMPSHIRE 03824 UNtVERSITY or NEVv' MAMP.SHI.Ht LIBRARY ISSN: 0077-8338 ACKNOWLEDGEMENTS We wish to thank Drs. Robert K. Godfrey and George B. Rossbach for their helpful comments on the manuscript. We are also grateful to the curators of the following herbaria for use of their collections: BRU, CONN, CUW, GH, NHN, KIRI, MASS, MAINE, NASC, NCBS, NHA, NEBC, VT, YU.
    [Show full text]
  • Synthese Des Donnees Sur La Biodiversite Des Ecosystemes D’Eau Douce De La Nouvelle-Caledonie 2- Typologie Et Usages
    CONSERVATION INTERNATIONAL 1- SYNTHESE DES DONNEES SUR LA BIODIVERSITE DES ECOSYSTEMES D’EAU DOUCE DE LA NOUVELLE-CALEDONIE 2- TYPOLOGIE ET USAGES RAPPORT FINAL Libellulidae sp. (photo . Dutartre) Sources holocrènes de la Xwé Bwi (photo C. Flouhr) Jacinthes d'eau sur le barrage anti-sel de la Koné (Photo N. Mary) Clémentine FLOUHR(HYTEC) et Nathalie MARY (ETHYCO) En collaboration avec : Philippe KEITH, Gérard MARQUET et Joël JƜRƜMIE Mai 2006 Préambule Cette étude a été réalisée dans le cadre d’une convention entre le WWF et le bureau d’études Hytec sur financement de Conservation International et du WWF. Ce document, et la base de données qui l’accompagne, concrétisent six mois de travail intense piloté conjointement par Nathalie Mary du bureau d’études ETHYCO et Clémentine Flouhr (Hytec), avec la précieuse collaboration de Philippe Keith et de Joël Jérémie du Muséum d’Histoire Naturelle de Paris, de Gérard Marquet ainsi que celle de Catherine Da Silva et de Louis Thouvenot. Nous tenons à remercier toutes les personnes qui ont participé à ce travail et qui se sont investies dans la réalisation de cette synthèse. En particulier, nous remercions Clément Couteau, Tim Entwisle, Daniel Grand, Kjell Arne Johanson, Rod Mac Farlane, Jean-Marc Mériot, Christian Mille et Sylvie Cazères, Harry Smit, Jörn Theueurkauf et Sophie Rouys, John B. Ward qui ont cru en ce projet et qui ont mis à disposition leurs bases de données personnelles ou des documents non publiés. Nous remercions également pour la leçon donnée en toute humilité par Touraivane et Didier Lille sur les bases de données inter-opérables et le bol d’air qu’elles amènent à ce type de travail et aux personnes qui les manipulent au quotidien.
    [Show full text]
  • Carniflora Australis No.4 October 2004
    Carniflora Australis Journal of the Australasian Carnivorous Plant Society Inc. Number 4, October 2004 32 ISSN 1448-9570 PRICE $5.00 Free with Membership Subscription submersible pump housed in a large create a bio mass that, with the help All members, single, family and overseas $AU25.00 fiberglass pit that is connected by a of an inline sand filter, will dupli- 100mm PVC pipe to the bottom cate the Sphagnum bogs ability to Please make cheques or money orders payable to the Australasian pond. Water will continuously cir- purify water. A secondary advan- Carnivorous Plant Society Inc. Membership and correspondence culate through the system via a net- tage will be the ability of this sys- should be forwarded to the Secretary at work of pressurized soaker hoses tem to cool the water. The heating running along the contours of the up of water in the ponds is one of Riparian. The filtered water will the reasons for the failure of the www.carniflora.com gravitate through the Riparian and original Sphagnum bog. Shade PO BOX 4009 ponds, being drawn into the pit via from the vegetation will also help a deep, clear pool. All ponds have to minimize heat build-up in the Kingsway West NSW 2208 (Australia) valves that can be drained individu- medium. Meeting are held on the second Friday of each month ally and sectors of soaker hose can Time: 7.30pm—10.00pm also be turned off. The carnivorous The placing of a Riparian zone in Venue: Woodstock Community Centre pond can be isolated from the rest the design will duplicate nutrient Church St, Burwood of the system.
    [Show full text]
  • Check List of Wild Angiosperms of Bhagwan Mahavir (Molem
    Check List 9(2): 186–207, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Check List of Wild Angiosperms of Bhagwan Mahavir PECIES S OF Mandar Nilkanth Datar 1* and P. Lakshminarasimhan 2 ISTS L (Molem) National Park, Goa, India *1 CorrespondingAgharkar Research author Institute, E-mail: G. [email protected] G. Agarkar Road, Pune - 411 004. Maharashtra, India. 2 Central National Herbarium, Botanical Survey of India, P. O. Botanic Garden, Howrah - 711 103. West Bengal, India. Abstract: Bhagwan Mahavir (Molem) National Park, the only National park in Goa, was evaluated for it’s diversity of Angiosperms. A total number of 721 wild species belonging to 119 families were documented from this protected area of which 126 are endemics. A checklist of these species is provided here. Introduction in the National Park are Laterite and Deccan trap Basalt Protected areas are most important in many ways for (Naik, 1995). Soil in most places of the National Park area conservation of biodiversity. Worldwide there are 102,102 is laterite of high and low level type formed by natural Protected Areas covering 18.8 million km2 metamorphosis and degradation of undulation rocks. network of 660 Protected Areas including 99 National Minerals like bauxite, iron and manganese are obtained Parks, 514 Wildlife Sanctuaries, 43 Conservation. India Reserves has a from these soils. The general climate of the area is tropical and 4 Community Reserves covering a total of 158,373 km2 with high percentage of humidity throughout the year.
    [Show full text]
  • Phytogeographic Review of Vietnam and Adjacent Areas of Eastern Indochina L
    KOMAROVIA (2003) 3: 1–83 Saint Petersburg Phytogeographic review of Vietnam and adjacent areas of Eastern Indochina L. V. Averyanov, Phan Ke Loc, Nguyen Tien Hiep, D. K. Harder Leonid V. Averyanov, Herbarium, Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov str. 2, Saint Petersburg 197376, Russia E-mail: [email protected], [email protected] Phan Ke Loc, Department of Botany, Viet Nam National University, Hanoi, Viet Nam. E-mail: [email protected] Nguyen Tien Hiep, Institute of Ecology and Biological Resources of the National Centre for Natural Sciences and Technology of Viet Nam, Nghia Do, Cau Giay, Hanoi, Viet Nam. E-mail: [email protected] Dan K. Harder, Arboretum, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, U.S.A. E-mail: [email protected] The main phytogeographic regions within the eastern part of the Indochinese Peninsula are delimited on the basis of analysis of recent literature on geology, geomorphology and climatology of the region, as well as numerous recent literature information on phytogeography, flora and vegetation. The following six phytogeographic regions (at the rank of floristic province) are distinguished and outlined within eastern Indochina: Sikang-Yunnan Province, South Chinese Province, North Indochinese Province, Central Annamese Province, South Annamese Province and South Indochinese Province. Short descriptions of these floristic units are given along with analysis of their floristic relationships. Special floristic analysis and consideration are given to the Orchidaceae as the largest well-studied representative of the Indochinese flora. 1. Background The Socialist Republic of Vietnam, comprising the largest area in the eastern part of the Indochinese Peninsula, is situated along the southeastern margin of the Peninsula.
    [Show full text]
  • Shoalwater and Corio Bays Area Ramsar Site Ecological Character Description
    Shoalwater and Corio Bays Area Ramsar Site Ecological Character Description 2010 Disclaimer While reasonable efforts have been made to ensure the contents of this ECD are correct, the Commonwealth of Australia as represented by the Department of the Environment does not guarantee and accepts no legal liability whatsoever arising from or connected to the currency, accuracy, completeness, reliability or suitability of the information in this ECD. Note: There may be differences in the type of information contained in this ECD publication, to those of other Ramsar wetlands. © Copyright Commonwealth of Australia, 2010. The ‘Ecological Character Description for the Shoalwater and Corio Bays Area Ramsar Site: Final Report’ is licensed by the Commonwealth of Australia for use under a Creative Commons Attribution 4.0 Australia licence with the exception of the Coat of Arms of the Commonwealth of Australia, the logo of the agency responsible for publishing the report, content supplied by third parties, and any images depicting people. For licence conditions see: https://creativecommons.org/licenses/by/4.0/ This report should be attributed as ‘BMT WBM. (2010). Ecological Character Description of the Shoalwater and Corio Bays Area Ramsar Site. Prepared for the Department of the Environment, Water, Heritage and the Arts.’ The Commonwealth of Australia has made all reasonable efforts to identify content supplied by third parties using the following format ‘© Copyright, [name of third party] ’. Ecological Character Description for the Shoalwater and
    [Show full text]
  • Noteworthy Micronesian Plants. 3
    Noteworthy Micronesian Plants. 3. F. R. FOSBERG and JOANE. CANFIELD Department of Botany , National Museum of N atural History , Smith sonian Institution, Washin gton, D.C. 20560 This third paper of this series contains new distributional records and taxonomic notes mainly on the plants of the Palau Islands. Range extensions are recorded in the genera Hymenophyllum, Trichomanes, Schizaea, Cyclopeltis, Dipla zium, Humata, Nephrolepis, Apluda, Panicum, Pennisetum, Setaria , Sporobolus, Fimbristylis, Aneilema, Suriana, Xylocarpus , Euphorbia, M elanolepis, Ammannia , Melaleuca, Bacopa, Utricularia, Andrographis, Hedyotis, Sp ermacoce, Timonius and Youngia. Taxonomic notes are presented on Humata, Nephrolepis, Aneilema, Eriocaulon, Piriqueta, Eugenia, Leucas, Hedyotis, and Spermacoce . HYMENOPHYLLACEAE Hymenophyllum serrulatum (Pres!) C. Chr. , Ind . Fil. 367 , 1905. A delicate Malesian epiphyte with frond 6 - 8(- 30) cm long ; indusium lips bluntly triangular, receptacle protruding when old. It is distinguished from the more common H. polyanthos by the toothed rather than entire margin of the lobes and the bluntly triangular rather than ovate lips of the indusium. This constitutes a first record for Micronesia . CAROLINEISLANDS : Palau: Babeldaob I., W. Ngeremlengui Murrie ., locally abundant in forest below peak 1.7 mi. (2. 7 km) ESE of Almongui Pt. , I 00 m, 7 Dec . 1978, Canfield 613 (US). Trichomanes setigerum Backhouse Cat. 14, 1861. Moore, Gard. Chron . 1862: 45 , 1962. Holttum , Fl, Malaya 2: 104-105, 1954 . This species, with very finely dissected fronds , has previously been found in Borneo, Malaya, and Pala wan in the Philippines, according to Holttum , who places it in Trichomanes sect. Macroglena (Copeland's genus Macroglena), where it seems to fit well enough. It is a distinct surprise to find it in Palau .
    [Show full text]
  • Diversity and Evolution of Asterids!
    Diversity and Evolution of Asterids! . mints and snapdragons . ! *Boraginaceae - borage family! Widely distributed, large family of alternate leaved plants. Typically hairy. Typically possess helicoid or scorpiod cymes = compound monochasium. Many are poisonous or used medicinally. Mertensia virginica - Eastern bluebells *Boraginaceae - borage family! CA (5) CO (5) A 5 G (2) Gynobasic style; not terminal style which is usual in plants; this feature is shared with the mint family (Lamiaceae) which is not related Myosotis - forget me not 2 carpels each with 2 ovules are separated at maturity and each further separated into 1 ovuled compartments Fruit typically 4 nutlets *Boraginaceae - borage family! Echium vulgare Blueweed, viper’s bugloss adventive *Boraginaceae - borage family! Hackelia virginiana Beggar’s-lice Myosotis scorpioides Common forget-me-not *Boraginaceae - borage family! Lithospermum canescens Lithospermum incisium Hoary puccoon Fringed puccoon *Boraginaceae - borage family! pin thrum Lithospermum canescens • Lithospermum (puccoon) - classic Hoary puccoon dimorphic heterostyly *Boraginaceae - borage family! Mertensia virginica Eastern bluebells Botany 401 final field exam plant! *Boraginaceae - borage family! Leaves compound or lobed and “water-marked” Hydrophyllum virginianum - Common waterleaf Botany 401 final field exam plant! **Oleaceae - olive family! CA (4) CO (4) or 0 A 2 G (2) • Woody plants, opposite leaves • 4 merous actinomorphic or regular flowers Syringa vulgaris - Lilac cultivated **Oleaceae - olive family! CA (4)
    [Show full text]
  • Enzymatic Activities in Traps of Four Aquatic Species of the Carnivorous
    Research EnzymaticBlackwell Publishing Ltd. activities in traps of four aquatic species of the carnivorous genus Utricularia Dagmara Sirová1, Lubomír Adamec2 and Jaroslav Vrba1,3 1Faculty of Biological Sciences, University of South Bohemia, BraniSovská 31, CZ−37005 Ceské Budejovice, Czech Republic; 2Institute of Botany AS CR, Section of Plant Ecology, Dukelská 135, CZ−37982 Trebo˜, Czech Republic; 3Hydrobiological Institute AS CR, Na Sádkách 7, CZ−37005 Ceské Budejovice, Czech Republic Summary Author for correspondence: • Here, enzymatic activity of five hydrolases was measured fluorometrically in the Lubomír Adamec fluid collected from traps of four aquatic Utricularia species and in the water in Tel: +420 384 721156 which the plants were cultured. Fax: +420 384 721156 • In empty traps, the highest activity was always exhibited by phosphatases (6.1– Email: [email protected] 29.8 µmol l−1 h−1) and β-glucosidases (1.35–2.95 µmol l−1 h−1), while the activities Received: 31 March 2003 of α-glucosidases, β-hexosaminidases and aminopeptidases were usually lower by Accepted: 14 May 2003 one or two orders of magnitude. Two days after addition of prey (Chydorus sp.), all doi: 10.1046/j.1469-8137.2003.00834.x enzymatic activities in the traps noticeably decreased in Utricularia foliosa and U. australis but markedly increased in Utricularia vulgaris. • Phosphatase activity in the empty traps was 2–18 times higher than that in the culture water at the same pH of 4.7, but activities of the other trap enzymes were usually higher in the water. Correlative analyses did not show any clear relationship between these activities.
    [Show full text]
  • TREE November 2001.Qxd
    Review TRENDS in Ecology & Evolution Vol.16 No.11 November 2001 623 Evolutionary ecology of carnivorous plants Aaron M. Ellison and Nicholas J. Gotelli After more than a century of being regarded as botanical oddities, carnivorous populations, elucidating how changes in fitness affect plants have emerged as model systems that are appropriate for addressing a population dynamics. As with other groups of plants, wide array of ecological and evolutionary questions. Now that reliable such as mangroves7 and alpine plants8 that exhibit molecular phylogenies are available for many carnivorous plants, they can be broad evolutionary convergence because of strong used to study convergences and divergences in ecophysiology and life-history selection in stressful habitats, detailed investigations strategies. Cost–benefit models and demographic analysis can provide insight of carnivorous plants at multiple biological scales can into the selective forces promoting carnivory. Important areas for future illustrate clearly the importance of ecological research include the assessment of the interaction between nutrient processes in determining evolutionary patterns. availability and drought tolerance among carnivorous plants, as well as measurements of spatial and temporal variability in microhabitat Phylogenetic diversity among carnivorous plants characteristics that might constrain plant growth and fitness. In addition to Phylogenetic relationships among carnivorous plants addressing evolutionary convergence, such studies must take into account have been obscured by reliance on morphological the evolutionary diversity of carnivorous plants and their wide variety of life characters1 that show a high degree of similarity and forms and habitats. Finally, carnivorous plants have suffered from historical evolutionary convergence among carnivorous taxa9 overcollection, and their habitats are vanishing rapidly.
    [Show full text]