Looking for Life in the Multiverse Universes with Different Physical Laws Might Still Be Habitable by Alejandro Jenkins and Gilad Perez

Total Page:16

File Type:pdf, Size:1020Kb

Looking for Life in the Multiverse Universes with Different Physical Laws Might Still Be Habitable by Alejandro Jenkins and Gilad Perez COSMOLOGY Looking for Life in the MULTIVERSE Universes with different physical laws might still be habitable BY ALEJANDRO JENKINS AND GILAD PEREZ he typical Hollywood action hero skirts very little of the carbon and other elements that KEY CONCEPTS death for a living. Time and again, seem necessary to form planets, let alone life. If scores of bad guys shoot at him from the proton were just 0.2 percent heavier than it ■ Multiple other univers- T multiple directions but miss by a hair. Cars ex- is, all primordial hydrogen would have decayed es—each with its own plode just a fraction of a second too late for the almost immediately into neutrons, and no atoms laws of physics—may fireball to catch him before he finds cover. And would have formed. The list goes on. have emerged from the same primordial vacuum friends come to the rescue just before a villain’s The laws of physics—and in particular the that gave rise to ours. knife slits his throat. If any one of those things constants of nature that enter into those laws, happened just a little differently, the hero would such as the strengths of the fundamental forc- ■ Assuming they exist, many be hasta la vista, baby. Yet even if we have not es—might therefore seem finely tuned to make of those universes may seen the movie before, something tells us that he our existence possible. Short of invoking a su- contain intricate struc- will make it to the end in one piece. pernatural explanation, which would be by tures and perhaps even In some respects, the story of our universe re- definition outside the scope of science, a num- some forms of life. sembles a Hollywood action movie. Several ber of physicists and cosmologists began in the ■ These findings suggest physicists have argued that a slight change to 1970s to try solving the puzzle by hypothesiz- that our universe may not one of the laws of physics would cause some di- ing that our universe is just one of many exist- be as “finely tuned” for saster that would disrupt the normal evolution ing universes, each with its own laws. Accord- the emergence of life as of the universe and make our existence impos- ing to this “anthropic” reasoning, we might previously thought. sible. For example, if the strong nuclear force just occupy the rare universe where the right —The Editors that binds together atomic nuclei had been slight- conditions happen to have come together to ly stronger or weaker, stars would have forged make life possible. FILMS SLIM 42 SCIENTIFIC AMERICAN © 2009 SCIENTIFIC AMERICAN, INC. January 2010 © 2009 SCIENTIFIC AMERICAN, INC. © 2009 SCIENTIFIC AMERICAN, INC. Amazingly, the prevailing theory in modern which our universe neither recollapsed into noth- WHAT IS THE cosmology, which emerged in the 1980s, sug- ingness a fraction of a second after the big bang, MULTIVERSE? gests that such “parallel universes” may really nor was ripped part by an exponentially acceler- Alternative universes have exist—in fact, that a multitude of universes would ating expansion. Nevertheless, the examples of al- now become a legitimate field incessantly pop out of a primordial vacuum the ternative, potentially habitable universes raise in- of study, in part because they way ours did in the big bang. Our universe would teresting questions and motivate further research may actually exist. According be but one of many pocket universes within a into how unique our own universe might be. to the prevailing cosmological theory, our universe was wider expanse called the multiverse. In the over- spawned from a microscopic whelming majority of those universes, the laws of The Weakless Way of Life region of a primordial vacuum physics might not allow the formation of matter The conventional way scientists find out if one by a burst of exponential as we know it or of galaxies, stars, planets and particular constant of nature is finely tuned or expansion called inflation. But life. But given the sheer number of possibilities, not is to turn that “constant” into an adjustable the vacuum may continually spawn other universes as well. nature would have had a good chance to get the parameter and tweak it while leaving all other Each universe might have its “right” set of laws at least once. constants unaltered. Based on their newly mod- own physical laws; some would Our recent studies, however, suggest that ified laws of physics, the scientists then “play the be hospitable to life, some not. some of these other universes—assuming they movie” of the universe—they do calculations, exist—may not be so inhospitable after all. Re- what-if scenarios or computer simulations—to Universe Universe not markably, we have found examples of alternative see what disaster occurs first. But there is no congenial congenial to life to life values of the fundamental constants, and thus of reason why one should tweak only one param- alternative sets of physical laws, that might still eter at a time. That situation resembles trying to lead to very interesting worlds and perhaps to drive a car by varying only your latitude or only life. The basic idea is to change one aspect of the your longitude, but not both: unless you are laws of nature and then make compensatory traveling on a grid, you are destined to run off changes to other aspects. the road. Instead one can tweak multiple param- Our work did not address the most serious fine- eters at once. tuning problem in theoretical physics: the small- To search for alternative sets of laws that still ness of the “cosmological constant,” thanks to give rise to complex structures capable of sustain- [THE BASIC IDEA] HOW TO FIND HOSPITABLE UNIVERSES Many features in the laws of ●1 TWO ●2 TWEAK ONE nature appear to be finely CONSTANTS CONSTANT tuned: a small change to any Physicists can Changing the con- one of the constants that plot the observed stant A (while keep- appear in physics equations values of two ing everything else different constants the same) is repre- typically leads to a “disaster.” A and B as two sented by moving on Small range For example, atoms cannot B coordinates of a congenial to life a horizontal line. form, or matter gets dispersed point on a plane. Going beyond a tiny Each point on the change usually results in space so thinly that it cannot alue of plane represents in a disaster, and the condense into galaxies, stars a different pair Disaster� universe would be or planets. Changing two Actual v of values. (universe not unsuitable for life. constants at a time, however, congenial to life) can sometimes lead to sets Actual value of A of possible values that are 3 4 compatible with the formation ● TWEAK ● CHANGE BOTH ANotHER More values CONSTANTS congenial to life of complex structures and CONSTANT The ability to change perhaps even some forms Changing the both A and B at ) of intelligent life. Changing constant B and once—for example, � charts keeping every- Disaster moving along a three or more constants and thing else the diagonal—can lead widens the range of New range same is represent- of values to new sets of values ed by moving on that are con­­genial to possibilities even more. congenial to life multiverse Small range a vertical line. life. Farther away congenial to life Beyond a small from the known KKANDA ( Disaster� tweak, this also values could also lie I often results in other “islands” of a disaster. congenial values. LUCY READING- 44 SCIENTIFIC AMERICAN © 2009 SCIENTIFIC AMERICAN, INC. January 2010 ing life, one of us (Perez) and his collaborators the universe would unfold. It is quite possible that did not make just small tweaks to the known laws a wide range of other “weakless” universes exist OTHER NOTIONS of physics: they completely eliminated one of the that are habitable but look nothing like our own. OF “PARALLEL four known fundamental forces of nature. In the weakless universe, the usual fusing of UNIVERSES” By their very name, the fundamental forces protons to form helium would be impossible, Physicists and cosmologists— sound like indispensable features of any self-re- because it requires that two of the protons con- and often science-fiction specting universe. Without the strong nuclear vert into neutrons. But other pathways could ex- writers—talk of parallel uni- force to bind quarks into protons and neutrons ist for the creation of the elements. For example, verses in several different contexts: at least three notions and those into atomic nuclei, matter as we know our universe contains overwhelmingly more exist distinct from the multi- it would not exist. Without the electromagnetic matter than antimatter, but a small adjustment verse described in this article. force, there would be no light; there would also to the parameter that controls this asymmetry be no atoms and no chemical bonds. Without is enough to ensure that the big bang nucleosyn- HUBBLE BUBBLE gravity, there would be no force to coalesce mat- thesis would leave behind a substantial amount Our universe is probably much larg- er than the part we can observe, ter into galaxies, stars and planets. of deuterium nuclei. Deuterium, also known as our “Hubble bubble.” If it is infinite The fourth force, the weak nuclear force, has hydrogen 2, is the isotope of hydrogen whose in size, then infinitely many sepa- rate Hubble bubbles (centered on a subtler presence in our everyday life but still nucleus contains a neutron in addition to the observers in re- has played a major role in the history of our uni- usual proton.
Recommended publications
  • The Birth, Life, and Death of Stars
    The Birth, Life, and Death of Stars The Osher Lifelong Learning Institute Florida State University Jorge Piekarewicz Department of Physics [email protected] Schedule: September 29 – November 3 Time: 11:30am – 1:30pm Location: Pepper Center, Broad Auditorium J. Piekarewicz (FSU-Physics) The Birth, Life, and Death of Stars Fall 2014 1 / 14 Ten Compelling Questions What is the raw material for making stars and where did it come from? What forces of nature contribute to energy generation in stars? How and where did the chemical elements form? ? How long do stars live? How will our Sun die? How do massive stars explode? ? What are the remnants of such stellar explosions? What prevents all stars from dying as black holes? What is the minimum mass of a black hole? ? What is role of FSU researchers in answering these questions? J. Piekarewicz (FSU-Physics) The Birth, Life, and Death of Stars Fall 2014 2 / 14 Nucleosynthesis Big Bang: The Universe was created about 13.7 billion years ago BBN: Hydrogen, Helium, and traces of light nuclei formed after 3 minutes Sun displays a rich and diverse composition of chemical elements If the Solar System is rich in chemical elements other than H and He; where did they come from? J. Piekarewicz (FSU-Physics) The Birth, Life, and Death of Stars Fall 2014 3 / 14 The Human Blueprint Human beings are C-based lifeforms Human beings have Ca in our bones Human beings have Fe in our blood Human beings breath air rich in N and O If only Hydrogen and Helium were made in the Big Bang, how and where did the rest of the chemical elements form? J.
    [Show full text]
  • Self-Oscillation
    Self-oscillation Alejandro Jenkins∗ High Energy Physics, 505 Keen Building, Florida State University, Tallahassee, FL 32306-4350, USA Physicists are very familiar with forced and parametric resonance, but usually not with self- oscillation, a property of certain dynamical systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy into the vi- bration: no external rate needs to be adjusted to the resonant frequency. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the swaying of the London Millennium Footbridge in 2000. Clocks are self-oscillators, as are bowed and wind musical instruments. The heart is a \relaxation oscillator," i.e., a non-sinusoidal self-oscillator whose period is determined by sudden, nonlinear switching at thresholds. We review the general criterion that determines whether a linear system can self-oscillate. We then describe the limiting cycles of the simplest nonlinear self-oscillators, as well as the ability of two or more coupled self-oscillators to become spontaneously synchronized (\entrained"). We characterize the operation of motors as self-oscillation and prove a theorem about their limit efficiency, of which Carnot's theorem for heat engines appears as a special case. We briefly discuss how self-oscillation applies to servomechanisms, Cepheid variable stars, lasers, and the macroeconomic business cycle, among other applications. Our emphasis throughout is on the energetics of self-oscillation, often neglected by the literature on nonlinear dynamical systems.
    [Show full text]
  • Quark Masses: an Environmental Impact Statement
    Quark masses: An environmental impact statement Alejandro Jenkins Center for Theoretical Physics LNS, MIT Excited QCD 09 Zakopane, Poland Tuesday, 10 February, 2009 A. Jenkins (MIT) Environmental Quark Masses Excited QCD ’09 1 / 30 Work discussed R. L. Jaffe, AJ, and I. Kimchi, arXiv:0809.1647 [hep-ph], to appear in PRD (2009). Also (briefly) A. Adams, AJ, and D. O’Connell, arXiv:0802.4081 [hep-ph] A. Jenkins (MIT) Environmental Quark Masses Excited QCD ’09 2 / 30 Quark masses in the Standard Model In the SM, quark masses pv ¯ Lmass = guuu¯ + gd dd 2 p 2 depend on gu;d and on v = =, for Higgs potential 2 V (Φ) = 2ΦyΦ + ΦyΦ 2 Note ; ; gu;d are all free parameters of the theory A. Jenkins (MIT) Environmental Quark Masses Excited QCD ’09 3 / 30 Quark masses in the Standard Model In the SM, quark masses pv ¯ Lmass = guuu¯ + gd dd 2 p 2 depend on gu;d and on v = =, for Higgs potential 2 V (Φ) = 2ΦyΦ + ΦyΦ 2 Note ; ; gu;d are all free parameters of the theory A. Jenkins (MIT) Environmental Quark Masses Excited QCD ’09 3 / 30 TOE’s & landscapes Ideally, TOE would reproduce the SM at low energies and uniquely predict its parameters . but some parameters might be environmentally selected cf. Carter ’74; Barrow & Tipler ’86 Bayes’s theorem: p(fi gjobserver) / p(observerjfi g) ¢ p(fi g) String theory requires compactification of extra dimensions It now seems this can be done consistently in many ways, leading to different low-energy parameters cf. review by Douglas & Kachru ’06 Landscape of string vacua might, through eternal inflation, produce a multiverse A.
    [Show full text]
  • Curriculum Vitae Takemichi Okui (He/Him/His)
    Curriculum Vitae Takemichi Okui (he/him/his) Professor of Physics CONTACT INFORMATION Department of Physics Florida State University 77 Chieftain Way Tallahassee, FL 32306-4350, USA E-mail: [email protected] EDUCATION 05/2003: Ph.D. in Physics, University of California, Berkeley. Thesis Advisor: Lawrence J. Hall. Thesis Title: \Physics beyond the Standard Model from extra dimensions." 03/1998: B.Sc. in Physics, Hokkaido University, Japan. ACADEMIC POSITIONS 2020{present Professor, Department of Physics, Florida State University. 2015{2020 Associate Professor, Department of Physics, Florida State University. 2009{2015 Assistant Professor, Department of Physics, Florida State University. 2006{2009 Research Associate, Department of Physics, jointly appointed by Johns Hopkins University and University of Maryland, College Park. 2003{2006 Research Associate, Department of Physics, Boston University. 2001{2003 Graduate Student Research Assistant, Particle Theory Group, Department of Physics, University of California, Berkeley. 1998{2001 Graduate Student Instructor, Department of Physics, University of California, Berkeley. HONORS and AWARDS 04/2017 Developing Scholar Award, Florida State University. 04/2016 University Teaching Award, Florida State University. 04/2016 PAI Award for Excellence in Research and Teaching, Department of Physics, Florida State University. 1998{1999 Block Grant Fellowship, University of California, Berkeley. 1 GRANTS AWARDED 09/01/2019{03/31/2022 A DOE grant (DE-SC0010102), 3-year total = $2,247,000 of which $732,000 for the theory group (≈ $98; 000 per year for myself). 07/01/2017{06/30/2018 FSU Developing Scholar Award, $10,000. 04/01/2016{03/31/2019 A DOE grant (DE-SC0010102), 3-year total = $1,810,000, of which $630,000 for the theory group (≈ $105; 000 per year for myself).
    [Show full text]
  • Curriculum Vitae Iain W. Stewart
    Curriculum Vitae Iain W. Stewart January 2021 Director of the Center for Theoretical Physics Tel(work): (617) 253-4848 Physics Department, 6-401 Fax(work): (617) 253-8674 Massachusetts Institute of Technology E-mail: [email protected] 77 Massachusetts Avenue Cambridge, MA 02139 Academic Appointments 2013-present Professor at the Massachusetts Institute of Technology 2009-2013 Associate Professor with Tenure at the Massachusetts Institute of Technology 2007-2009 Associate Professor at the Massachusetts Institute of Technology, Cambridge 2003-2006 Assistant Professor at the Massachusetts Institute of Technology, Cambridge 2002-2003 Research Assistant Professor at the University of Washington, Seattle Advisor: David B. Kaplan 1999-2002 Post-Doctoral Research Associate at the University of California, San Diego Advisor: Aneesh Manohar Education 1995-1999 Ph.D., Theoretical Physics, California Institute of Technology, Pasadena Thesis: Applications of Chiral Perturbation Theory in Reactions with Heavy Particles. Advisor: Mark B. Wise 1994-1995 M.Sc., Theoretical Physics, University of Manitoba, Winnipeg, Canada Thesis: Derivative Expansion Approximation of Vacuum Polarization Effects. 1990-1994 B.Sc., Joint Honors Physics and Mathematics, University of Manitoba, Canada Teaching Experience (20xx) 12F {20F MIT, 8.09. Lecturer for classical mechanics III. 14S, 15F , 17S MIT, 8.EFTx. Created a free online graduate course with worldwide enrollment. 03S,06S,09F ,13S,17S,20S MIT, 8.851. Created and Lectured a graduate course on effective field theories. 07S{10S, 12S MIT, 8.325. Lecturer for graduate quantum field theory part III. 11F MIT, 8.03. Section instructor for vibrations and waves. 04F , 05F , 07F MIT, 8.05. Lecturer for undergraduate quantum mechanics.
    [Show full text]
  • Across the Multiverse: FSU Physicist Considers the Big Picture 12 January 2010
    Across the multiverse: FSU physicist considers the big picture 12 January 2010 see and know about the universe around us — depend on a precise set of conditions that makes us possible," Jenkins said. "For example, if the fundamental forces that shape matter in our universe were altered even slightly, it's conceivable that atoms never would have formed, or that the element carbon, which is considered a basic building block of life as we know it, wouldn't exist. So how is it that such a perfect balance exists? Some would attribute it to God, but of course, that is outside the realm of physics." Alejandro Jenkins is a researcher at Florida State University. Credit: Florida State University The theory of "cosmic inflation," which was developed in the 1980s in order to solve certain puzzles about the structure of our universe, predicts that ours is just one of countless universes (PhysOrg.com) -- Is there anybody out there? In to emerge from the same primordial vacuum. We Alejandro Jenkins' case, the question refers not to have no way of seeing those other universes, whether life exists elsewhere in the universe, but although many of the other predictions of cosmic whether it exists in other universes outside of our inflation have recently been corroborated by own. astrophysical measurements. While that might be a mind-blowing concept for the Given some of science's current ideas about high- layperson to ponder, it's all in a day's work for energy physics, it is plausible that those other Jenkins, a postdoctoral associate in theoretical universes might each have different physical high-energy physics at The Florida State interactions.
    [Show full text]
  • Unusual Signs in Quantum Field Theory
    Unusual Signs in Quantum Field Theory Thesis by D´onal O’Connell In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2007 (Defended May 16, 2007) ii c 2007 D´onal O’Connell All Rights Reserved iii To D´ısa iv The Collar I Struck the board, and cry’d, No more. I will abroad. What? shall I ever sigh and pine? My lines and life are free; free as the rode, Loose as the winde, as large as store. Shall I be still in suit? Have I no harvest but a thorn To let me bloud, and not restore What I have lost with cordiall fruit? Sure there was wine Before my sighs did drie it: there was corn Before my tears did drown it. Is the yeare onely lost to me? Have I no bayes to crown it? No flowers, no garlands gay? all blasted? All wasted? Not so, my heart: but there is fruit, And thou hast hands. Recover all thy sigh-blown age On double pleasures: leave thy cold dispute Of what is fit, and not. Forsake thy cage, Thy rope of sands, Which pettie thoughts have made, and made to thee Good cable, to enforce and draw, And be thy law, While thou didst wink and wouldst not see. Away; take heed: I will abroad. Call in thy deaths head there: tie up thy fears. He that forbears To suit and serve his need, Deserves his load. But as I rav’d and grew more fierce and wilde At every word, Me thoughts I heard one calling, Childe: And I reply’d, My Lord.
    [Show full text]
  • Anthropic Constraints on Fermion Masses
    ∗ Anthropic constraints on fermion masses Alejandro Jenkins Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA We summarize the results of previous research on the constraints im- posed on quark masses by the anthropically-motivated requirement that there exist stable nuclei with the right charge to form complex molecules. We also mention an upper bound on the mass of the lightest lepton, derived from the requirement that such nuclei be stable against electron capture. PACS numbers: 12.38.Aw, 14.65.Bt, 21.10.Dr 1. Introduction It is conceivable that some of the properties of the physical world might not be uniquely determined by an underlying dynamical principle, but might instead reflect the requirement that those properties be compatible with the existence of intelligent observers like us, capable of studying them. In modern theoretical physics, this controversial idea is called the “anthropic principle” [1]. Broadly speaking, two camps are inclined to take the anthropic principle seriously, which we may call the “best-of-worlds” camp and the “worst-of- arXiv:0906.0029v1 [hep-th] 29 May 2009 worlds” camp. The former, notably represented by the authors of [2], holds that since the parameters of physical laws seem finely tuned to allow life, the universe is somehow geared —perhaps by a superior intelligence— towards being hospitable to us. The second camp, represented by [3], holds that our universe is only barely capable of accommodating intelligent observers, which is what one might expect if the fundamental physical laws are not designed with us in mind, but allow for the existence of many universes with different properties, only a very few of which happen to be compatible with the evolution of intelligent life.
    [Show full text]
  • Read Our 2013 Newsletter Here!
    A Message from the Chair Welcome to the Department of Physics newsletter for Summer 2013! As I have mentioned in previous years, our department is a very special place indeed, and Resonances gives us chance to share some of the past year’s significant events with you. For example, this past year saw as many as six scientists at FSU being elected Fellows of the American Physi- cal Society. Only the massive Los Alamos National Laboratory had more! Other high- lights include: the five year$ 168M renewal award to the National High Magnetic Field Laboratory by the National Science Foun- dation, participation in the Higgs discov- ery, a trip to CERN for our undergrads, faculty being selected for and even serving as chairs on top-level national committees, faculty also winning other national and local awards, and our superb graduate and undergraduate students being engaged in outstanding research. I hope the newsletter is able to convey some of this excitement to you! Since this is my last newsletter as chair, I would like to say that it has been an absolute privilege to serve the physics family at FSU for the past six years. It has been a highly rewarding experience seeing the department continue on its stellar upward trajectory. This has been possible not only because of our brilliant students and faculty but also the most wonderful and devoted staff anywhere on the planet! There are many exciting new events beginning to unfold; for example, we will have four new tenure-track assistant professors starting this fall — three in astrophysics and one in energy and materials.
    [Show full text]
  • Anthropic Distribution for Cosmological Constant and Primordial Density Perturbations
    Physics Letters B 600 (2004) 15–21 www.elsevier.com/locate/physletb Anthropic distribution for cosmological constant and primordial density perturbations Michael L. Graesser a,StephenD.H.Hsub, Alejandro Jenkins a,MarkB.Wisea a California Institute of Technology, Pasadena, CA 91125, USA b Institute of Theoretical Science and Department of Physics, University of Oregon, Eugene, OR 97403, USA Received 2 August 2004; accepted 26 August 2004 Editor: H. Georgi Abstract The Anthropic Principle has been proposed as an explanation for the observed value of the cosmological constant. Here we revisit this proposal by allowing for variation between universes in the amplitude of the scale-invariant primordial cosmological density perturbations. We derive a priori probability distributions for this amplitude from toy inflationary models in which the parameter of the inflaton potential is smoothly distributed over possible universes. We find that for such probability distributions, the likelihood that we live in a typical, anthropically-allowed universe is generally quite small. 2004 Elsevier B.V. All rights reserved. The Anthropic Principle has been proposed as a on the observation that the existence of life capable possible solution to the two cosmological constant of measuring Λ requires a universe with cosmological problems: why the cosmological constant Λ is orders structures such as galaxies or clusters of stars. A uni- of magnitude smaller than any theoretical expectation, verse with too large a cosmological constant either and why it is non-zero and comparable today to the does not develop any structure, since perturbations that energy density in other forms of matter [1–3].This could lead to clustering have not gone non-linear be- anthropic argument, which predates direct cosmologi- fore the universe becomes dominated by Λ,orelsehas cal evidence of the dark energy, is the only theoretical a very low probability of exhibiting structure-forming prediction for a small, non-zero Λ [3,4].
    [Show full text]
  • Quark Masses
    Quark Masses: An Environmental Impact Statement by Itamar Kimchi Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Bachelor of Science in Physics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2008 @ Itamar Kimchi, MMVIII. All rights reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part. Author .-...-. Department of Physics May 15, 2008 Certified by. Robert L. Jaffe Jane and Otto Morningstar Professor of Physics Thesis Supervisor Accepted by .............. David E. Pritchard MASSACHUSETTS INSTITUTE Thesis Coordinator OF TECHNOLOGY JUN 13 2008 MRCHW!S - LIBRARIES Quark Masses: An Environmental Impact Statement by Itamar Kimchi Submitted to the Department of Physics on May 16, 2008, in partial fulfillment of the requirements for the degree of Bachelor of Science in Physics Abstract We investigate how the requirement that organic chemistry be possible constrains the values of the quark masses. Specifically, we choose a slice through the parameter space of the Standard Model in which quark masses vary so that as many as three quarks play a role in the formation of nuclei, while keeping fixed the average mass of the two lightest baryons (in units of the electron mass) and the strength of the low-energy nuclear interaction. We classify universes on that slice as congenial if they contain stable nuclei with electric charge 1 and 6 (thus making organic chemistry possible in principle). Universes that lack one or both such stable nuclei are classified as uncongenial. We reassess the relationship between baryon masses and quark masses, using in- formation in baryon mass differences in our world and the pion-nucleon sigma term anN.
    [Show full text]
  • Simulating Transport Through Quantum Networks in the Presence of Classical Noise Using Cold Atoms by Christopher Gill
    Simulating transport through quantum networks in the presence of classical noise using cold atoms by Christopher Gill A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY Ultracold Atoms Group School of Physics and Astronomy College of Engineering and Physical Sciences The University of Birmingham Sep 2016 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract In work towards the development and creation of practical quantum devices for use in quantum com- puting and simulation, the importance of long lived coherence is key to the advantages offered over classical systems. Isolation from environmental sources of decoherence is of integral importance to such platforms. Recent experiments of biological systems seem to indicate the existence of certain structures that utilise the decohering effects of their surrounding environments to enhance performance. In this thesis, we present a novel experimental set-up used to simulate the effect of decoherence-enhanced systems by mapping the energy level structure of laser cooled Rubidium 87 atoms interacting with electro- magnetic fields to a quantum network of connected sites.
    [Show full text]