Biochemical Dissection of Photorespiration Roland Douce* and Michel Neuburger

Total Page:16

File Type:pdf, Size:1020Kb

Biochemical Dissection of Photorespiration Roland Douce* and Michel Neuburger 214 Biochemical dissection of photorespiration Roland Douce* and Michel Neuburger Progress has been made in the understanding of each other. In the course of this pathway two molecules of photorespiration and related proteins (Rubisco, glycolate glycolate-2-P are metabolized to form one molecule each of oxidase and glycine decarboxylase) in the context of recent glycerate-3-P and CO2 and these carbon compounds are structural information. Numerous shuttles exist to support used immediately for the regeneration of RuBP via the transamination, ammonia refixation and the supply or export of Benson–Calvin cycle (C3 cycle) without the net synthesis reductants generated or consumed (via malate-oxaloacetate of triose phosphate. Once glycolate-2-P is formed, the pho- shuttles) in the photorespiratory pathway. A porin-like channel torespiratory cycle works forward to convert all the carbon that is anion selective represents the major permeability diverted out of the C3 cycle back to photosynthesis as pathway of the peroxisomal membrane. rapidly as possible [3]. Indeed, several reactions occuring in chloroplasts and peroxisomes strongly favor product forma- Addresses tion. Obviously, although very little is known about the DBMS, Laboratoire de Physiologie Cellulaire Végétale, feed-back mechanisms that might operate in photorespira- CEA Grenoble et Université Joseph Fourier, 17 rue des martyrs, tion [4], the most important control step is at the level of F 38054 Grenoble, Cedex 9, France competition between O and CO for binding to Rubisco. *e-mail: [email protected] 2 2 Current Opinion in Plant Biology 1999, 2:214–222 In C3 plants the C2 cycle is operating in the photosynthet- http://biomednet.com/elecref/1369526600200214 ically active mesophyll cells. In C4 plants the C2 cycle operates in the bundle sheath cells [5]. Using two geneti- © Elsevier Science Ltd ISSN 1369-5266 cally modified C4 plants, a mutant of Amaranthus edulis that Abbreviation is deficient in PEP carboxylase and a transgenic plant RuBP ribulose-1,5-bisphosphate Flaveria bidentis which has reduced levels of Rubisco, • Marocco et al [6 ] have demonstrated that when the C4 Introduction plant is ineffective in concentrating CO2 in the bundle The prime function of the C2 oxidative photosynthetic car- sheath cells there is a marked increase in photorespiration bon cycle — inappropriately named ‘photorespiration’ and when the C4 plant exhibits low levels of Rubisco there • [1 ] — is to salvage glycolate-2-P produced continuously in is a marked increase in bundle-sheath CO2 leakage. This the light by the oxygenase activity of ribulose-1,5-bisphos- observation provides definitive evidence that photorespi- phate carboxylase/oxygenase (Rubisco). In leaves under ration is insignifiant in C4 plants because they are capable ambient conditions the rate of oxygenation to carboxylation of concentrating CO2 in the bundle-sheath cells leading to has been estimated as high as 0.4. Low intercellular con- the suppression of the oxygenase reaction of Rubisco. centrations of CO2, as may occur, for example, under water stress (e.g. whenever the stomata are closed), can result in Functioning of key enzymes involved in even higher ratios. Given the voluminous literature on pho- photorespiration torespiration [2,3], in this short review we merely highlight Few enzymes involved in this cycle have been studied recent advances in this topic, laying emphasis on a few pho- carefully. Only Rubisco, glycolate oxidase and a sophisti- torespiratory enzymes (Rubisco, glycolate oxidase and cated set of proteins involved in glycine cleavage (glycine glycine decarboxylase) and molecular traffic between per- decarboxylase system) have been studied in an exhaustive oxisomes, chloroplasts, and mitochondria. manner. For this reason we have chosen to focus on a restricted set of enzyme systems. The photorespiratory pathway The value of numerous mutant plants (Hordeum, pea, and Mechanism of Rubisco: the triggering of photorespiration Arabidopsis thaliana) in the exquisite elucidation of the mech- Rubisco is present at a tremendous concentration in the –1 anism of photorespiration and its relationships with CO2 stroma of the chloroplasts (~0.2 g ml ) stromal extract and fixation and amino acid metabolism has been highlighted by catalyses both the carboxylation (the enzyme exhibits a low several groups (see [3] for a full list). These mutants were catalytic rate constant, 3.5 sec–1) and the oxygenation of unable to survive in air, but could thrive in atmospheres con- ribulose-1,5-bisphosphate [7–9,10••]. The two reactions taining a high concentration of CO2 (or low [O2]). involve the competition of molecular CO2 with O2 for the 2,3-enediol(ate) form of RuBP which is first generated at the The recycling of glycolate-2-P into glycerate-3-P via the active site of the enzyme. At any given [CO2][O2], the frac- photorespiratory pathway and then further to ribulose-1,5- tional partitioning of RuBP between the carboxylation and bisphosphate (RuBP) is not only a very costly reaction, it oxygenation pathways is governed by the relative reactivity also requires a large machinery consisting of 16 enzymes of the enzyme-bound 2,3-enediol(ate) toward CO2 and •• and more than six translocators, distributed over the chloro- O2 [10 ]. From biochemical analyses of Rubisco purified plast, peroxisome and mitochondrion in close proximity to from several species, including photosynthetic bacteria, Biochemical dissection of photorespiration Douce and Neuburger 215 cyanobacteria, green algae, and higher plants, there are large The oxygenation of RuBP yields one molecule each of differences in specificity towards the substrates CO2 and O2: glycerate-3-P (formed from C-3, C-4 and C-5 of RuBP), evolutionary pressures seem to have directed Rubisco and glycolate-2-P. The oxygenation pathway has not been •• •• towards more efficient utilization of CO2 [10 ,11]. Rubisco dissected as deeply as the carboxylation counterpart [10 ]. from cyanobacteria, green algae and higher plants is assem- Very likely the oxygenation pathway is similar to the car- bled from eight large (L) subunits and eight small (S) boxylation pathway although the putative key labile subunits (four dimers of L subunits surrounded by two intermediate (2-peroxy-3-ketoarabinitol 1,5-bisphosphate) •• tetramers of S subunits; (L2)4(S4)2) [12], whereas Rubisco [10 ] postulated through the exquisite characterization of → → from Rhodospirillum rubrum (a nonsulfur purple bacteria) two-different site directed mutants (E60 Q, K334 A) consists of only two large subunits (L2). The large subunit [18,19], has never been characterized so far. This reaction from spinach can be divided into two domains, an amino may be an inevitable consequence of Rubisco’s inability to α β terminal domain and a carboxy-terminal / -barrel domain. protect its ene-diolate reaction intermediate from O2. Two active sites are located at the interface of the L-sub- Indeed, this notion is supported by the failure of numerous units in the L2 dimer (‘head to tail’ arrangement). The efforts to eliminate selectively its oxygenase activity by catalytic center is mostly situated at the carboxy-terminal genetic manipulation. The partitioning of RuBP between end of the α/β-barrel. The enhancement of catalytic rate by the carboxylation and oxygenation pathways is sensitive to S subunits can only mediated through induced conforma- the active site microenvironment and does not involve tional changes in catalytic subunits because S subunits are large movements within the structure [10••]. Given the far removed from the active site [13]. structural similarity of the two alternative substrates CO2 and O2 and the large difference in their concentration A large number of crystal structures of Rubiscos from var- within the chloroplasts, it is clear that Rubisco influences ious sources including Rhodospirillum rubrum, the selectivity for CO2 in some way [12]. Synechococcus, and spinach have been reported along with a variety of ligands (see [10••,], for a full list) and this, in Glycolate oxidase synergy with biochemical investigations, led to a careful Glycolate oxidase (an octamer composed of identical sub- dissection of the carboxylation pathway. The carboxyla- units of approximately 40 kDa) is one of the very few tion of RuBP involves multiple discrete steps and peroxisomal proteins for which a high resolution crystal associated transition states: removal of ligands such as 2- structure is available [20•]. The enzyme from spinach crys- carboxyarabinitol 1-phosphate from the inactive enzyme tallizes in an octameric form and the subunit contains an form (this process occurs slowly by simple dissociation, or eight-fold β/α barrel motif corresponding to the flavin rapidly when catalysed by the enzyme Rubisco activase); mononucleotide (FMN) domain which is also found in carbamylation of the ε-amino group of Lys201 (spinach) other FMN-dependent enzymes. The irreversible reaction residue in the active site by an activator CO2 molecule; catalysed by the enzyme can be divided into two half-reac- stabilization of this protein-bound carbamate by mon- tions. First glycolate is oxidised by the flavin which is odentate coordination to Mg2+ (three water molecules, deeply burried in the barrel. In the second part FMN is Asp203 and Glu204 complete the octahedral coordination reoxidized by O2 to produce H2O2 which is, in turn, sphere around this metal ion); binding of RuBP: it is ori- decomposed by catalase (a heme-containing enzyme). The ented
Recommended publications
  • Analysis of Functional Domains on Glutamate Synthase
    Turk J Biol 24 (2000) 197–213 © TÜBİTAK Review Article Analysis of Functional Domains on Glutamate Synthase Barbaros NALBANTOĞLU Department of Biochemistry, Faculty of Sciences and Arts, Atatürk University, Erzurum-TURKEY Received: 02.06.1998 Abstract: Glutamate synthases (GOGAT) were analyzed to identify the functional binding domains of the substrate (glutamine) and cofactors (FMN, NAD(P)H, FAD, [3Fe-4S]1+,0 and [4Fe-4S]2+,1+ clusters and ferredoxin) on this enzyme. The published amino acid sequences of six different NAD(P)H- dependent GOGATs (NAD(P)H-GOGAT) and ten different ferredoxin-dependent GOGATs (Fd-GOGAT) were used for this analysis. The amino acid sequences of these sixteen GOGATs were compared with the amino acid sequences of aminotransferases for glutamine, flavoproteins for FMN, flavoproteins and pyridine-nucleotide-dependent enzymes for FAD and NAD(P)H, iron-sulfur proteins for [3Fe- 4S]1+,0 and [4Fe-4S]2+,1+ clusters and ferredoxin-dependent enzymes for ferredoxin. It was determined that Fd-GOGAT has one domain each for glutamine, FMN and [3Fe-4S]1+,0 cluster and two domains each for FAD and ferredoxin; the NADPH-GOGAT α subunit has the same domains as Fd- GOGAT except for the ferredoxin domains, and β subunit has one domain each for NADPH and FAD and two domains for two [4Fe-4S]2+,1+clusters; NADH-GOGAT has the same domains as NADPH- GOGAT. Key Words: Glutamate synthase, glutamine, FMN, FAD, NAD(P)H, iron-sulfur cluster, ferredoxin, binding domain. Glutamat Sentaz Üzerindeki Fonksiyonel Bölgelerin Analizi Özet: Glutamat sentazlar (GOGAT), bu enzim üzerindeki substrat (glutamin) ve kofaktörlerin (FMN, NAD(P)H, FAD, [3Fe-4S]1+,0 ve [4Fe-4S]2+,1+ kümeleri ve ferredoksin) fonksiyonel bağlanma bölgelerini belirlemek için analiz edildi.
    [Show full text]
  • Genomic Deletions Disrupt Nitrogen Metabolism Pathways of a Cyanobacterial Diatom Symbiont
    ARTICLE Received 16 Oct 2012 | Accepted 15 Mar 2013 | Published 23 Apr 2013 DOI: 10.1038/ncomms2748 OPEN Genomic deletions disrupt nitrogen metabolism pathways of a cyanobacterial diatom symbiont Jason A. Hilton1, Rachel A. Foster1,w, H. James Tripp1,w, Brandon J. Carter1, Jonathan P. Zehr1 & Tracy A. Villareal2 Diatoms with symbiotic N2-fixing cyanobacteria are often abundant in the oligotrophic open ocean gyres. The most abundant cyanobacterial symbionts form heterocysts (specialized cells for N2 fixation) and provide nitrogen (N) to their hosts, but their morphology, cellular locations and abundances differ depending on the host. Here we show that the location of the symbiont and its dependency on the host are linked to the evolution of the symbiont genome. The genome of Richelia (found inside the siliceous frustule of Hemiaulus) is reduced and lacks ammonium transporters, nitrate/nitrite reductases and glutamine:2-oxoglutarate aminotransferase. In contrast, the genome of the closely related Calothrix (found outside the frustule of Chaetoceros) is more similar to those of free-living heterocyst-forming cyanobacteria. The genome of Richelia is an example of metabolic streamlining that has implications for the evolution of N2-fixing symbiosis and potentially for manipulating plant–cyanobacterial interactions. 1 Department of Ocean Sciences, University of California, 1156 High Street, Santa Cruz, California 95064, USA. 2 Marine Science Institute, Department of Marine Science, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, Texas 78373, USA. w Present addresses: Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany (R.A.F.); Department of Energy, Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA (H.J.T.).
    [Show full text]
  • Light-Independent Nitrogen Assimilation in Plant Leaves: Nitrate Incorporation Into Glutamine, Glutamate, Aspartate, and Asparagine Traced by 15N
    plants Review Light-Independent Nitrogen Assimilation in Plant Leaves: Nitrate Incorporation into Glutamine, Glutamate, Aspartate, and Asparagine Traced by 15N Tadakatsu Yoneyama 1,* and Akira Suzuki 2,* 1 Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan 2 Institut Jean-Pierre Bourgin, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), UMR1318, RD10, F-78026 Versailles, France * Correspondence: [email protected] (T.Y.); [email protected] (A.S.) Received: 3 September 2020; Accepted: 29 September 2020; Published: 2 October 2020 Abstract: Although the nitrate assimilation into amino acids in photosynthetic leaf tissues is active under the light, the studies during 1950s and 1970s in the dark nitrate assimilation provided fragmental and variable activities, and the mechanism of reductant supply to nitrate assimilation in darkness remained unclear. 15N tracing experiments unraveled the assimilatory mechanism of nitrogen from nitrate into amino acids in the light and in darkness by the reactions of nitrate and nitrite reductases, glutamine synthetase, glutamate synthase, aspartate aminotransferase, and asparagine synthetase. Nitrogen assimilation in illuminated leaves and non-photosynthetic roots occurs either in the redundant way or in the specific manner regarding the isoforms of nitrogen assimilatory enzymes in their cellular compartments. The electron supplying systems necessary to the enzymatic reactions share in part a similar electron donor system at the expense of carbohydrates in both leaves and roots, but also distinct reducing systems regarding the reactions of Fd-nitrite reductase and Fd-glutamate synthase in the photosynthetic and non-photosynthetic organs.
    [Show full text]
  • Bioinorganic Chemistry Content
    Bioinorganic Chemistry Content 1. What is bioinorganic chemistry? 2. Evolution of elements 3. Elements and molecules of life 4. Phylogeny 5. Metals in biochemistry 6. Ligands in biochemistry 7. Principals of coordination chemistry 8. Properties of bio molecules 9. Biochemistry of main group elements 10. Biochemistry of transition metals 11. Biochemistry of lanthanides and actinides 12. Modell complexes 13. Analytical methods in bioinorganic 14. Applications areas of bioinorganic chemistry "Simplicity is the ultimate sophistication" Leonardo Da Vinci Bioinorganic Chemistry Slide 1 Prof. Dr. Thomas Jüstel Literature • C. Elschenbroich, A. Salzer, Organometallchemie, 2. Auflage, Teubner, 1988 • S.J. Lippard, J.N. Berg, Bioinorganic Chemistry, Spektrum Akademischer Verlag, 1995 • J.E. Huheey, E. Keiter, R. Keiter, Anorganische Chemie – Prinzipien von Struktur und Reaktivität, 3. Auflage, Walter de Gruyter, 2003 • W. Kaim, B. Schwederski: Bioinorganic Chemistry, 4. Auflage, Vieweg-Teubner, 2005 • H. Rauchfuß, Chemische Evolution und der Ursprung des Lebens, Springer, 2005 • A.F. Hollemann, N. Wiberg, Lehrbuch der Anorganischen Chemie, 102. Auflage, de Gruyter, 2007 • I. Bertini, H.B. Gray, E.I. Stiefel, J.S. Valentine, Biological Chemistry, University Science Books, 2007 • N. Metzler-Nolte, U. Schatzschneier, Bioinorganic Chemistry: A Practical Course, Walter de Gruyter, 2009 • W. Ternes, Biochemie der Elemente, Springer, 2013 • D. Rabinovich, Bioinorganic Chemistry, Walter de Gruyter, 2020 Bioinorganic Chemistry Slide 2 Prof. Dr. Thomas Jüstel 1. What is Bioinorganic Chemistry? A Highly Interdisciplinary Science at the Verge of Biology, Chemistry, Physics, and Medicine Biochemistry Inorganic Chemistry (Micro)- Physics & Biology Spectroscopy Bioinorganic Chemistry Pharmacy & Medicine & Toxicology Physiology Diagnostics Bioinorganic Chemistry Slide 3 Prof. Dr. Thomas Jüstel 2. Evolution of the Elements Most Abundant Elements in the Universe According to Atomic Fraction Are: 1.
    [Show full text]
  • Lake Superior Phototrophic Picoplankton: Nitrate Assimilation
    LAKE SUPERIOR PHOTOTROPHIC PICOPLANKTON: NITRATE ASSIMILATION MEASURED WITH A CYANOBACTERIAL NITRATE-RESPONSIVE BIOREPORTER AND GENETIC DIVERSITY OF THE NATURAL COMMUNITY Natalia Valeryevna Ivanikova A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2006 Committee: George S. Bullerjahn, Advisor Robert M. McKay Scott O. Rogers Paul F. Morris Robert K. Vincent Graduate College representative ii ABSTRACT George S. Bullerjahn, Advisor Cyanobacteria of the picoplankton size range (picocyanobacteria) Synechococcus and Prochlorococcus contribute significantly to total phytoplankton biomass and primary production in marine and freshwater oligotrophic environments. Despite their importance, little is known about the biodiversity and physiology of freshwater picocyanobacteria. Lake Superior is an ultra- oligotrophic system with light and temperature conditions unfavorable for photosynthesis. Synechococcus-like picocyanobacteria are an important component of phytoplankton in Lake Superior. The concentration of nitrate, the major form of combined nitrogen in the lake, has been increasing continuously in these waters over the last 100 years, while other nutrients remained largely unchanged. Decreased biological demand for nitrate caused by low availabilities of phosphorus and iron, as well as low light and temperature was hypothesized to be one of the reasons for the nitrate build-up. One way to get insight into the microbiological processes that contribute to the accumulation of nitrate in this ecosystem is to employ a cyanobacterial bioreporter capable of assessing the nitrate assimilation capacity of phytoplankton. In this study, a nitrate-responsive biorepoter AND100 was constructed by fusing the promoter of the Synechocystis PCC 6803 nitrate responsive gene nirA, encoding nitrite reductase to the Vibrio fischeri luxAB genes, which encode the bacterial luciferase, and genetically transforming the resulting construct into Synechocystis.
    [Show full text]
  • Physiology, Biochemistry, and Pharmacology of Transporters for Organic Cations
    International Journal of Molecular Sciences Editorial Physiology, Biochemistry, and Pharmacology of Transporters for Organic Cations Giuliano Ciarimboli Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, 48149 Münster, Germany; [email protected] This editorial summarizes the 13 scientific papers published in the Special Issue “Physiology, Biochemistry, and Pharmacology of Transporters for Organic Cations” of the International Journal of Molecular Sciences. In this Special Issue, the readers will find integrative information on transporters for organic cations. Besides reviews on physi- ology, pharmacology, and toxicology of these transporters [1–3], which offer a concise overview of the field, the readers will find original research work focusing on specific transporter aspects. Specifically, the review “Organic Cation Transporters in Human Physiology, Phar- macology, and Toxicology” by Samodelov et al. [1] summarizes well the general as- pects of physiology, pharmacology, and toxicology of transporter for organic cations. The other review “Organic Cation Transporters in the Lung—Current and Emerging (Patho)Physiological and Pharmacological Concepts” by Ali Selo et al. [2] focuses on these aspects of transporters for organic cations in the lung, an important but often ne- glected field. In the paper “Systems Biology Analysis Reveals Eight SLC22 Transporter Subgroups, Including OATs, OCTs, and OCTNs”, by performing a system biology analysis of SLC22 transporters, Engelhart et al. [4] suggest the existence of a transporter–metabolite network. They propose that, in this network, mono-, oligo-, and multi-specific SLC22 transporters Citation: Ciarimboli, G. Physiology, interact to regulate concentrations and fluxes of many metabolites and signaling molecules. Biochemistry, and Pharmacology of In particular, the organic cation transporters (OCT) subgroup seems to be associated with Transporters for Organic Cations.
    [Show full text]
  • BIOCHEMISTRY MAJOR the Biochemistry Major Is Offered Through the Department of Chemistry
    BIOCHEMISTRY MAJOR The Biochemistry major is offered through the Department of Chemistry. This sequence is recommended for students planning entry into graduate school in Biochemistry, Pharmacology, or related subjects. It is also strongly recommend for those desiring to pursue medical or dental school. NOTE: This course sequence may be modified to include a Senior Capstone Experience. FIRST YEAR Fall Semester Credits Spring Semester Credits General Chemistry I for Majors (CHE111) 3 General Chemistry II for Majors (CHE112) 3 General Chemistry I Lab for Majors (CHE111L) 1 General Chemistry II Lab for Majors (CHE112L) 1 General Chemistry I Récitation (CHE111R) 0 General Chemistry II Récitation (CHE112R) 0 Precalculus (MAT116 or MAT120) 3-4 Calculus I (MAT231) 4 First Year Composition (ENG103) 4 Foreign Language (FL201) 4 African Diaspora/World I (ADW111) 4 African Diaspora/World II (ADW112) 4 First Year Experience (FYE 101-Chemistry) 1 First Year Experience (FYE 102-Chemistry) 1 First Year Seminar in Chemistry (CHE101) 0 Big Questions Colloquia (BQC) 1 TOTAL HOURS 16-17 TOTAL HOURS 18 SOPHOMORE YEAR Fall Semester Credits Spring Semester Credits Organic Chemistry I for Majors (CHE231) 4 Organic Chemistry II for Majors (CHE232) 4 Organic Chemistry I Lab (CHE233L) 1 Organic Chemistry II Lab (CHE234L) 1 Organic Chemistry I Récitation (CHE233R) 0 Organic Chemistry II Récitation (CHE234R) 0 Biology of the Cell (BIO120) 4 Organismal Form and Function(BIO115) 4 Calculus II (MAT 232) 4 Physics I: Mechanics & Lab (PHY151) 4 Foreign Language (FL202)
    [Show full text]
  • The Pleiotropic Effects of the Glutamate Dehydrogenase (GDH) Pathway In
    Mara et al. Microb Cell Fact (2018) 17:170 https://doi.org/10.1186/s12934-018-1018-4 Microbial Cell Factories REVIEW Open Access The pleiotropic efects of the glutamate dehydrogenase (GDH) pathway in Saccharomyces cerevisiae P. Mara1,4* , G. S. Fragiadakis3, F. Gkountromichos2,5 and D. Alexandraki2,3 Abstract Ammonium assimilation is linked to fundamental cellular processes that include the synthesis of non-essential amino acids like glutamate and glutamine. In Saccharomyces cerevisiae glutamate can be synthesized from α-ketoglutarate and ammonium through the action of NADP-dependent glutamate dehydrogenases Gdh1 and Gdh3. Gdh1 and Gdh3 are evolutionarily adapted isoforms and cover the anabolic role of the GDH-pathway. Here, we review the role and function of the GDH pathway in glutamate metabolism and we discuss the additional contributions of the pathway in chromatin regulation, nitrogen catabolite repression, ROS-mediated apoptosis, iron defciency and sphingolipid-dependent actin cytoskeleton modulation in S.cerevisiae. The pleiotropic efects of GDH pathway in yeast biology highlight the importance of glutamate homeostasis in vital cellular processes and reveal new features for conserved enzymes that were primarily characterized for their metabolic capacity. These newly described features constitute insights that can be utilized for challenges regarding genetic engineering of glutamate homeostasis and maintenance of redox balances, biosynthesis of important metabolites and production of organic substrates. We also conclude that the discussed pleiotropic features intersect with basic metabolism and set a new background for further glutamate-dependent applied research of biotechnological interest. Keywords: Glutamate dehydrogenase, GDH1, GDH2, GDH3, Ammonium assimilation, GABA shunt, ROS-mediated apoptosis, Chromatin regulation, Nitrogen catabolite repression, S.
    [Show full text]
  • Biochemistry and Molecular Biology
    School of Life Sciences / Department of Biochemistry and Biophysics BIOCHEMISTRY AND MOLECULAR BIOLOGY Revealing how life works Department of Biochemistry and Biophysics Oregon State University 2011 Agriculture and Life Sciences Building Corvallis, OR 97331 OSUBB 541-737-4511 biochem.oregonstate.edu College of Science Oregon State University 128 Kidder Hall Corvallis, OR 97331 541-737-4811 science.oregonstate.edu This publication will be made available in an accessible alternative format upon request. Please contact the College COLLEGE OF SCIENCE of Science at 541-737-4811 or [email protected]. ACADEMIC BROCHURE / 2020 Highlights • Solve problems at the What will you discover? intersection of biological and physical sciences with our The Department of Biochemistry and Biophysics offers nationally accredited program world-class faculty, a tradition of interdisciplinary in biochemistry, molecular and research, teaching excellence and extraordinary cellular biology, chemistry, laboratories to facilitate undergraduate learning. molecular genetics, physics and statistics. The department ranks high nationally and internationally in many research areas, including signal transduction, gene • Tailor your education to expression, epigenetics, metabolic regulation, structural specific career goals with three biology, and genetic code expansion technology. different options. The department offers two Bachelor of Science degrees, • Thrive in a smaller, supportive both accredited by the American Society for Biochemistry department within a world-class and Molecular Biology (ASBMB): research university. • Biochemistry and Molecular Biology (BMB) with • Pursue interdisciplinary research options in Advanced Molecular Biology, Computational projects with faculty across OSU. Molecular Biology, and Pre-medicine; • Participate in the Biochemistry • Biochemistry and Biophysics (BB) with options in Club for community, leadership Advanced Biophysics, Neuroscience, and Pre-medicine.
    [Show full text]
  • And Even-Length, Medium-Chain Fatty Acids in Plants (Amino Adds/Elongtin) ANTOANETA B
    Proc. Nadl. Acad. Sci. USA Vol. 91, pp. 11437-11441, November 1994 Biochemistry A pathway for the biosynthesis of straight and branched, odd- and even-length, medium-chain fatty acids in plants (amino adds/elongtin) ANTOANETA B. KROUMOVA, ZHIYI XIE, AND GEORGE J. WAGNER* Plant Physiology/Biochemistry/Molecular Biology Program, Agronomy Department, University of Kentucky, Lexington, KY 40546-0091 Communicated by Martin Gibbs, July 25, 1994 ABSTRACT Pathways and enzymes offatty acid synthase- and even-length scFAs are synthesized via modified mediated, long-even-chain (generally C16-C20) fatty add syn- branched-chain amino acid (bcAA) metabolism in tobacco thesis are well studied, and general metabolism involved in trichome glands (6, 7). It is possible that at least branched and short-chain (Cs-C7) fatty acid biosynthesis is also understood. odd-length mcFAs are formed in this tissue similarly. Alter- In contrast, mechanism of medinm-chain (C#-C14) fatty acid natively, primers derived from bcAA metabolism may be synthesis are unclear. Recent work suggests involvement of elongated by fatty acid synthase (FAS), as suggested for chain-elongation-terminating thloesterases in medium-chain tomato trichomes (8) and tobacco epidermis (9). fatty acid formation in oilseeds and animals. We have shown The classical pathway for bcAA (Val, Leu, Ileu) biosyn- that iso- and anteiso-branched and straigbt, odd- and even- thesis in microorganisms (and largely by inference in plants, length, short-chain fatty adds esterifled in plant-trichome- ref. 10) is shown in the shaded areas of Fig. 1. Key activities gland-produced sucrose esters are synthesized by using carbon involved in branched-chain formation (reactions 1, 1A, and 2) skeletons provided by modified branched-chain amino acid are those catalyzing leucine biosynthesis in all organisms and metabolism/catablis.
    [Show full text]
  • Do Thylakoids Really Contain Phosphatidylcholine?
    Proc. Nati. Acad. Sci. USA Vol. 87, pp. 71-74, January 1990 Botany Do thylakoids really contain phosphatidylcholine? (chloroplasts/envelope membranes/phospholipids/Spinacia oleraeea) ALBERT-JEAN DORNE, JACQUES JOYARD, AND ROLAND DoUCE* Laboratoire de Physiologie Cellulaire Vdgdtale, Unitd Associde au Centre National de la Recherche Scientifique n' 576, Ddpartement de Recherche Fondamentale, Centre d'Etudes Nucldaires de Grenoble et Universitd Joseph Fourier, 85 X, F-38041 Grenoble-cedex, France Communicated by A. A. Benson, September 18, 1989 ABSTRACT Isolated intact spinach chloroplasts were in- gradients as described by Douce and Joyard (10). We then cubated with phospholipase C (phosphatidylcholine choline- used the intact chloroplasts for envelope membrane and phosphohydrolase, EC 3.1.4.3) under mild experimental con- thylakoid purification and/or phospholipase C digestion ex- ditions in which only the phosphatidylcholine localized in the periments. cytosolic leaflet of the outer envelope membrane can be hy- Phospholipase C Treatment of Purified Intact Chloroplasts. drolyzed. Thylakoids, which were protected from phospholi- Phospholipase C (phosphatidylcholine cholinephosphohy- pase C degradation, were subsequently prepared from the drolase, EC 3.1.4.3.) from Bacillus cereus (grade 1, 4000 phospholipase C-treated chloroplasts and found to be devoid of units/ml) was purchased from Boehringer Mannheim. The phosphatidylcholine. Previously reported occurrences of phos- experiments were done essentially as described by Dorne et phatidylcholine in thylakoid preparations probably reflect al. (6). Intact and purified chloroplasts (final concentration, contamination ofthe thylakoids by envelope membranes. In the 1 mg of chlorophyll per ml) were incubated at 8°C for 3 min present work, contamination of thylakoids by envelope mem- in the following medium: 330 mM sorbitol/10 mM Tricine- branes was determined by measuring the 1,2-diacylglycerol NaOH, pH 7.8/0.3 unit of phospholipase C.
    [Show full text]
  • Biochemistry Major University of Michigan - Department of Chemistry Effective 9/2017 ______
    Biochemistry Major University of Michigan - Department of Chemistry Effective 9/2017 _____________________________________________________________________________________________ Biochemistry is, literally the chemistry of life. Biochemists seek to understand the chemical principles that underpin all living organisms. Biochemistry is central to medical science as almost all diseases and drugs act to change the body’s chemistry. Advances in biochemistry directly impact the fields of biotechnology, pharmaceutical science, agriculture and environmental science, among many others. The B.S. major in Biochemistry is for those are interested in learning about life from a chemical perspective. Students will be well equipped for graduate studies in biochemistry, chemical biology, and many other fields of inquiry in the life sciences. The degree will also provide excellent preparation for students intending to pursue professional careers in industry and medicine. Prerequisites Course # Course Description Term Term Credits Completed Typically Offered CHEM 210 Structure and Reactivity I F, W, Sp 4 CHEM 211 Investigations in Chemistry: Laboratory F, W, Sp 1 CHEM 215 Structure and Reactivity II F, W, Sp 3 BIO 171 Introductory Biology: Ecology and Evolution F, W, Sp, Su 4 BIO 172 Introductory Biology: Molecular Cellular and Developmental F, W, Sp 4 MATH 115 Calculus I F, W, Sp, Su 4 MATH 116 Calculus II F, W, Sp, Su 4 One of the Following: CHEM 262 Mathematical Methods for Chemists F, W 4 OR MATH 215 Calculus III F, W, Sp, Su 4 One of the Following
    [Show full text]