Spence Et Al (Resubmitted) Digitizing the Chemical Senses SI
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Book Review: “Taste What You're Missing: the Passionate Eater's Guide to Why Good Food Tastes Good” by Barb Stuckey
Spence Flavour 2013, 2:2 http://www.flavourjournal.com/content/2/1/2 BOOK REVIEW Open Access Book review: “Taste what you’re missing: the passionate eater’s guide to why good food tastes good” by Barb Stuckey Charles Spence Barb Stuckey, who describes herself as a professional science classes in school, I longed to read a straightfor- food developer (though she once worked as a restaurant ward book written for a layperson that could teach me inspector), has just released the latest in a recent spate how to taste food without first having to teach myself sci- of books on the multisensory perception of flavor [1] ence. There wasn’t one, so I decided to write this book.” (see also [2-4]). This new volume, though, is certainly ([1], p. 7). Consistent with this objective, complex terms targeted at a somewhat different audience from the that might prove difficult for a lay audience to under- others. It is part memoir, detailing the author’s many stand, such as orthonasal and retronasal olfaction, are years working in a major North American company fo- simplified as ‘nose-smelling’ and ‘mouth-smelling’, re- cused on developing novel food and beverage products, spectively. Like the famous North American food critic, and part self-help book, offering advice on how we could Jeffrey Steingarten, when I tested him in the lab here in all improve our ability to taste (mindful eating plays a Oxford some years ago, Barb strenuously objects to the big role here). In his book, Stevenson provided us with label ‘supertaster’. -
Smell Images and the Flavour System in the Human Brain Gordon M
INSIGHT REVIEW NATURE|Vol 444|16 November 2006|doi:10.1038/nature05405 Smell images and the flavour system in the human brain Gordon M. Shepherd1 Flavour perception is one of the most complex of human behaviours. It involves almost all of the senses, particularly the sense of smell, which is involved through odour images generated in the olfactory pathway. In the human brain, the perceptual systems are closely linked to systems for learning, memory, emotion and language, so distributed neural mechanisms contribute to food preference and food cravings. Greater recognition of the role of the brain’s flavour system and its connection with eating behaviour is needed for a deeper understanding of why people eat what they do, and to generate better recommendations about diet and nutrition. Many humans regard their sense of smell to be of minor importance. In fact, behavioural tests show that primates have surprisingly good The dominant role that smell has in sensing the flavours of the foods senses of smell5, and it has been argued that the decline in olfactory-gene we eat and influencing what we like to eat is largely unrecognized. number is more than offset in humans by their much enlarged brains This is unfortunate, because our diet is causing a public health crisis in with their increased capacities for analysis and complex processing of many western countries. Knowledge of the importance of smell to the smell to guide critical human behaviours6. As we shall see, a notable perception of flavour and the formation of cognitive and emotional share of this enlarged brain capacity is involved in flavour perception responses to foods and beverages could help to improve health and and behavioural responses to flavours. -
1.4 the Brain on Flavour
Spence c01.tex V3 - 04/17/2014 5:11 P.M. Page 1 1 Introducing the Perfect Meal “Once at least in the life of every human, whether he be brute or trembling daffodil, comes a moment of complete gastronomic satisfaction. It is, I am sure, as much a matter of spirit as of body. Everything is right; nothing jars. There is a kind of harmony, with every sensation and emotion melted into one chord of well-being.” (Fisher 2005, p. 325) 1.1 Introduction This is a book about the perfect meal and how to get it, or at least how to get closer to it: not in the sense of the chef travelling to the furthest corners of the globe in the search for the über-unusual and extreme of culinary delights (Bourdain 2002)1; nor in the behavioural economist’s sense of trying to opti- mize the benefits, while minimizing the costs, of the financial transaction that is dining out (Cowen 2012); and nor does this book offer a chef’s guide to, or search for, perfection as seen through the lens of molecular gastronomy or (better said) modernist cuisine (Blumenthal 2007; see also Rayner 2008). Rather, this is a book about how the latest insights from a diverse range of fields of research that include experimental psychology, design, neuroscience, sensory marketing, behavioural economics and the culinary and sensory sci- ences can, and inCOPYRIGHTED some cases already are, being MATERIAL used by a number of the 1 Note that this interest in the unusual extends all the way from the celebrity chef though to the home dining setting. -
How the Brain Creates the Taste of Wine Gordon M Shepherd
Shepherd Flavour (2015) 4:19 DOI 10.1186/s13411-014-0030-9 OPINION Open Access Neuroenology: how the brain creates the taste of wine Gordon M Shepherd Abstract Flavour science is concerned with the sensory appreciation of food. However, flavor is not in the food; it is created by the brain, through multiple sensory, motor, and central behavioral systems. We call this new multidisciplinary field “neurogastronomy.” It is proving useful in integrating research findings in the brain with the biomechanics of generating food volatiles and their transport through retronasal smell. Recent findings in laboratory animals and in humans give new insights into the adaptations that have occurred during evolution that give humans an enhanced flavor perception. This process will be illustrated by an analysis of how the brain creates the taste of wine. The successive stages of the biomechanics of movement of the ingested wine and transport of the released volatiles will be correlated with activation of the multiple brain mechanisms, apparently engaging more of the brain than any other human behavior. These stages include the initial cephalic phase, visual analysis, ingestion, formation of the wine perceptual image, formation of the wine perceptual object, swallowing, and post-ingestive effects. This combined biomechanic and brain mechanism approach suggests a new discipline of “neuroenology (neuro-oenology),” adding to the contributions that science can make to the enhanced quality and appreciation of wine. Keywords: Wine, Retronasal smell, Wine image, Wine perceptual object, Fluid mechanics Interest in food flavors is expanding rapidly, driven by a pathway; these include center-surround interactions for widening interest in food and concerns about the rising color-opponent mechanisms [3]. -
The Emergence of Gastronomic Engineering
Innovative Food Science and Emerging Technologies 41 (2017) 277–283 Contents lists available at ScienceDirect Innovative Food Science and Emerging Technologies journal homepage: www.elsevier.com/locate/ifset The emergence of gastronomic engineering José Miguel Aguilera Department of Chemical and Bioprocess Engineering, Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 6904411, Chile article info abstract Article history: Modern consumers increasingly derive their foods from away-from-home sources. Rising incomes, the emer- Received 5 October 2016 gence of chefs as innovative actors in the food scene, and the growing consumer demand for culinary experi- Received in revised form 18 December 2016 ences, are the main driving forces behind haute cuisine. At the same time, food engineering is in urgent need to Accepted 27 March 2017 expand its scope and engage in new collaborations and partnerships. Gastronomic engineering (GE) means Available online 28 March 2017 using the vast body of knowledge accumulated in food engineering and food materials science to propel the cu- Keywords: riosity and creativity of chefs to what is technologically feasible and environmentally sustainable. GE opens new Food engineering opportunities for food engineering, a discipline that has been mostly oriented to the food processing industry. Gastronomy This article describes the emergence of GE or a new branch of food engineering, as a space of co-creation between Chefs chefs and food engineers in a university set-up. Our GE unit consists of an experimental kitchen headed by a chef, Restaurant a food engineering area and a materials science laboratory. The impact of GE on academic activities (teaching and Molecular gastronomy research) and outreach experiences is discussed. -
The Fascinating Science of Taste, Smell and Flavor
The Fascinating Science of Taste, Smell and Flavor Many studies have shown that the flavor of food is by far the most important factor in determining what foods we choose to eat (1). The flavor of food is not something we actually sense but is created in our brain based on what we taste with our mouth and smell with our nose (2). Taste, smell, and flavor are therefore distinctly different from each other. Our sense of taste is built into our genes and can be observed in newborn children within six months of birth, whereas recognizing smells is a learned experience (2). There are five well-recognized tastes: Sweet, salt, sour, bitter, and umami (savory, meaty taste). There is also growing acceptance of fat as a sixth basic taste (3). The ability to sense each of these tastes is believed to have evolved for the survival of our earliest ancestors. The sweet taste of fruit indicates a source of sugars for energy. Umami is believed to have evolved as a means to detect protein and essential amino acids. Salt is required for regulating the level of bodily fluids. Sour indicates the presence of spoiled food as we might find in old milk. Many toxic compounds found in plants produce a very bitter taste. And fat is another important source of energy as well as essential fatty acids. Note that our sense of taste evolved to detect non-volatile molecules that we cannot smell. In contrast to the small number of basic tastes, humans are able to recognize more than 10,000 different odors. -
The Effect of Retronasal Odor Adaptation on Flavor Perception
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Supervised Undergraduate Student Research Chancellor’s Honors Program Projects and Creative Work 5-2017 The Effect of Retronasal Odor Adaptation on Flavor Perception Addison Atchley University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj Part of the Food Science Commons, and the Neuroscience and Neurobiology Commons Recommended Citation Atchley, Addison, "The Effect of Retronasal Odor Adaptation on Flavor Perception" (2017). Chancellor’s Honors Program Projects. https://trace.tennessee.edu/utk_chanhonoproj/2123 This Dissertation/Thesis is brought to you for free and open access by the Supervised Undergraduate Student Research and Creative Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Chancellor’s Honors Program Projects by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. The Effect of Retronasal Odor Adaptation on Flavor Perception Addison Atchley College of Arts and Sciences Department of Biochemistry and Cellular and Molecular Biology Thesis Advisor: Curtis Luckett 1 The Effect of Retronasal Odor Adaptation on Flavor Perception Abstract In order to measure the effects of odor adaptation on flavor perception, a study involving the retronasal olfactory system was conducted on ten subjects. Each subject was exposed to an odor (lime, lavender, or control) for a specific amount of time followed by consumption of a lime flavored gummy immediately after odor habituation. The retronasal odor was provided by an odorized pullulan film stuck to the subject’s roof of mouth. -
Neurogastronomy As a Tool for Evaluating Emotions and Visual Preferences of Selected Food Served in Different Ways
foods Article Neurogastronomy as a Tool for Evaluating Emotions and Visual Preferences of Selected Food Served in Different Ways Jakub Berˇcík, Johana Paluchová and Katarína Neomániová * Department of Marketing and Trade, Faculty of Economics and Management, Slovak University of Agriculture, 949 76 Nitra, Slovakia; [email protected] (J.B.); [email protected] (J.P.) * Correspondence: [email protected] Abstract: The appearance of food provides certain expectations regarding the harmonization of taste, delicacy, and overall quality, which subsequently affects not only the intake itself but also many other features of the behavior of customers of catering facilities. The main goal of this article is to find out what effect the visual design of food (waffles) prepared from the same ingredients and served in three different ways—a stone plate, street food style, and a white classic plate—has on the consumer’s preferences. In addition to the classic tablet assistance personal interview (TAPI) tools, biometric methods such as eye tracking and face reading were used in order to obtain unconscious feedback. During testing, air quality in the room by means of the Extech device and the influence of the visual design of food on the perception of its smell were checked. At the end of the paper, we point out the importance of using classical feedback collection techniques (TAPI) and their extension in measuring subconscious reactions based on monitoring the eye movements and facial expressions of the respondents, which provides a whole new perspective on the perception of visual design and serving food as well as more effective targeting and use of corporate resources. -
Gastrophysics in the Brain and Body Per Møller
Møller Flavour 2013, 2:8 http://www.flavourjournal.com/content/2/1/8 OPINION Open Access Gastrophysics in the brain and body Per Møller Abstract In this short paper, a few important problems are highlighted that fall naturally within the emerging science of gastrophysics. This paper does not discuss how ‘gastrophysics’ is similar to or different from ‘neurogastronomy’ or ‘molecular gastronomy’; but just notes that the time seems ripe for problems within these areas, as witnessed by the recent proposals of these as separate ‘emergent’ scientific fields centered at problems not covered by other traditional scientific disciplines. Keywords: Pleasure, Preferences, Flavour pairing, Quantity vs. quality Introduction known effect, sensory specific satiety (SSS), describes In my view, the new field of gastrophysics should in- that ‘liking’ of a food drops as intake increases and obvi- clude psychological, psychophysical and neuroscientific ously plays a role in controlling the variety of food intake considerations in order to truly address fundamental [8-10]. Despite extensive literature on SSS, any precise problems related to human consumption of foods, no theory for prediction of ‘transfer effects’ (from one food to matter whether these are related to questions of pleasure another) or for the number of sensory dimensions neces- and satisfaction, or are more concerned with health issues sary to capture the effects has still to be formulated. The [1-3]. These fields, on the other hand, being mostly phe- same applies to effects of induced sensory specific desire nomenological and with very little predicting power, could (SSD), which describes the non-random desire for other greatly benefit from inspiration from theory and simula- foods the eating of a given food induces [11]. -
The Harvard Center for Gastrophysics?
Montage Art, books, diverse creations 15 The Alcotts, Père and Fille 16 Open Book 18 On Judicial Interpretation 19 Off the Shelf 20 Second-Life Photography 22 A Scourge Remembered 23 Chapter & Verse may get a boost from Harvard science labs. During a visit to Cambridge in December to de- liver a guest Celebrated chef lecture and to Ferran Adrià mingles cooking visit some of and science at those labs, the elBulli, his chef signed an restaurant near agreement Barcelona. with profes- sors of physics and engineering for an ongoing collaboration. Thus far, Adrià and his sta≠ have achieved their culinary feats through The Harvard Center for sheer trial and error; he has no formal sci- entific training. When a friend gave him a canister of nitrous oxide (the same pro- Gastrophysics? pellant used in Reddi-wip) as a gift, he played around to find out what he could do with it. The result was culinary foam, The University partners with the father of molecular gastronomy. perhaps Adrià’s most famous invention. by ELIZABETH GUDRAIS (He uses substances such as beet, carrot, coconut, and honey, pureeing and then straining the liquid before urprise is Ferran Adrià’s stock splash of briny liquid when bitten. aerating. The resulting foam in trade. He delights the diners These are just a few of the hundreds of has no egg or milk to dilute at elBulli, his restaurant near playful dishes the chef has served in his or distract from the taste of Visit harvard- S Barcelona, with creations such nearly 25 years at elBulli (declared the the main ingredient.) He mag.com/extras as gelatin served hot; a “bubble world’s best by Restaurant magazine for learned about “spherifica- to read more tea” drink in which the liquid tastes of three years running, and four times in all). -
The Complicated Equation of Smell, Flavor, and Taste
PERSPECTIVES because they are then perceived as being more aggressive and increase their collection rates3 (note: the report in this reference is The Complicated Equation of Smell, wonderfully entertaining!). Flavor, and Taste Because humans mostly depend on vision that is stereoscopic, which in turn is contingent on a strict interocular distance, we do not M. Castillo, Editor-in-Chief have a long snout and our anterior nasal pathways are less complex, less efficient, and shorter than those of dogs. However, contrary to ur oldest senses are those related to chemogustatory ca- prior beliefs, there is no evolutionary competition between smell and Opacities: smell and taste. Of these, smell is probably the taste and vision; our sight has improved but our sense of smell re- oldest, and before we fully develop cerebral hemispheres, the mains quite good and the blind do not have a better sense of smell olfactory apparatus already exists as extensions of the limbic than the sighted. Although most mammals depend on orthonasal system. The study of the senses of smell and taste is so complex smell, we humans mostly use retronasal smell. When we say some- that it encompasses armies of aromachologists, food scientists, thing tastes good, in reality we mean that it smells good because most physiologists, behavioral psychologists, cognitive neuroscien- “flavor” is actually retronasal smell. While retronasal smell is essential tists, neuropharmacologists, biochemists, anthropologists, for tasting, antegrade smelling is not. molecular biologists, and many more and is intimately related Once odorized air enters the nose in antegrade or retrograde to the study of taste. directions, it reaches the cilia of the olfactory neurons where The olfactory system in vertebrates has a unique embryol- about 1000 specific receptor proteins are present. -
Retronasal Odor Representations in the Dorsal Olfactory Bulb of Rats
The Journal of Neuroscience, June 6, 2012 • 32(23):7949–7959 • 7949 Behavioral/Systems/Cognitive Retronasal Odor Representations in the Dorsal Olfactory Bulb of Rats Shree Hari Gautam and Justus V. Verhagen The John B. Pierce Laboratory and Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06519 Animals perceive their olfactory environment not only from odors originating in the external world (orthonasal route) but also from odors released in the oral cavity while eating food (retronasal route). Retronasal olfaction is crucial for the perception of food flavor in humans. However, little is known about the retronasal stimulus coding in the brain. The most basic questions are if and how route affects the odor representations at the level of the olfactory bulb (OB), where odor quality codes originate. We used optical calcium imaging of presynaptic dorsal OB responses to odorants in anesthetized rats to ask whether the rat OB could be activated retronasally, and how these responses compare to orthonasal responses under similar conditions. We further investigated the effects of specific odorant properties on orthonasal versus retronasal response patterns. We found that at a physiologically relevant flow rate, retronasal odorants can effec- tively reach the olfactory receptor neurons, eliciting glomerular response patterns that grossly overlap with those of orthonasal re- sponses, but differ from the orthonasal patterns in the response amplitude and temporal dynamics. Interestingly, such differences correlated well with specific odorant properties. Less volatile odorants yielded relatively smaller responses retronasally, but volatility did not affect relative temporal profiles. More polar odorants responded with relatively longer onset latency and time to peak retronasally, butpolaritydidnotaffectrelativeresponsemagnitudes.Thesedataprovideinsightintotheearlystagesofretronasalstimuluscodingand establish relationships between orthonasal and retronasal odor representations in the rat OB.