'Smaller' Earthquakes Pose Greater Risk Than the Next Big

Total Page:16

File Type:pdf, Size:1020Kb

'Smaller' Earthquakes Pose Greater Risk Than the Next Big ‘Smaller’ earthquakes pose greater risk than the next Big One SFU's John Clague says seismic microzonation study needed for the Lower Mainland John Goodman / North Shore News OCTOBER 6, 2017 05:28 PM A ghost forest of dead red cedars stands along the banks of the Copalis River in Washington state. The grove is one of the clues that led scientists to reassess their understanding of the potential size of earthquakes that can be generated in the Cascadia Subduction Zone o the Pacic Northwest Coast. Photo SUPPLIED, BRIAN ATWATER, 1997, UNITED STATES GEOLOGICAL SURVEY “When the next very big earthquake hits, the northwest edge of the continent, from California to Canada and the continental shelf to the Cascades, will drop by as much as six feet and rebound thirty to a hundred feet to the west – losing, within minutes, all the elevation and compression it has gained over centuries. Some of that shift will take place beneath the ocean, displacing a colossal quantity of seawater. The water will surge upward into a huge hill, then promptly collapse. One side will rush west, toward Japan. The other side will rush east, in a seven- hundred-mile liquid wall that will reach the Northwest coast, on average, 15 minutes after the earthquake begins. By the time the shaking has ceased and the tsunami has receded, the region will be unrecognizable.” – “The Really Big One” by Kathryn Schulz, The New Yorker, July 20, 2015 John Clague, Department of Earth Sciences, Simon Fraser University, speaks at the Parkgate branch of the North Vancouver District Library on Wednesday, Oct. 11 at 7 p.m. about Earthquake Hazards and Risks on Canada’s West Coast. Thunderbird meets Killer Whale at the conuence of sea and sky. They do battle, over and over again as they have for millennia. Squamish Nation member Latash–Maurice Nahanee relates the traditional stories of his people to the Squamish Valley landscape he is intimately familiar with. He associates stories about Thunderbird and Killer Whale with Black Tusk mountain, a subduction zone stratovolcano in the Garibaldi Volcanic Belt, the northernmost segment of the Cascadia Volcanic Belt, which includes Mount St. Helens. In the Squamish language, Black Tusk is known as t’ak’t’ak mu’yin tl’a in7in’a’xe7en – “Landing Place of the Thunderbird.” The Squamish tell of major disasters and great loss of life connected to earthquakes and landslides that have taken place in the Rubble Creek area. “The Killer Whale was terrifying our people by coming up on the beach and eating all the Squamish people,” says Latash. “Thunderbird got mad at him and ew down and captured that whale and started shaking the whale, and all these bones came out of the whale. The people saw their relatives and started putting all these bones together, and they did some magic and all those bones became people again.” In the oral traditions of Coast Salish cultures and other Pacic Northwest First Nations, Thunderbird and Killer Whale tales relate specically and metaphorically to past catastrophic events even though they are presented in mythical scenarios. They speak of unspeakable things that once took place along the coastal corridor from northern California to southern B.C. Forty times, to be exact, since the last glacial period, according to earth scientists. Nineteen of which were full rupture 9.0 megathrust earthquakes along the 1,000-kilometre Cascadia Subduction Zone (CSZ), the last of which took place on Jan. 26, 1700 at 9 p.m. Up until recent decades, no one thought earthquakes of such magnitude could occur in the Pacic Northwest. But thanks to research by American, Japanese and Canadian scientists, geological knowledge of what the CSZ is capable of has changed considerably. We know the date of the last megathrust earthquake in the CSZ because of an orphan tsunami that hit Japan in the winter of 1700. Local records documented widespread damage although at the time they did not know what had caused the massive ocean wave action. In the 1990s Japanese scientists, including Kenji Satake of the Geological Survey of Japan, were tipped o to look back in the historical records after learning of the work of geologist Brian Atwater, dendrochronologist David Yamaguchi and other researchers associated with the University of Washington. They determined through analysis of soil deposits in ancient marshes in estuaries on the Washington state coastline that a cataclysmic earthquake had occurred in the not too distant past. Meticulous Japanese tsunami records not only concurred with that nding, they also narrowed it down to the day and hour that the ocean wave struck their coastline. During the late ’80s and ’90s, SFU professor John Clague worked with a team on the Canadian side of the border to conrm the CSZ evidence found by his colleagues in the U.S. and Japan. “Brian Atwater stimulated a lot of interest in this problem,” says Clague. “Prior to that there was really very little appreciation that we get these extraordinarily large earthquakes. A number of geologists took it upon themselves to provide additional evidence for this earthquake.” Clague did most of his research on Vancouver Island, particularly along the west coast in Tono, Ucluelet, as well as in Victoria and up island towards Gold River. “The evidence that we found was that during these earthquakes, the level of the land shifts along our coast and the Washington and Oregon coast,” he says. “The land drops down suddenly during an earthquake and so a very good place to document that geologically is along the shoreline because you record that down-dropping of the surface of the earth in the layering in the coastal sediments that you see in these areas. “That was really what Brian Atwater had found was this sudden evidence of down-dropping. In addition, the bigger quakes – and we’ve seen this in very similar big earthquakes over the past 20 years in the Indian Ocean and Japan and Chile – they produce tsunamis and the tsunamis also leave evidence in the geologic record in the form of layers of sand and gravel that are transported landward from the sea and left in these coastal environments.” Clague will go into detail about his research work at the Parkgate branch of the North Vancouver District Library next Wednesday, Oct. 11 at 7 p.m. in a talk entitled “Earthquake Hazards and Risks on Canada’s West Coast.” While the CSZ danger is real and will eventually rupture again, Clague says the risk of more frequent, magnitude 6 and 7 crustal earthquakes, is even greater than that of the much larger, but rarer magnitude 9 events. “The public doesn’t fully appreciate the biggest ones are not the biggest problem in my mind,” says Clague. “They are very rare and only occur on average every 500 or 600 years. If one does occur it’s big trouble, but because they are so rare the risk is actually lower than the average person might expect it would be.” Recent earthquakes, like those that hit Mexico City in the summer and Christchurch, New Zealand, in 2011, pose far greater risks to urban populations, according to Clague. “These are much smaller earthquakes but they can have sources and epicentres very close to our cities. In the magnitude 9 earthquakes, the sources are oshore so the energy that’s released by that earthquake is huge but it tends to diminish as the earthquake waves move inland from the sea oor.” Earthquakes occur along fault lines. Once you’ve identied the faults that potentially could slip during an earthquake, then you know where the source is. “The waves that produce damage radiate out from the source,” says Clague. “When you think about Richmond, the North Shore of Vancouver, Burnaby, they are not going to be signicantly dierent in terms of distance from the epicentre. What does dier is the intensity of shaking caused by our local geology and our local topography. There are places in Metro Vancouver that are going to experience higher levels of ground shaking than others.” Determining the eects of an earthquake on dierent areas of the Lower Mainland would be greatly enhanced by a seismic microzonation study, says Clague. It’s something that has been done in Victoria and Seattle but not Vancouver. “I think that’s almost criminal that it hasn’t been done,” says Clague. “When you look at the potential damage from an earthquake to a city of over two million people, we need to know how dierent the shaking is going to be in dierent parts of the city. It’s controlled by the subsurface soils, the sediments that underlie the ground surface.” Low-lying areas of the Lower Mainland are highly susceptible to liquefaction. Loose water- saturated sediments completely lose their strength when they are shaken and will behave like a liquid. “On the North Shore they are typically associated with the river deltas where the rivers come into the sea,” says Clague. “The Capilano river delta down near the Lions Gate Bridge, the mouth of the Seymour River, parts of the industrial area that lie along the shoreline are all on liqueable soils.” Newer buildings are generally designed to minimize the impact of liquefaction, but buried gas lines, bre optic cables, sewer lines and water lines are an entirely dierent level of problem when considering the eects of ground shaking. “You cannot prepare the soils to deal with that linear infrastructure over large areas,” says Clague. “That would be damaged by liquefaction during an earthquake. We really need to try to improve our critical infrastructure and I consider buried utilities critical infrastructure.
Recommended publications
  • The Really Big One an Earthquake Will Destroy a Sizable Portion of the Coastal Northwest
    The Earthquake That Will Devastate the Pacific Northwest - The New Yorker Page 1 of 23 Annals of Seismology JULY 20, 2015 ISSUE The Really Big One An earthquake will destroy a sizable portion of the coastal Northwest. The question is when. BY KATHRYN SCHULZ TABLE OF CONTENTS TWEET hen the 2011 earthquake and tsunami struck WTohoku, Japan, Chris Goldfinger was two hundred miles away, in the city of Kashiwa, at an international meeting on seismology. As the shaking started, everyone in the room began to laugh. Earthquakes are common in Japan—that one was the third of the week—and the participants were, after all, at a seismology conference. Then everyone in the room checked the time. The next full-margin rupture of the Cascadia subduction zone will spell the worst natural Seismologists know that how long disaster in the history of the continent. ILLUSTRATION BY CHRISTOPH NIEMANN; MAP BY an earthquake lasts is a decent ZIGGYMAJ / GETTY proxy for its magnitude. The 1989 earthquake in Loma Prieta, http://www.newyorker.com/magazine/2015/07/20/the-really-big-one 8/10/2015 The Earthquake That Will Devastate the Pacific Northwest - The New Yorker Page 2 of 23 California, which killed sixty-three people and caused six billion dollars’ worth of damage, lasted about fifteen seconds and had a magnitude of 6.9. A thirty-second earthquake generally has a magnitude in the mid- sevens. A minute-long quake is in the high sevens, a two-minute quake has entered the eights, and a three-minute quake is in the high eights.
    [Show full text]
  • Fully-Coupled Simulations of Megathrust Earthquakes and Tsunamis in the Japan Trench, Nankai Trough, and Cascadia Subduction Zone
    Noname manuscript No. (will be inserted by the editor) Fully-coupled simulations of megathrust earthquakes and tsunamis in the Japan Trench, Nankai Trough, and Cascadia Subduction Zone Gabriel C. Lotto · Tamara N. Jeppson · Eric M. Dunham Abstract Subduction zone earthquakes can pro- strate that horizontal seafloor displacement is a duce significant seafloor deformation and devas- major contributor to tsunami generation in all sub- tating tsunamis. Real subduction zones display re- duction zones studied. We document how the non- markable diversity in fault geometry and struc- hydrostatic response of the ocean at short wave- ture, and accordingly exhibit a variety of styles lengths smooths the initial tsunami source relative of earthquake rupture and tsunamigenic behavior. to commonly used approach for setting tsunami We perform fully-coupled earthquake and tsunami initial conditions. Finally, we determine self-consistent simulations for three subduction zones: the Japan tsunami initial conditions by isolating tsunami waves Trench, the Nankai Trough, and the Cascadia Sub- from seismic and acoustic waves at a final sim- duction Zone. We use data from seismic surveys, ulation time and backpropagating them to their drilling expeditions, and laboratory experiments initial state using an adjoint method. We find no to construct detailed 2D models of the subduc- evidence to support claims that horizontal momen- tion zones with realistic geometry, structure, fric- tum transfer from the solid Earth to the ocean is tion, and prestress. Greater prestress and rate-and- important in tsunami generation. state friction parameters that are more velocity- weakening generally lead to enhanced slip, seafloor Keywords tsunami; megathrust earthquake; deformation, and tsunami amplitude.
    [Show full text]
  • Mondo Quake in Pacific Northwest? by Leander Kahney
    Mondo Quake in Pacific Northwest? By Leander Kahney Story location: http://www.wired.com/news/technology/0,1282,61322,00.html 02:00 AM Nov. 24, 2003 PT Geologists have discovered evidence of a massively powerful earthquake zone beneath the Pacific Northwest just offshore from the Seattle area. They made the discovery by piecing together ancient accounts of a giant Japanese tsunami and a computer simulation of a huge temblor in the 17th century. Thought to be inactive, the earthquake zone runs 600 miles up the Pacific Coast from Northern California to southern British Columbia. It appears to be subject to monster quakes every 500 years. Known as the Cascadia subduction zone, the fault could threaten Vancouver, Portland and Seattle, which are full of buildings and high rises not built to withstand massive earthquakes. "This region has the potential for truly enormous earthquakes," said Brian Atwater of the U.S. Geological Survey, one of three authors of a new paper about a giant 17th-century quake along the fault. Published in the Journal of Geophysical Research-Solid Earth, the paper catalogs evidence for a magnitude-9 quake, which sent a tsunami across the Pacific to wreak havoc in Shogun-era Japan. The idea that the Cascadia region caused the tsunami isn't new; Japanese researchers first floated the idea in 1996. But the paper's authors present a solid case that a magnitude-9 quake on Tuesday, January 26, 1700, sent a 15-foot tsunami into Japan about 14 hours later. The paper, authored by Atwater, Kenji Satake of the Geological Survey of Japan and Kelin Wang of the Geological Survey of Canada, also presents a new computer model of the cataclysmic event.
    [Show full text]
  • Long-Term Perspectives on Giant Earthquakes and Tsunamis at Subduction Zones∗
    ANRV309-EA35-12 ARI 20 March 2007 15:19 Long-Term Perspectives on Giant Earthquakes and Tsunamis at Subduction Zones∗ Kenji Satake1 and Brian F. Atwater2 1Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8567, Japan; email: [email protected] 2U.S. Geological Survey at University of Washington, Seattle, Washington 98195-1310; email: [email protected] Annu. Rev. Earth Planet. Sci. 2007. 35:349–74 Key Words First published online as a Review in Advance on paleoseismology, earthquake recurrence, earthquake forecasting, January 17, 2007 Sumatra, Chile, Cascadia, Hokkaido The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org Abstract by Brian Atwater on 05/14/07. For personal use only. This article’s doi: Histories of earthquakes and tsunamis, inferred from geological ev- 10.1146/annurev.earth.35.031306.140302 idence, aid in anticipating future catastrophes. This natural warn- Copyright c 2007 by Annual Reviews. ! ing system now influences building codes and tsunami planning in All rights reserved the United States, Canada, and Japan, particularly where geology 0084-6597/07/0530-0349$20.00 demonstrates the past occurrence of earthquakes and tsunamis larger Annu. Rev. Earth Planet. Sci. 2007.35:349-374. Downloaded from arjournals.annualreviews.org ∗The U.S. Government has the right to retain a than those known from written and instrumental records. Under fa- nonexclusive, royalty-free license in and to any vorable circumstances, paleoseismology can thus provide long-term copyright covering this paper. advisories of unusually large tsunamis. The extraordinary Indian Ocean tsunami of 2004 resulted from a fault rupture more than 1000 km in length that included and dwarfed fault patches that had broken historically during lesser shocks.
    [Show full text]
  • Cascadia Tsunami Geology Photo
    Activity— Cascadia Tsunami Geology Photo In North America, the remains of sunken marshes and the writings of samurai, merchants, and peasants. Their forests tell of Pacific Northwest earthquakes that lowered precisely dated accounts provide evidence that the most coasts by a meter or more. Sheets of sand (exposed outcrop recent of the Northwest’s great earthquakes occurred in images below and described on next page) on the buried on January 26, 1700 at about 9:00 PM, and that this marsh and forest soils testify to associated tsunamis that earthquake attained magnitude 9. Thanks to these and ran across the freshly lowered landscape. In Japan, too other discoveries, great earthquakes and their tsunamis can far from North America for its parent earthquake to be no longer take the Pacific Northwest by complete surprise. felt, an orphan tsunami three centuries ago registered in Not just a dirt-layer outcrop............................. but clues to a remarkable geologic story! LEFT: Poster-size photo from CEETEP Workshop of a cut bank where there is evidence of tsunamis, revealed by Brian Atwater.. RIGHT: Brief descriptions of what is visible in the layers as keys to processes (see next page). A Word document with labels is in this folder for students. The Orphan Tsunami (Atwater and others, 2005) is reviewed by G.Pararas-Carayannis*: “A section of the book summarizes and interprets the significance of extensive geological findings and purported paleotsunami deposits (sand layers covering peaty soils) found by geological investigations along the shores of northern California, Oregon, Washington and British Columbia, as evidence that tsunamigenic earthquakes have occurred throughout geologic time along the Cascade Subduction Zone.” (* From: Science of Tsunami Hazards, Vol.
    [Show full text]
  • Tsunami Mitigation Grant to EMD to Provide Emergency Preparedness Planning Support to Washington State
    S u m m a r y Puget Sound Tsunami/Landslide Workshop January 23 and 24, 2001 Organizers George Crawford Washington State Military Department Emergency Management Division Hal Mofjeld National Oceanographic and Atmospheric Administration Craig Weaver United States Geological Survey Sponsored by Washington State Military Department Building 20 Camp Murray, WA 98340-0149 and NOAA/Pacific Marine Environmental Laboratory 7600 Sand Point Way NE, Bldg. 3 Seattle, WA 98115-6349 Contents Executive Summary 3 Workshop Structure 4 Day 1: Programmatic Sessions 5 Mitigation 5 Tutorials 14 Day 2: Technical Sessions 18 Earthquakes/Faults 18 Landslides 19 Tsunamis 20 Merged Bathy/Topo Digital Elevation Model 21 HAZUS/GIS Systems 22 List of Acronyms 24 Attendee List 25 Summary Report 22 Puget Sound Tsunami/Landslide Workshop Executive Summary The Washington State Military Department Emergency Management Division (EMD) and the National Oceanic and Atmospheric Administration (NOAA) sponsored a two-day Puget Sound Tsunami/Landslide Workshop held at the NOAA/Western Regional Center in Seattle on January 23 through 24, 2001. The workshop is part of ongoing work by the emergency management and scientific communities to forge a partnership to address tsunami and landslide hazards in the Puget Sound region. More than 120 emergency management professionals, scientists, engineers and interested public attended the workshop. The workshop was funded through a Tsunami Mitigation grant to EMD to provide emergency preparedness planning support to Washington state. NOAA provided the facility and technical support, funded in part by the National Tsunami Hazard Mitigation Program. The organizers’ primary goal for the workshop was to provide a forum for discussing the current level of understanding of tsunami and landslide hazards in Puget Sound.
    [Show full text]
  • NOAA Technical Memorandum ERL PMEL-I03 TSUNAMI INUNDATION
    NOAA Technical Memorandum ERL PMEL-I03 1111111111111111111111111111111 PI395 -198388 TSUNAMI INUNDATION MODEL STUDY OF EUREKA AND CRESCENT CITY, CALIFORNIA E. Bernard C. Mader G. Curtis K. Satake Pacific Marine Environmental Laboratory Seattle, Washington November 1994 NATIONAL OCEANIC AND / Environmental Research n0 aa ATMOSPHERIC ADMINISTRATION Laboratories REPRODUCED BY: N'I1S u.s. Department of Commerce-~'--­ National Technical Information Service Springfield, Virginia 22161 NOAA Technical Memorandum ERL PMEL-103 TSUNAMI INUNDATION MODEL STUDY OF EUREKA AND CRESCENT CITY, CALIFORNIA E. Bernard Pacific Marine Environmental Laboratory C. Mader G. Curtis Joint Institute for Marine and Atmospheric Research University ofHawaii Honolulu, Hawaii K. Satake University ofMichigan Department ofGeological Sciences Ann Arbor,Michigan Pacific Marine Environmental Laboratory Seattle, Washington November 1994 UNITED STATES NATIONAL OCEANIC AND Environmental Research DEPARTMENT OF COMMERCE ATMOSPHERIC ADMINISTRATION Laboratories Ronald H. Brown D. JAMES BAKER James L. Rasmussen Secretary Under Secretary for Oceans Director and Atmosphere/Administrator NOTICE Mention of a commercial company or product does not constitute an endorsement by NOAAlERL. Use of information from this publication concerning proprietary products or the tests of such products for publicity or advertising purposes is not authorized. CAUTIONARY NOTE The results ofthis study are intended for emergency planninKPurposes. Appropriate use would include the identification ofevacuation zones. This study should NOT be used for flood insurance purposes, because it is not based on a frequency analysis. Contribution No. 1536 from NOAAlPacific Marine Environmental Laboratory For sale by the National Technical Infonnation Service, 5285 Port Royal Road Springfield, VA 22161 11 CONTENTS PAGE 1. INTRODUCTION 1 2. TECHNICAL BACKGROUND 2 3. VALIDATION OF TSUNAMI MODELS 3 4.
    [Show full text]
  • Tsunami Information Sources
    UC Berkeley Hydraulic Engineering Laboratory Reports Title Tsunami Information Sources Permalink https://escholarship.org/uc/item/4xk8j05g Author Wiegel, Robert L Publication Date 2005-12-14 eScholarship.org Powered by the California Digital Library University of California University of California, Berkeley, California 94720 Department of Civil & Environmental Engineering Hydraulic Engineering Laboratory Technical Report UCB/HEL 2005-1 TSUNAMI INFORMATION SOURCES By Robert L. Wiegel, Professor Emeritus Dept. Civil & Environmental Engineering 410 O'Brien Hall, MC 1718 University of California Berkeley, California 94720-1718 14 December 2005 University of California, Berkeley, California 94720 Department of Civil & Environmental Engineering Hydraulic Engineering Laboratory, Report UCB/HEL 2005-1 14 December 2005 TSUNAMI INFORMATION SOURCES By Robert L. Wiegel, Professor Emeritus Dept. Civil & Environmental Engineering 410 O'Brien Hall, MC 1718 University of California Berkeley, California 94720-1718 INTRODUCTION I have expanded substantially my list of information sources on: tsunami generation (sources, impulsive mechanisms), propagation, effects of nearshore bathymetry, and wave run-up on shore - including physical (hydraulic) modeling and numerical modeling. This expanded list includes the subjects of field investigations of tsunamis soon after an event; damage effects in harbors on boats, ships, and facilities; tsunami wave-induced forces; damage by tsunami waves to structures on shore; scour/erosion; hazard mitigation; land use planning;
    [Show full text]
  • Time and Size of a Giant Earthquake in Cascadia Inferred from Japanese Tsunami Records of January 1700
    ~ LETTERS TO NATURE ii l intermediate waters in the northeast Pacific and the associated 6. Thouveny, N. et al. Nature 371, 503-506 (1994). 7. Bender, M. et al. Nature 372, 663-666 (1994). I concentration of dissolved oxygen. The absence of significant lags 8. Phillips, F. M., Campbell, A. R., Smith, G. i. & Bischoff, J. L. Geology 22,1115-1118 (1994). ,1 ¡ between changes in the GISP2 climate record and shifts in the 9. Kennett, J. P. & Ingram, B. L. Nature 377, 510-514 (1995). 10. Keigwin, L. D. & Jones, G. A. Paleoceanography 5, 1009-1023 (1990). palaeo-oxygenation at Hole 893A suggest that ocean circulation is 11. Emery, K. O. The Sea Off California: A Modern Habitat of Petroleum (Wiley, New York, 1960). tightly linked with global climate changes through the atmos- 12. CalCOFI Cruises 9301 & 9310 Physical, Chemical, and Biological Data 93-26 & 94-14, (Univ. phere. We cannot distinguish whether the character of northeast California, Scripps Institn of Oceanography, La Jolla). 13. Emery, K. O. & Hülsemann, J. Deep-Sea Res. 8,165-180 (1962). Pacific intermediate water was principally controlled by variation 14. Sholkovitz, E. R. & Gieskes, J. M. Limnol. Oceanogr. 16,479-489 (1971). in production of young, proximally derived intermediate waters in 15. Reimers, C. E., Lange, C. B., Tabak, M. & Bernhard, J. M. Limnol. Oceanogr. 37, 1577-1585 (1990). the north Pacific or in flux of older, distally derived waters entering 16. Soutar, A. & Crill, P. A. Geol. Soc. Am. Bu/l. 88, 1161-1172 (1977). the Pacific basin. Shifts in atmospheric circulation associated with 17.
    [Show full text]
  • Tsunami Hazard Assessment of the Elementary School Berm Site in Long Beach, WA
    Final Report, 27 April 2013 Tsunami Hazard Assessment of the Elementary School Berm Site in Long Beach, WA Frank González, Randy LeVeque and Loyce Adams University of Washington 1 Background The probability that an earthquake of magnitude 8 or greater will occur on the Cascadia Subduction Zone (CSZ) in the next 50 years has been estimated to be 10-14% (Petersen, et al., 2002). The last such event occurred in 1700 (Satake, et al., 2003; Atwater, et al., 2005) and future events are expected to generate a destructive tsunami that will inundate Long Beach and other Washington Pacific coast communities within tens of minutes after the earthquake main shock. As a result of the Project Safe Haven planning process, the Long Beach School District proposed the construction of a vertical evacuation berm behind the Long Beach Elementary School (Project Safe Haven, 2011a). Consequently, the Washington Emergency Management Division funded this study to assess the tsunami hazard at the proposed berm site. This report presents estimates, based on GeoClaw tsunami inundation model results, of the maximum flooding and current speeds at the berm site for two earthquake scenarios, a magnitude 9.2 (9.2M) event on the Alaska Aleutian Subduction Zone (AASZ) and a 9M event on the Cascadia Subduction Zone (CSZ). 2 Earthquake Scenarios In the general context of tsunami hazard assessment and emergency management planning, there are two general classes of tsunamigenic earthquake scenarios that represent quite different threats. A distant, or far-field, earthquake generates a tsunami that must traverse the open ocean for hours, generally losing a significant percentage of the destructive energy it had in the generation zone.
    [Show full text]
  • Pacific Ocean Tsunami Generated by Japan Earthquake
    Pacific Ocean Tsunami Generated by Japan Earthquake Near the earthquake, there were only ~20 minutes to evacuate. A “local tsunami” for Japan. Travel times are well known for tsunamis crossing the Pacific Ocean. At distant locations, there were hours of advance warning. A “distant tsunami” for Washington coast. Pacific Ocean Tsunami Generated by Japan Earthquake Tsunami height model shows forecast wave height (in cm). Ocean floor bathymetry affects the wave height because of reflections and refractions from seafloor features and islands. Tsunami evacuations were ordered for Hawaii, Oregon, and northern California but not Washington. Wave heights were accurately predicted. Deep-ocean Assessment and Reporting of Tsunami (DART) Pacific Ocean Tsunami Generated by Japan Earthquake Peak-to-trough wave height was nearly 2 m at nearest DART buoy in 4000 m water depth! Travel time to Oregon and Washington coast was about 9 hours. Largest waves affected OR and CA MANY hours after first waves arrived. Pacific Ocean Tsunami Generated by Alaska Earthquake About four hours travel time to Washington and Oregon Coast. Tsunami from 1964 Alaska EQ killed 4 children on Beverly Beach. The largest of 28 distant tsunamis to affect Oregon coast since 1854. Significant damage in Seaside and Cannon Beach, OR. Major destruction and 13 deaths in Crescent City, CA. Damage in Copalis Beach from 1964 Alaska Tsunami Bridge over Copalis River destroyed. “Distant” tsunami: A tsunami generated by a distant earthquake (e.g. Alaska 1964; Japan 2011). The first waves will arrive several hours after the earthquake and may arrive for many hours thereafter. Past Great Cascadia Earthquakes and Tsunamis Juan de Fuca subducts beneath Pacific Northwest portion of North American Plate at Cascadia subduction zone.
    [Show full text]
  • NOAA Reflects on 10 Years Since Indian Ocean Tsunami by Christa Rabenold, NOAA/National Weather Service Tsunami Program
    DECEMBER 2014 Volume 16, Number 6 NOAA reflects on 10 years since Indian Ocean tsunami By Christa Rabenold, NOAA/National Weather Service Tsunami Program In this issue: Since the devastating Indian Ocean tsunami in 2004, NOAA has made great improvements in NOAA reflects on 1 tsunami detection, forecasting, warning, and preparedness capabilities. As a result, U.S. and Indian Ocean international coastal communities are far better prepared to respond to a tsunami. tsunami Caribbean sea level 3 In 2004, NOAA’s National Weather Service staffed two tsunami warning centers eight hours training Puerto Rico a day, five days a week with on-call coverage, providing service for a limited geography. These centers relied on seismic data from the Global Maritime tsunami 3 workshops Virgin Seismographic Network (GSN)—only 80 percent of Islands which was transmitted in real-time, water-level data CHRN recognizes 4 from six experimental Deep-Ocean Assessment and DGER award- Reporting of Tsunamis (DART) buoy stations in the winning report Pacific Ocean, and a network of coastal water-level Offshore islands 4 stations that provided data in one-hour cycles. won’t buffer coast from tsunami Today the centers are staffed 24 hours a day, seven Tsunami hazard map 5 days a week, and their areas of responsibility have of Everett, WA been expanded to include all U.S. and Canadian coastlines. In addition, the Pacific Tsunami WA Co. first vertical 5 Warning Center is the primary international forecast center for the Pacific and Caribbean evacuation building Basins. The GSN has been fully upgraded (thanks to the U.S.
    [Show full text]