Bivariate Statistics Introducing Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

Bivariate Statistics Introducing Mathematics Barry Kissane Module 7 Bivariate statistics Statistical data analysis requires technological support for efficiency and you will find that the ClassWiz supports bivariate statistics well. As for the previous module, we will use Statistics mode, focusing on bivariate statistics. Many of the calculator operations are similar to those used for univariate statistics. Getting started with bivariate statistics Bivariate statistics involves data with two variables, so that interest is generally on the relationship between the two variables. The calculator assumes that the variables are named x and y respectively. Start by entering Statistics mode with w2. Each of the choices (except the first one) involves bivariate statistics. The choices refer to seven different models for representing the relationship between the variables. To begin with select 2, which allows us to explore a linear relationship in the form of y = a + bx. Although it is rare, bivariate data sometimes have associated frequencies, so that each data pair might be repeated several times. We will assume for now that frequencies are not involved. To turn the frequencies information off, use SET UP, select the second page with R and then tap 1 Statistics. Select 2 Off and you will then see a blank data table for x and y as shown in the screen above. Entering, editing and checking data The calculator will allow up to 80 data points for each of two variables to be entered. If you have more than 80 pairs of data, you will need to use frequencies. To illustrate the use of the calculator for bivariate analysis, consider the data below. Nurses in a school were checking children’s pulses and wanted to know whether good readings could be obtained after only 15 seconds, as they expected this would save them a lot of time. So they measured the number of heartbeats of a group of 14 children for 15 seconds and then measured the number of heartbeats again for 60 seconds. They obtained the following results: x (15 secs pulse) 14 16 12 15 13 19 14 25 22 23 24 17 20 18 y (60 secs pulse) 57 65 43 59 41 75 51 92 84 87 86 58 70 68 It is efficient to enter these measurements into the calculator in the x-column first, tapping the = key after each one. Notice that, after you tap =, the cursor moves down to the next row of the table, and stores a 0 in the y column, as shown below. Then enter the y-values in the same way, after first moving the cursor using $ and E. © 2016 CASIO COMPUTER CO., LTD. CASIO Worldwide Education website http://edu.casio.com/ 7-1 Module 7: Bivariate statistics Typing errors are always possible, especially if a large number of data points are entered, so that it is wise to check the entries. If you make an error in entering a value before tapping the = key, you can correct it immediately using the o key, enter the correct value and then tap =. If you notice an error in an entered data point, use the cursor to highlight the incorrect point and retype it with the correct value. As the data are entered, you can scroll up and down using E and R or left and right using ! and $. You can scroll in either direction and, in particular, can scroll down from the bottom value to the top value, or scroll up from the top value to the bottom value (as if the data were in a loop). As you scroll, you will see that highlighted values are shown in greater detail and size at the bottom of the screen than they are in the table, as with Table mode in the calculator. An easy check on data entry involves the number of entries. In this case, the final data pair of (18,68) is marked as the 14th point, which matches the number of entries in the data table above. If you wish to enter a new data pair, while the data table is showing, tap T2Editor. Once all data are entered, tap C and T to enter the Statistics menu, the first page of which is shown below. (Notice that this menu is different from the one obtained if you select T when the data table is showing.) It is a good idea to check the maximum and minimum entries, since these are often of interest, allow you to calculate the range but can sometimes represent typing errors. To access these from the OPTN menu, above, tap 2 2-Variable Calc and use R to go down to the fourth page. All four minimum and maximum values for x and y are shown below. Each of these four values is correct in this case. To correct any errors, tap C and then T4 Data to return to the data table for suitable editing. Retrieving statistics It is always important to check data accuracy before undertaking any statistical analysis. Once you are sure that data have been entered correctly, appropriate statistics can be obtained via the OPTN menu. Tap C to leave the data table and T to display the menu. Four pages of statistics are then available with 2 2-Variable Calc (the fourth page is shown above) Introducing Mathematics with ClassWiz 7-2 Barry Kissane The second page of the OPTN menu allows you to examine and use individual statistics. The mean of the shorter (15-second) pulses, represented byx, is available by tapping 2 Variable and then 1=. The mean of the longer (60-second) pulses can be obtained by first returning to the Variable menu in the second page of the OPTN menu and then tapping 7=: You can still use the calculator while in Statistics mode. For example, to calculate one quarter of the mean of the longer pulses immediately after obtaining the results above, use the replay key with ! and edit the expression, as shown below: Although this is close to the mean of the 15-second pulses, it is a little smaller than that mean, perhaps suggesting that the shorter readings are a little higher than might be expected. As for univariate statistics, there are two measures of standard deviation available for each variable, with measuring the population standard deviation and s providing an estimate for a sample, as explained in Module 5. In general, s is a little larger than : As well as these statistics, sometimes it is helpful to obtain the sums of the original scores and the sums of their squares, as these are the values used internally by the calculator to undertake the calculations for the standard deviation. These are shown below, obtained by first tapping 1 Summation in the second page of the OPTN menu: Relationships between some of these statistics and the calculation of variances and means were described briefly in Module 5; these various sums are used internally in the calculator for calculations. However, most people are generally comfortable with allowing the calculator to complete the computations, and do not make use of these statistics directly. Using a linear model The major reason for studying two variables at once is to understand the relationship between them. There are various kinds of relationships that the calculator allows you to explore. The most important of these involves a linear model of the form y = a + bx. (This is often written in schools in the form y = gradient x x + intercept; i.e. y = bx + a.) At the start of this module, you chose this © 2016 CASIO COMPUTER CO., LTD. 7-3 Module 7: Bivariate statistics model in the opening screen for Statistics mode. The calculator provides the best-fitting model of this kind for the data entered, by providing values for a and b. To access these, tap T to display the OPTN menu for Statistics and then 3 to display the Regression calculations: So, the best-fitting linear model for these data (rounded to two decimal places) is y = -0.15 + 3.72x or y = 3.72x – 0.15 This is close to, but not quite the same as might be expected for the pulses that y = 4x, based on an assumption that the number of beats in 60 seconds would be four times the number in 15 seconds. The second page of the OPTN menu allows you to access individual regression statistics, through 4Regression. The calculator allows you to use the linear model automatically to predict y values for particular x values. For example, to predict the number of beats (y) in 60 seconds when the number of beats in 15 seconds is x = 30, enter 30 and then the yˆ command in the Regression menu, followed by =: (The caret mark over the y refers to an estimated value.) So the linear model predicts about 112 beats in 60 seconds. It is also possible to automatically use the linear model to predict an x value associated with a particular y value. For example, for y = 100, the xˆ command predicts that x ≈ 27 beats: The calculator also provides a measure of how closely aligned the data are to the model studied. The statistic used is the correlation coefficient, represented by the symbol r, accessed in the Regression menu. The value always lies between -1 and 1, each of which represents a perfect fit to the model. In this case, the linear model is a good fit to the data, since r is very close to 1: Introducing Mathematics with ClassWiz 7-4 Barry Kissane It is always a good idea to examine bivariate data visually, using a scatter plot, in order to see what is the apparent relationship between the variables.
Recommended publications
  • Chapter 9 Descriptive Statistics for Bivariate Data
    9.1 Introduction 215 Chapter 9 Descriptive Statistics for Bivariate Data 9.1 Introduction We discussed univariate data description (methods used to explore the distribution of the values of a single variable) in Chapters 2 and 3. In this chapter we will consider bivariate data description. That is, we will discuss descriptive methods used to explore the joint distribution of the pairs of values of a pair of variables. The joint distribution of a pair of variables is the way in which the pairs of possible values of these variables are distributed among the units in the group of interest. When we measure or observe pairs of values for a pair of variables, we want to know how the two variables behave together (the joint distribution of the two variables), as well as how each variable behaves individually (the marginal distributions of each variable). In this chapter we will restrict our attention to bivariate data description for two quan- titative variables. We will make a distinction between two types of variables. A response variable is a variable that measures the response of a unit to natural or experimental stimuli. A response variable provides us with the measurement or observation that quan- ti¯es a relevant characteristic of a unit. An explanatory variable is a variable that can be used to explain, in whole or in part, how a unit responds to natural or experimental stimuli. This terminology is clearest in the context of an experimental study. Consider an experiment where a unit is subjected to a treatment (a speci¯c combination of conditions) and the response of the unit to the treatment is recorded.
    [Show full text]
  • Visualizing Data Descriptive Statistics I
    Introductory Statistics Lectures Visualizing Data Descriptive Statistics I Anthony Tanbakuchi Department of Mathematics Pima Community College Redistribution of this material is prohibited without written permission of the author © 2009 (Compile date: Tue May 19 14:48:11 2009) Contents 1 Visualizing Data1 Dot plots ........ 7 1.1 Frequency distribu- Stem and leaf plots... 7 tions: univariate data.2 1.3 Visualizing univariate Standard frequency dis- qualitative data..... 8 tributions.... 3 Bar plot......... 8 Relative frequency dis- Pareto chart....... 9 tributions.... 4 Cumulative frequency 1.4 Visualizing bivariate distributions.. 5 quantitative data . 11 1.2 Visualizing univariate Scatter plots . 11 quantitative data.... 5 Time series plots . 12 Histograms....... 5 1.5 Summary . 13 1 Visualizing Data The Six Steps in Statistics 1. Information is needed about a parameter, a relationship, or a hypothesis needs to be tested. 2. A study or experiment is designed. 3. Data is collected. 4. The data is described and explored. 5. The parameter is estimated, the relationship is modeled, the hypothesis is tested. 6. Conclusions are made. 1 2 of 14 1.1 Frequency distributions: univariate data Descriptive statistics Descriptive statistics. Definition 1.1 summarize and describe collected data (sample). Contrast with inferential statistics which makes inferences and generaliza- tions about populations. Useful characteristics for summarizing data Example 1 (Heights of students in class). If we are interested in heights of students and we measure the heights of students in this class, how can we summarize the data in useful ways? What to look for in data shape are most of the data all around the same value, or are they spread out evenly between a range of values? How is the data distributed? center what is the average value of the data? variation how much do the values vary from the center? outliers are any values significantly different from the rest? Class height data Load the class data, then look at what variables are defined.
    [Show full text]
  • Rainbow Plots, Bagplots and Boxplots for Functional Data
    Rainbow plots, bagplots and boxplots for functional data Rob J Hyndman and Han Lin Shang Department of Econometrics and Business Statistics, Monash University, Clayton, Australia June 5, 2009 Abstract We propose new tools for visualizing large amounts of functional data in the form of smooth curves. The proposed tools include functional versions of the bagplot and boxplot, and make use of the first two robust principal component scores, Tukey's data depth and highest density regions. By-products of our graphical displays are outlier detection methods for functional data. We compare these new outlier detection methods with existing methods for detecting outliers in functional data, and show that our methods are better able to identify the outliers. An R-package containing computer code and data sets is available in the online supple- ments. Keywords: Highest density regions, Robust principal component analysis, Kernel density estima- tion, Outlier detection, Tukey's halfspace depth. 1 Introduction Functional data are becoming increasingly common in a wide range of fields, and there is a need to develop new statistical tools for analyzing such data. In this paper, we are interested in visualizing data comprising smooth curves (e.g., Ramsay & Silverman, 2005; Locantore et al., 1999). Such functional data may be age-specific mortality or fertility rates (Hyndman & Ullah, 2007), term- structured yield curves (Kargin & Onatski, 2008), spectrometry data (Reiss & Ogden, 2007), or one of the many applications described by Ramsay & Silverman (2002). Ramsay & Silverman (2005) and Ferraty & Vieu (2006) provide detailed surveys of the many parametric and nonparametric techniques for analyzing functional data. 1 Visualization methods help in the discovery of characteristics that might not have been ap- parent using mathematical models and summary statistics; and yet this area of research has not received much attention in the functional data analysis literature to date.
    [Show full text]
  • A Universal Global Measure of Univariate and Bivariate Data Utility for Anonymised Microdata S Kocar
    A universal global measure of univariate and bivariate data utility for anonymised microdata S Kocar CSRM & SRC METHODS PAPER NO. 4/2018 Series note The ANU Centre for Social Research & Methods the Social Research Centre and the ANU. Its (CSRM) was established in 2015 to provide expertise includes quantitative, qualitative and national leadership in the study of Australian experimental research methodologies; public society. CSRM has a strategic focus on: opinion and behaviour measurement; survey • development of social research methods design; data collection and analysis; data archiving and management; and professional • analysis of social issues and policy education in social research methods. • training in social science methods • providing access to social scientific data. As with all CSRM publications, the views expressed in this Methods Paper are those of CSRM publications are produced to enable the authors and do not reflect any official CSRM widespread discussion and comment, and are position. available for free download from the CSRM website (http://csrm.cass.anu.edu.au/research/ Professor Matthew Gray publications). Director, ANU Centre for Social Research & Methods Research School of Social Sciences CSRM is located within the Research School of College of Arts & Social Sciences Social Sciences in the College of Arts & Social Sciences at the Australian National University The Australian National University (ANU). The centre is a joint initiative between August 2018 Methods Paper No. 4/2018 ISSN 2209-184X ISBN 978-1-925715-09-05 An electronic publication downloaded from http://csrm.cass.anu.edu.au/research/publications. For a complete list of CSRM working papers, see http://csrm.cass.anu.edu.au/research/publications/ working-papers.
    [Show full text]
  • The Aplpack Package
    The aplpack Package September 3, 2007 Type Package Title Another Plot PACKage: stem.leaf, bagplot, faces, spin3R, ... Version 1.1.1 Date 2007-09-03 Author Peter Wolf, Uni Bielefeld Maintainer Peter Wolf <[email protected]> Depends R (>= 2.4.0), tcltk Description set of functions for drawing some special plots: stem.leaf plots a stem and leaf plot bagplot plots a bagplot faces plots chernoff faces spin3R for an inspection of a 3-dim point cloud License This package was written by Hans Peter Wolf. This software is licensed under the GPL (version 2 or newer) terms. It is free software and comes with ABSOLUTELY NO WARRANTY. URL http://www.wiwi.uni-bielefeld.de/~wolf/software/aplpack R topics documented: aplpack-package . 1 bagplot . 2 boxplot2D . 5 faces............................................. 6 spin3R . 8 stem.leaf . 9 Index 11 1 2 bagplot aplpack-package Another PLotting Package Description this package contains functions for plotting: chernoff faces, stem and leaf plots, bagplot etc. Details Package: aplpack Type: Package Version: 1.0 Date: 2006-04-04 License: GPL bagplot plots a bagplot faces plots chernoff faces scboxplot plot a boxplot into a scatterplot spin3R enables the inspection of a 3-dim point cloud stem.leaf plots a stem and leaf display Author(s) Peter Wolf Maintainer: Peter Wolf <[email protected]> References Examples bagplot bagplot, a bivariate boxplot Description compute.bagplot() computes an object describing a bagplot of a bivariate data set. plot.bagplot() plots a bagplot object. bagplot() computes and plots a bagplot. Usage bagplot(x, y, factor = 3, na.rm = FALSE, approx.limit = 300, show.outlier = TRUE, show.whiskers = TRUE, show.looppoints = TRUE, show.bagpoints = TRUE, show.loophull = TRUE, show.baghull = TRUE, create.plot = TRUE, add = FALSE, pch = 16, cex = 0.4, bagplot 3 dkmethod = 2, precision = 1, verbose = FALSE, debug.plots = "no", col.loophull="#aaccff", col.looppoints="#3355ff", col.baghull="#7799ff", col.bagpoints="#000088", transparency=FALSE, ..
    [Show full text]
  • Bivariate Descriptive Statistics: Introduction*
    OpenStax-CNX module: m46177 1 Bivariate Descriptive Statistics: Introduction* Irene Mary Duranczyk Suzanne Loch Janet Stottlemyer This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract This module included categorical-categorical, cateogorical-measurement, and measurement-measurement descriptive statistics It also contains information from the descriptive statistics chapter part of Collabo- rative Statistics collection (col10522) by Barbara Illowsky and Susan Dean. 1 Descriptive Statistics for Bivariate Data: Introduction 1.1 Student Learning Outcomes By the end of this chapter, the student should be able to: • Identify dierent types of relationships between variables: categorical-categorical, categorical-numerical, and numerical-numerical Categorical - Categorical • Know how to make and summarize a contingency table between two categorical variables • Discuss and describe patterns in contingency tables and supporting graphic summaries Categorical - Numerical • Be able to build side-by-side histograms, back-to-back stemplots, and multiple box-plots between a categorical and a numeric variable. • Compare and contrast multiple groups based on their shape, center, and spread. Numerical - Numerical • Discuss basic ideas of the relationship between two numeric variables including scatter plots, linear regression and correlation • Create and interpret a line of best t • Calculate and interpret the correlation coecient *Version 1.2: May 2, 2013 3:47 pm -0500 http://creativecommons.org/licenses/by/3.0/ http://cnx.org/content/m46177/1.2/ OpenStax-CNX module: m46177 2 1.2 Introduction In the previous chapters you have explored how to organize, summarize, and discuss both univariate cat- egorical and numerical variables. Usually more interesting questions are to examine relationships between sets of variables.
    [Show full text]
  • Package 'Aplpack'
    Package ‘aplpack’ July 29, 2019 Title Another Plot Package: 'Bagplots', 'Iconplots', 'Summaryplots', Slider Functions and Others Version 1.3.3 Date 2019-07-26 Author Hans Peter Wolf [aut, cre] Maintainer Hans Peter Wolf <[email protected]> Depends R (>= 3.0.0) Suggests tkrplot, jpeg, png, splines, utils, tcltk Description Some functions for drawing some special plots: The function 'bagplot' plots a bagplot, 'faces' plots chernoff faces, 'iconplot' plots a representation of a frequency table or a data matrix, 'plothulls' plots hulls of a bivariate data set, 'plotsummary' plots a graphical summary of a data set, 'puticon' adds icons to a plot, 'skyline.hist' combines several histograms of a one dimensional data set in one plot, 'slider' functions supports some interactive graphics, 'spin3R' helps an inspection of a 3-dim point cloud, 'stem.leaf' plots a stem and leaf plot, 'stem.leaf.backback' plots back-to-back versions of stem and leaf plot. License GPL (>= 2) URL http://www.wiwi.uni-bielefeld.de/lehrbereiche/statoekoinf/comet/ wolf/wolf\_aplpack NeedsCompilation no Repository CRAN Date/Publication 2019-07-29 07:50:12 UTC R topics documented: bagplot . 2 bagplot.pairs . 5 1 2 bagplot boxplot2D . 6 faces............................................. 8 hdepth . 10 iconplot . 11 plothulls . 26 plotsummary . 28 puticon . 29 skyline.hist . 34 slider . 37 slider.bootstrap.lm.plot . 41 slider.brush . 42 slider.hist . 44 slider.lowess.plot . 45 slider.smooth.plot.ts . 46 slider.split.plot.ts . 47 slider.stem.leaf . 48 slider.zoom.plot.ts . 49 spin3R . 50 stem.leaf . 51 bagplot bagplot, a bivariate boxplot Description compute.bagplot() computes an object describing a bagplot of a bivariate data set.
    [Show full text]
  • Further Maths Bivariate Data Summary
    Further Maths Bivariate Data Summary Further Mathematics Bivariate Summary Representing Bivariate Data Back to Back Stem Plot A back to back stem plot is used to display bivariate data, involving a numerical variable and a categorical variable with two categories. Example The data can be displayed as a back to back stem plot. From the distribution we see that the Labor distribution is symmetric and therefore the mean and the median are very close, whereas the Liberal distribution is negatively skewed. Since the Liberal distribution is skewed the median is a better indicator of the centre of the distribution than the mean. It can be seen that the Liberal party volunteers handed out many more “how to vote” cards than the Labor party volunteers. Parallel Boxplots When we want to display a relationship between a numerical variable and a categorical variable with two or more categories, parallel boxplots can be used. Example The 5-number summary of each class is determined. Page 1 of 19 Further Maths Bivariate Data Summary Four boxplots are drawn. Notice that one scale is used. Based on the medians, 7B did best (median 77.5), followed by 7C (median 69.5), then 7D (median 65) and finally 7A (median 61.5). Two-way Frequency Tables and Segmented Bar Charts When we are examining the relationship between two categorical variables, the two-way frequency table can be used. Example 67 primary and 47 secondary school students were asked about their attitude to the number of school holidays which should be given. They were asked whether there should be fewer, the same number or more school holidays.
    [Show full text]
  • BIVARIATE DATA 7.1 Scatter Plots
    Page 1 of 7 BIVARIATE DATA 7.1 Scatter plots: A scatter plot, scatterplot, or scattergraph is a type of mathematical diagram using Cartesian coordinates to display values for two variables for a set of data. The data is displayed as a collection of points, each having the value of one variable determining the position on the horizontal axis and the value of the other variable determining the position on the vertical axis. This kind of plot is also called a scatter chart, scatter gram, scatter diagram, or scatter graph. Overview[ A scatter plot is used when a variable exists that is below the control of the experimenter. If a parameter exists that is systematically incremented and/or decremented by the other, it is called the control parameter or independent variable and is customarily plotted along the horizontal axis. The measured or dependent variable is customarily plotted along the vertical axis. If no dependent variable exists, either type of variable can be plotted on either axis and a scatter plot will illustrate only the degree of correlation (not causation) between two variables. A scatter plot can suggest various kinds of correlations between variables with a certain confidence interval. For example, weight and height, weight would be on x axis and height would be on the y axis. Correlations may be positive (rising), negative (falling), or null (uncorrelated). If the pattern of dots slopes from lower left to upper right, it suggests a positive correlation between the variables being studied. If the pattern of dots slopes from upper left to lower right, it suggests a negative correlation.
    [Show full text]
  • Package 'Aplpack'
    Package ‘aplpack’ February 15, 2013 Type Package Title Another Plot PACKage: stem.leaf, bagplot, faces, spin3R, and some slider functions Version 1.2.7 Date 2012-10-03 Author Peter Wolf, Uni Bielefeld Maintainer Peter Wolf <[email protected]> Depends R (>= 2.8.0), tcltk Suggests tkrplot Description set of functions for drawing some special plots: stem.leaf plots a stem and leaf plot stem.leaf.backback plots back-to-back versions of stem and leafs bagplot plots a bagplot faces plots chernoff faces spin3R for an inspection of a 3-dim point cloud slider functions for interactive graphics License GPL (>= 2) URL http://www.wiwi.uni-bielefeld.de/com/wolf/software/aplpack.html Repository CRAN Date/Publication 2012-12-11 07:55:36 NeedsCompilation no R topics documented: bagplot . .2 bagplot.pairs . .5 boxplot2D . .6 faces.............................................8 hdepth . 10 plotsummary . 11 1 2 bagplot skyline.hist . 13 slider . 15 slider.bootstrap.lm.plot . 20 slider.brush . 21 slider.hist . 22 slider.lowess.plot . 24 slider.smooth.plot.ts . 25 slider.split.plot.ts . 26 slider.stem.leaf . 27 slider.zoom.plot.ts . 28 spin3R . 29 stem.leaf . 30 Index 32 bagplot bagplot, a bivariate boxplot Description compute.bagplot() computes an object describing a bagplot of a bivariate data set. plot.bagplot() plots a bagplot object. bagplot() computes and plots a bagplot. Usage bagplot(x, y, factor = 3, na.rm = FALSE, approx.limit = 300, show.outlier = TRUE, show.whiskers = TRUE, show.looppoints = TRUE, show.bagpoints = TRUE, show.loophull = TRUE, show.baghull = TRUE, create.plot = TRUE, add = FALSE, pch = 16, cex = 0.4, dkmethod = 2, precision = 1, verbose = FALSE, debug.plots = "no", col.loophull="#aaccff", col.looppoints="#3355ff", col.baghull="#7799ff", col.bagpoints="#000088", transparency=FALSE, ..
    [Show full text]
  • Investigate Bivariate Measurement Data Written by Jake Wills – Mathsnz – [email protected]
    NCEA Level 3 - 3.9 Bivariate Data students.mathsnz.com Level 3 – AS91581 – 4 Credits – Internal Investigate Bivariate Measurement Data Written by Jake Wills – MathsNZ – [email protected] Achievement Achievement with Merit Achievement with Excellence Investigate bivariate Investigate bivariate Investigate bivariate measurement data. measurement data, with measurement data, with justification. statistical insight. Part 1: Problem ................................................................................................................................................. 2 Part 2: Plan ........................................................................................................................................................ 4 Part 2.1: Identifying the Variables .............................................................................................................. 4 Part 2.2: Naming the Source ...................................................................................................................... 6 Part 3: Data – Using NZGrapher ..................................................................................................................... 8 Part 4: Analysis .................................................................................................................................................. 9 Part 4.1: Trend ............................................................................................................................................... 9 Part 4.2: Association..................................................................................................................................
    [Show full text]
  • Statistics Statistics- the Branch of Mathematics That Deals with The
    Statistics Statistics- the branch of mathematics that deals with the collection, organization, analysis, and interpretation of numerical data. Dot Plot- a statistical chart consisting of data points plotted on a fairly simple scale. Histogram- a diagram consisting of rectangles whose area is proportional to the frequency of a variable and whose width is equal to the class interval. Box Plot- a graphic way to display the median, quartiles, maximum and minimum values of a data set on a number line. Interquartile Range- the range of values of a frequency distribution between the first and third quartiles. Standard Deviation- a measure of how spread out numbers are. Outlier- A value that "lies outside" (is much smaller or larger than) most of the other values in a set of data. y < Q1 − 1.5 × IQR or y > Q3 + 1.5 × IQR Frequency- the rate at which something occurs or is repeated over a particular period of time or in a given sample. Frequency Table- a table that shows the total for each category or group of data. Relative Frequency- how often something happens divided by all outcomes. Joint Frequency- It is called joint frequency because you are joining one variable from the row and one variable from the column. Joint Relative Frequency- the ratio of the number of observations of a joint frequency to the total number of observations in a frequency table. Marginal Frequency- the total in a row or column in a two way table. Marginal Relative Frequency- the ratio of the sum of the joint relative frequency in a row or column and the total number of data values.
    [Show full text]