4.4 Geology and Soils
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Gelasian Stage (Upper Pliocene): a New Unit of the Global Standard Chronostratigraphic Scale
82 by D. Rio1, R. Sprovieri2, D. Castradori3, and E. Di Stefano2 The Gelasian Stage (Upper Pliocene): A new unit of the global standard chronostratigraphic scale 1 Department of Geology, Paleontology and Geophysics , University of Padova, Italy 2 Department of Geology and Geodesy, University of Palermo, Italy 3 AGIP, Laboratori Bolgiano, via Maritano 26, 20097 San Donato M., Italy The Gelasian has been formally accepted as third (and Of course, this consideration alone does not imply that a new uppermost) subdivision of the Pliocene Series, thus rep- stage should be defined to represent the discovered gap. However, the top of the Piacenzian stratotype falls in a critical point of the evo- resenting the Upper Pliocene. The Global Standard lution of Earth climatic system (i.e. close to the final build-up of the Stratotype-section and Point for the Gelasian is located Northern Hemisphere Glaciation), which is characterized by plenty in the Monte S. Nicola section (near Gela, Sicily, Italy). of signals (magnetostratigraphic, biostratigraphic, etc; see further on) with a worldwide correlation potential. Therefore, Rio et al. (1991, 1994) argued against the practice of extending the Piacenzian Stage up to the Pliocene-Pleistocene boundary and proposed the Introduction introduction of a new stage (initially “unnamed” in Rio et al., 1991), the Gelasian, in the Global Standard Chronostratigraphic Scale. This short report announces the formal ratification of the Gelasian Stage as the uppermost subdivision of the Pliocene Series, which is now subdivided into three stages (Lower, Middle, and Upper). Fur- The Gelasian Stage thermore, the Global Standard Stratotype-section and Point (GSSP) of the Gelasian is briefly presented and discussed. -
Early Pleistocene Glacial Cycles and the Integrated Summer Insolation Forcing
Early Pleistocene Glacial Cycles and the Integrated Summer Insolation Forcing The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Huybers, Peter J. 2006. Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 313(5786): 508-511. Published Version http://dx.doi.org/10.1126/science.1125249 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:3382981 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Early Pleistocene Glacial Cycles and the Integrated Summer Insolation Forcing Peter Huybers, et al. Science 313, 508 (2006); DOI: 10.1126/science.1125249 The following resources related to this article are available online at www.sciencemag.org (this information is current as of January 5, 2007 ): Updated information and services, including high-resolution figures, can be found in the online version of this article at: http://www.sciencemag.org/cgi/content/full/313/5786/508 Supporting Online Material can be found at: http://www.sciencemag.org/cgi/content/full/1125249/DC1 A list of selected additional articles on the Science Web sites related to this article can be found at: http://www.sciencemag.org/cgi/content/full/313/5786/508#related-content This article cites 12 articles, 5 of which can be accessed for free: http://www.sciencemag.org/cgi/content/full/313/5786/508#otherarticles on January 5, 2007 This article has been cited by 1 article(s) on the ISI Web of Science. -
The Role of Orbital Forcing in the Early Middle Pleistocene Transition
Quaternary International xxx (2015) 1e9 Contents lists available at ScienceDirect Quaternary International journal homepage: www.elsevier.com/locate/quaint The role of orbital forcing in the Early Middle Pleistocene Transition * Mark A. Maslin , Christopher M. Brierley Department of Geography, Pearson Building, University College London, London, WC1E 6BT, UK article info abstract Article history: The Early Middle Pleistocene Transition (EMPT) is the term used to describe the prolongation and Available online xxx intensification of glacialeinterglacial climate cycles that initiated after 900,000 years ago. During the transition glacialeinterglacial cycles shift from lasting 41,000 years to an average of 100,000 years. The Keywords: structure of these glacialeinterglacial cycles shifts from smooth to more abrupt ‘saw-toothed’ like Orbital forcing transitions. Despite eccentricity having by far the weakest influence on insolation received at the Earth's Early Middle Pleistocene Transition surface of any of the orbital parameters; it is often assumed to be the primary driver of the post-EMPT Mid Pleistocene Transition 100,000 years climate cycles because of the similarity in duration. The traditional solution to this is to call Precession ‘ ’ Obliquity for a highly nonlinear response by the global climate system to eccentricity. This eccentricity myth is e Eccentricity due to an artefact of spectral analysis which means that the last 8 glacial interglacial average out at about 100,000 years in length despite ranging from 80,000 to 120,000 years. With the realisation that eccentricity is not the major driving force a debate has emerged as to whether precession or obliquity controlled the timing of the most recent glacialeinterglacial cycles. -
Ncc Preliminarypaleontologicalm
Abstract The California Department of Transportation (Caltrans), in cooperation with the North County Corridor Transportation Expressway Authority, proposes to construct the North County Corridor New State Route 108 in northern Stanislaus County, California. This project proposes to relocate the current alignment of SR 108 to a more southerly alignment. The California Environmental Quality Act and Caltrans guidelines require that impacts to nonrenewable paleontological resources be considered during project implementation. Therefore, a Paleontological Evaluation Report (PER) was prepared in order to determine the potential to encounter scientifically significant paleontological resources during ground-disturbing activities associated with the proposed project. The PER determined that the project area contains sediments of the Pleistocene Modesto, Riverbank, and Turlock Lake Formation as well as areas of Artificial Fill. While Artificial Fill has no paleontological sensitivity, all three Pleistocene formations have the potential to produce scientifically significant paleontological resources and therefore, have high paleontological sensitivity. Because the project area contains deposits with high paleontological sensitivity, the PER recommended that a Paleontological Mitigation Plan (PMP) be developed for the project. This preliminary PMP contains information necessary to mitigate impacts to paleontological resources during ground-disturbing activities associated with this project. It includes a discussion of area geology, the types of -
PATTERNS of ENVIRONMENTAL CHANGE in the NEAR EAST DURING LATE PLEISTOCENE and EARLY HOLOCENE TIMES Karl W
PATTERNS OF ENVIRONMENTAL CHANGE IN THE NEAR EAST DURING LATE PLEISTOCENE AND EARLY HOLOCENE TIMES Karl W. Butzer University of Chicago About 20,000 years ago continental glaciers covered A review of late Pleistocene and early post-Pleistocene much of Europe and North America. In all, approximately environmental changes in southwestern Asia and Egypt, 30% of the earth's land surface was covered by ice. As written in 1973, faces these very same difficulties. For a paleoclimatic evidence continues to accumulate from a vari critical discussion of the key late Pleistocene and Holocene ety of disciplines, the magnitude of environmental change sequences of the central and western Sahara, see Butzer becomes increasingly apparent. Well beyond the ice sheets (1971, pp. 312-34), and for the Sudan, see Butzer and periglacial conditions with permafrost applied, and the Hansen (1968, pp. 254-58, 323-27) and Whlteman (1971, Wurm-Wisconsin faunas of Eurasia and North America pp. 109-54). Furthermore, field work in most of thls area attest to ecological conditions radically different from has lagged, compared with research in many other regions those of today. In the hlghlands of lower mid-latitudes the of the Old World. Remarkably few stratigraphlc events have last Pleistocene glaciation was recorded by cirque, valley, been radiometrically fixed outside of Israel and the Nile and piedmont glaciers; or by screes, talus, and solifluction Valley. In addition, the various episodes of the Late Pleis mantles. Elsewhere, in the lowlands of the subtropics, there tocene as well as the minor climatic variations of the Holo are a variety qf alluvial terraces, colluvial beds, and dunes. -
The Newly-Ratified Definition of the Quaternary System/Period and Redefinition of the Pleistocene Series/Epoch, and Comparison O
152 152 Articles by Philip L. Gibbard1 and Martin J. Head2 The newly-ratified definition of the Quaternary System/Period and redefinition of the Pleistocene Series/Epoch, and comparison of proposals advanced prior to formal ratification 1Chair of the ICS Subcommission on Quaternary Stratigraphy; Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, United Kingdom. E-mail: [email protected] 2Department of Earth Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada. E-mail: [email protected] The base of the Quaternary System is defined by the of the Pleistocene Series was simultaneously redefined (lowered) Global Stratotype Section and Point (GSSP) of the so as to be coterminous with that of the Quaternary. The top of the Neogene System is accordingly defined by the base of the Quaternary Gelasian Stage at Monte San Nicola in Sicily, Italy, System, and the top of the Pliocene Series by the base of the currently dated at 2.58 Ma. The base of the Pleistocene Pleistocene (Gibbard and Head, 2009a, b; Gibbard et al., 2010; Finney, Series is redefined by the same GSSP, having previously 2010). The Pleistocene had previously been defined by the GSSP at been defined by the GSSP at Vrica, Calabria, Italy, which Vrica, Calabria, Italy, which is dated at 1.806 Ma (Lourens et al., 2005; Figure 1). The IUGS Executive Committee had already given its is dated at 1.806 Ma. These important changes to the unanimous approval on 28 May 2007 that the Quaternary be geological time scale were formulated through extensive recognized as a formal system/period (Bobrowski, 2007). -
The Integrated Schizophrenia of Quaternary Geochronology II
Railsback's Fundamentals of Quaternary Science The integrated schizophrenia of Quaternary geochronology II Pleistocene has four named “stages” and 103 isotope The named geochronology of Quaternary ages stratigraphy of climate (in fact technically called “stages”. The “Mid-Pleistocene Transition” of isotope (Early-Middle-Late Pleistocene or Gelasian-Calabrian- “climatostratigraphy'). That makes the of system of stratigraphy is in the named “Early Pleistocene”, rather Berger, W.H., Wefer, G., 2003. On the Dynamics of the Ice Ages: Ionian-Tarantian) is well integrated with magnetic marine isotope stages ideal for contextualizing than the Middle Pleistocene. The beginning of the last Stage-11 Paradox, Mid-Brunhes Climate Shift, and 100-ky chronostratigraphy. The result is strong definition with changes in climate. However, it is has been difficult to interglacial in isotope stages (the beginning of MIS 5) Cycle. In: A.W. Droxler, R.Z. Poore and L.H. Burckle (eds.) respect to time, in that timing of the age boundaries can assign absolute ages to the marine isotope record, has been shown to be a little earlier than the beginning Earthʼs Climate and Orbital Eccentricity: The Marine Isotope be well established in stratigraphic sections where mag- which has largely been dated by orbital tuning (fitting of the last interglacial in named stages (the beginning Stage 11 Question. AGU Geophysical Monograph 137, netic results are available. However, the geochronologic of the record to Earth's orbital parameters). Thus the of the Eemian) (Shackleton et al., 2002). Finally, the 41-59. boundaries have little to do with changes in climate, strength of one side of Quaternary geochronology is beginning of the present interglacial in isotope stages Emiliani, C., 1955. -
Formal Ratification of the GSSP for the Base of the Calabrian Stage (Second Stage of the Pleistocene Series, Quaternary System)
388 by Maria Bianca Cita 1, Philip L. Gibbard 2, Martin J. Head 3, and the ICS Subcommission on Quaternary Stratigraphy† Formal ratification of the GSSP for the base of the Calabrian Stage (second stage of the Pleistocene Series, Quaternary System) 1 Dipartimento di Scienze della Terra ‘Ardito Desio’, Universita’ degli Studi di Milano, via Mangiagalli, 34, 20133 Milano, Italy 2 Cambridge Quaternary, Department of Geography, University of Cambridge, Downing Street, Cambridge CB2 3EN, U.K. E-mail: [email protected] 3 Department of Earth Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada. E-mail: [email protected] The Calabrian Stage is now formally defined by the by the International Commission on Stratigraphy (ICS) that the Global Global Boundary Stratotype Section and Point (GSSP) Boundary Stratotype Section and Point (GSSP) at Vrica, Calabria, Italy (Fig. 1) be used to define the base of the Calabrian Stage of the at Vrica, Calabria, Italy. This GSSP had previously Pleistocene Series and Quaternary System. The Vrica GSSP had defined the base of the Pleistocene Series. The Calabrian previously defined the base of the Pleistocene and Quaternary before becomes the second stage of the Pleistocene Series and these datum points were lowered in 2009 to the Monte San Nicola Quaternary System, following the Gelasian. The GSSP GSSP in Sicily, Italy, which also defines the base of the Gelasian occurs at the base of the marine claystone conformably Stage (Gibbard and Head, 2010; Gibbard et al., 2010). The proposal had been submitted to the ICS by the Subcommission on Quaternary overlying sapropelic bed ‘e’ within Segment B in the Vrica Stratigraphy (Table 1) on 29 November 2010, and was approved by section. -
Pleistocene Mammals from Pampean Region (Argentina)
quaternary Review Pleistocene Mammals from Pampean Region (Argentina). Biostratigraphic, Biogeographic, and Environmental Implications José Luis Prado 1 , María Teresa Alberdi 2,* and Jonathan Bellinzoni 1 1 Departamento de Arqueología, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Avda. del Valle 5737, Olavarría, Buenos Aires B7400JWI, Argentina; [email protected] (J.L.P.); [email protected] (J.B.) 2 Departamento de Paleobiología, Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal, 2, 28006 Madrid, Spain * Correspondence: [email protected] Abstract: The Pampean Region contains sedimentary sequences with abundant mammal fossil records, which constitute the chronological outline of the Plio–Pleistocene of South America. These classic localities have been used for more than a century to correlate with other South American regions. Throughout this time, a series of misinterpretations have appeared. To understand the stratigraphic significance of these localities and the geochronological situation of each unit referring to the Pleistocene, a critical historical study of the antecedents was carried out, evaluating the state of each unit. The biostratigraphic studies of the Pampean Region’s mammalian faunas improved the understanding of biogeographic changes taking into account the environmental fluctuations of the Pleistocene. Citation: Prado, J.L.; Alberdi, M.T.; Bellinzoni, J. Pleistocene Mammals Keywords: Pleistocene; mammals; Pampean Region; biostratigraphy; paleoenvironments from Pampean Region (Argentina). Biostratigraphic, Biogeographic, and Environmental Implications. Quaternary 2021, 4, 15. https:// 1. Introduction doi.org/10.3390/quat4020015 In 1833, Charles Darwin explored the Pampas of southern Argentina. His annotations, as well as those of D’Orbigny [1], were developed within the framework of the ideas of Academic Editor: Juan Manuel López his time that proclaimed a scheme of the Earth’s past in which the rest of the regions of García the world were incorporated [2]. -
Strani Et Al 2021 Proofcopy.Pub
Available online http://amq.aiqua.it ISSN (print): 2279-7327, ISSN (online): 2279-7335 Alpine and Mediterranean Quaternary, 34 (1), 2021, 1-11 https://doi.org/10.26382/AMQ.2021.13 AN OVERVIEW OF THE MIDDLE PLEISTOCENE IN THE NORTH MEDITERRANEAN REGION. Flavia Strani1,2, Raffaele Sardella1, Beniamino Mecozzi1 1 Dipartimento di Scienze della Terra, PaleoFactory, Sapienza Università di Roma, Italy. 2 Istituto Italiano di Paleontologia Umana, Roma, Italy Corresponding author: F. Strani <[email protected]> ABSTRACT: The Middle Pleistocene was a crucial stage for the evolution of European mammals, a time when the majority of the modern taxa appeared in the continent for the first time. It is also in this interval that periodicity and intensity of glacial-interglacial cycles changed, an event that strongly impacted on Mediterranean marine and terrestrial ecosystems, and on vertebrate commu- nities. This area can thus be considered an important laboratory to investigate how major climatic events influenced mammals’ communities (among which also hominin populations) and the habitats they occupied. The state of art of the Middle Pleistocene palaeontological, archaeological and palaeoanthropological record of north Mediterranean region, and of the Italian Peninsula in particular, is here discussed. Keywords: Chibanian, European ecosystems, Early-Middle Pleistocene Transition, Biochronology, Mammals, Human evolution 1. INTRODUCTION the last two decades, a large number of studies on the European Middle Pleistocene provided novel knowledge The definition of the Early-Middle Pleistocene on palaeoenvironments, palaeoclimates and vertebrate boundary triggered an intense debate among Quater- communities, and a valuable amount of data on the nary geologists, stratigraphers, and palaeontologists Mediterranean Europe, and Italian Peninsula in particu- (Cita et al., 2006; Gibbard & Head, 2010; Head & Gib- lar. -
First Strebloceras (Mollusca: Gastropoda: Caecidae) from the Middle Pleistocene of Japan
豊橋市自然史博物館研報 Sci. Rep. Toyohashi Mus. Nat. Hist., No. 30, 1–19, 2020 1 First Strebloceras (Mollusca: Gastropoda: Caecidae) from the middle Pleistocene of Japan Takuma Haga* 中部更新統渥美層群豊橋層産ミジンギリギリツツガイ科(軟体動物門:腹足綱)の 1 新種 芳賀拓真* (Abstract) A caecid gastropod of the small genus Strebloceras recovered from the middle Pleistocene Toyohashi Formation, Atsumi Group, was newly described as S. kobayashii n. sp. It is the first record of the genus in Japan and is the geochronologically youngest fossil that fills a large time gap of approximately 5 Myr after the middle Miocene. Strebloceras kobayashii n. sp. is characterized as having a large shell that is up to approximately 5 mm long and a dorsally or ventrally depressed teleoconch. It is interpreted to be a rare, extinct fossil species that lived exclusively in the warm-temperate conditions during interglacial periods in the middle Pleistocene. Although the geochronological occurrence of Strebloceras apparently matches well with the hypothesis of the eastward migration from the Tethys to the Pacific in Miocene times, the origins of the Pacific members may be explainable by overlap of both the Tethys and original Pacific lineages. urn:lsid:zoobank.org:pub:883F3DA9-D8BC-4CE9-B3BB-2FD96AB900E8 Introduction include the surfaces of substrata such as algae and rocks, gravels (e.g., Ponder and de Keyzer, 1998), underneath Members of the family Caecidae Gray, 1850 are small to pebbles (Tatara, 2011), and underneath rocks and wood in minute caenogastropods with characteristically tusk-shaped sulphide-rich reducing environments (Kano and Haga, 2011). to tubular or depressed trochiform to almost planispiral shells The Caecidae comprises three subfamilies: Caecinae (e.g., Ponder and de Keyzer, 1998). -
Pliocene-Pleistocene Stratigraphic Paleobiology at Altavilla Milicia (Palermo, Sicily): Tectonic, Climatic and Eustatic Forcing
TO L O N O G E I L C A A P I ' T A A T L E I I A Bollettino della Società Paleontologica Italiana, 59 (1), 2020, 57-83. Modena C N O A S S. P. I. Pliocene-Pleistocene stratigraphic paleobiology at Altavilla Milicia (Palermo, Sicily): tectonic, climatic and eustatic forcing Stefano Dominici*, Marco Benvenuti, Vittorio Garilli, Alfred Uchman, Francesco Pollina & Arpad David S. Dominici, Museo di Storia Naturale, Università degli Studi di Firenze, Via La Pira 4, I-50121 Firenze, Italy; [email protected]* corresponding author M. Benvenuti, Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via La Pira 4, I-50121 Firenze, Italy; [email protected] V. Garilli, Paleosofia-APEMA Research and Educational Service, Viale Principessa Jolanda 29, I-90149 Palermo, Italy; [email protected] A. Uchman, Jagiellonian University, Faculty of Geography and Geology, Institute of Geological Sciences, Gronostajowa 3a, 30-387 Kraków, Poland; [email protected] F. Pollina, Paleosofia-APEMA Research and Educational Service, Viale Principessa Jolanda 29, I-90149 Palermo, Italy; [email protected] A. David, Debrecen University, Department of Mineralogy and Geology, 4032 Debrecen, Egyetem tér 1, Hungary; [email protected] KEY WORDS - Mollusca, ichnology, facies analysis, calcareous nannoplankton, Mediterranean Sea, climate change. ABSTRACT - The integration of sedimentary facies analysis, ichnology and benthic mollusc quantitative paleoecology allowed interpretation of factors that have controlled the deposition of the alluvial to marine succession outcropping in Northwestern Sicily (Southern Italy) at Altavilla Milicia, near Palermo (Imerese Basin). Two main marine units are recognised, labelled CNM and ALT, separated by an angular unconformity and formed by elementary depositional sequences (CNM1-4, ALT1-5).