(GNU Regression and Econometric Timeseries Library) 2 Using Gretl
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Seminar to Advanced Macroeconomics
Seminar to Advanced Macroeconomics Jaromír Baxa IES FSV UK, WS 2010/2011 Introduction Aim of the seminar: Overview over empirical methods used in macro to make your horizons wider. Easy applications of econometrics to macroeconomic topics discussed in the lectures Using econometric software Talking about your Project Tasks and discussion about Problem Sets Why Empirical Seminar? The Role of Empirical Work in Macro Correspondence between the theory and real data Forecasting and economic policy Finding empirical evidence to build new theories Fundamental ucertainty in econometrics: choice of variables => Robustness over different datasets, over different additional variables... => We should always keep in mind this uncertainty and ask: Are my results good because of the datasets? Methods Descriptive statistics, tests... Some nonparametric methods: tests, density estimates Linear Regression Panel data regression Principal Components method Time series: seasonal adjustment, trends... Dynamic models (very brief introduction) ... Software You can't do empirical work without it. There are many software packages for econometrics: Commercial: TSP, SAS, Stata, E-views, PC-Give, Gauss, S-Plus and many others Freeware/Open Source/Shareware without limitations: Gretl, R-Project, Ox See http://freestatistics.altervista.org/stat.php for comprehensive list. Use whatever you want to And bring your laptop with (if you can) Gretl Available in Room 016: TSP (GiweWin GUI), SPSS for Windows 10.0, R (with necessary libraries), Gretl, JMulti Gretl: http://gretl.sourceforge.net, GNU GPL licence, crossplatform. Have a look into documentation: manual as an textbook available. Don't forget to install seasonal adjustment methods, we will use them in a couple of weeks. -
Sagemath and Sagemathcloud
Viviane Pons Ma^ıtrede conf´erence,Universit´eParis-Sud Orsay [email protected] { @PyViv SageMath and SageMathCloud Introduction SageMath SageMath is a free open source mathematics software I Created in 2005 by William Stein. I http://www.sagemath.org/ I Mission: Creating a viable free open source alternative to Magma, Maple, Mathematica and Matlab. Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 2 / 7 SageMath Source and language I the main language of Sage is python (but there are many other source languages: cython, C, C++, fortran) I the source is distributed under the GPL licence. Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 3 / 7 SageMath Sage and libraries One of the original purpose of Sage was to put together the many existent open source mathematics software programs: Atlas, GAP, GMP, Linbox, Maxima, MPFR, PARI/GP, NetworkX, NTL, Numpy/Scipy, Singular, Symmetrica,... Sage is all-inclusive: it installs all those libraries and gives you a common python-based interface to work on them. On top of it is the python / cython Sage library it-self. Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 4 / 7 SageMath Sage and libraries I You can use a library explicitly: sage: n = gap(20062006) sage: type(n) <c l a s s 'sage. interfaces .gap.GapElement'> sage: n.Factors() [ 2, 17, 59, 73, 137 ] I But also, many of Sage computation are done through those libraries without necessarily telling you: sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]]) sage : G . g a p () Group( [ (3,4), (1,2,3)(4,5) ] ) Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 5 / 7 SageMath Development model Development model I Sage is developed by researchers for researchers: the original philosophy is to develop what you need for your research and share it with the community. -
IADS Group Uses Multiple MATLAB Licenses
Can We Migrate Our Analysis Routines to Python? Introduction • Can we migrate our analysis routines to Python? - MATLAB is powerful, but it’s expensive. - Capable open-source alternatives exist and are thriving. • Recent developments in scientific Python libraries have made migration from MATLAB to Python possible and attractive. • The IADS Group uses multiple MATLAB licenses. Dominance of MATLAB • MATLAB is the standard language for engineering analysis. • No need to be a programmer to solve engineering problems. • Used for collaboration and development of analysis routines. • MATLAB is required for study in an engineering curriculum - ECE 309 (CSUN), “Numerical Methods in Electrical Engineering”, is now taught using MATLAB. It was taught using Pascal in the 1980s… Dependence on MATLAB • IADS uses MATLAB to prototype new analysis routines. • IADS uses MATLAB to test and maintain data export and import. We need MATLAB! • IADS uses a set of MATLAB scripts to test Autospectrum and PSD results for Every Release. • IADS is dependent upon MATLAB. Problems with Dependency • Budget constraints mean fewer licenses and toolboxes are available. • MATLAB version changes force retest What happens of data interfaces. if they take MATLAB away • Retest requires an active license. from us? • Test Scripts are unusable without a license. • Having no backup plan in place is risky. Requirements for a Replacement • Should have broad industry acceptance. • Should have scientific libraries that mimic functionality that is commonly used in MATLAB by the flight test community. • Should have similar syntax. • Total MATLAB functionality is not necessary for our purposes, but it would be nice for going forward. • Should be relatively free of periodic licensing hassles. -
A Comparative Evaluation of Matlab, Octave, R, and Julia on Maya 1 Introduction
A Comparative Evaluation of Matlab, Octave, R, and Julia on Maya Sai K. Popuri and Matthias K. Gobbert* Department of Mathematics and Statistics, University of Maryland, Baltimore County *Corresponding author: [email protected], www.umbc.edu/~gobbert Technical Report HPCF{2017{3, hpcf.umbc.edu > Publications Abstract Matlab is the most popular commercial package for numerical computations in mathematics, statistics, the sciences, engineering, and other fields. Octave is a freely available software used for numerical computing. R is a popular open source freely available software often used for statistical analysis and computing. Julia is a recent open source freely available high-level programming language with a sophisticated com- piler for high-performance numerical and statistical computing. They are all available to download on the Linux, Windows, and Mac OS X operating systems. We investigate whether the three freely available software are viable alternatives to Matlab for uses in research and teaching. We compare the results on part of the equipment of the cluster maya in the UMBC High Performance Computing Facility. The equipment has 72 nodes, each with two Intel E5-2650v2 Ivy Bridge (2.6 GHz, 20 MB cache) proces- sors with 8 cores per CPU, for a total of 16 cores per node. All nodes have 64 GB of main memory and are connected by a quad-data rate InfiniBand interconnect. The tests focused on usability lead us to conclude that Octave is the most compatible with Matlab, since it uses the same syntax and has the native capability of running m-files. R was hampered by somewhat different syntax or function names and some missing functions. -
Julia, My New Friend for Computing and Optimization? Pierre Haessig, Lilian Besson
Julia, my new friend for computing and optimization? Pierre Haessig, Lilian Besson To cite this version: Pierre Haessig, Lilian Besson. Julia, my new friend for computing and optimization?. Master. France. 2018. cel-01830248 HAL Id: cel-01830248 https://hal.archives-ouvertes.fr/cel-01830248 Submitted on 4 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 1 « Julia, my New frieNd for computiNg aNd optimizatioN? » Intro to the Julia programming language, for MATLAB users Date: 14th of June 2018 Who: Lilian Besson & Pierre Haessig (SCEE & AUT team @ IETR / CentraleSupélec campus Rennes) « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 2 AgeNda for today [30 miN] 1. What is Julia? [5 miN] 2. ComparisoN with MATLAB [5 miN] 3. Two examples of problems solved Julia [5 miN] 4. LoNger ex. oN optimizatioN with JuMP [13miN] 5. LiNks for more iNformatioN ? [2 miN] « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 3 1. What is Julia ? Open-source and free programming language (MIT license) Developed since 2012 (creators: MIT researchers) Growing popularity worldwide, in research, data science, finance etc… Multi-platform: Windows, Mac OS X, GNU/Linux.. -
A Fast Dynamic Language for Technical Computing
Julia A Fast Dynamic Language for Technical Computing Created by: Jeff Bezanson, Stefan Karpinski, Viral B. Shah & Alan Edelman A Fractured Community Technical work gets done in many different languages ‣ C, C++, R, Matlab, Python, Java, Perl, Fortran, ... Different optimal choices for different tasks ‣ statistics ➞ R ‣ linear algebra ➞ Matlab ‣ string processing ➞ Perl ‣ general programming ➞ Python, Java ‣ performance, control ➞ C, C++, Fortran Larger projects commonly use a mixture of 2, 3, 4, ... One Language We are not trying to replace any of these ‣ C, C++, R, Matlab, Python, Java, Perl, Fortran, ... What we are trying to do: ‣ allow developing complete technical projects in a single language without sacrificing productivity or performance This does not mean not using components in other languages! ‣ Julia uses C, C++ and Fortran libraries extensively “Because We Are Greedy.” “We want a language that’s open source, with a liberal license. We want the speed of C with the dynamism of Ruby. We want a language that’s homoiconic, with true macros like Lisp, but with obvious, familiar mathematical notation like Matlab. We want something as usable for general programming as Python, as easy for statistics as R, as natural for string processing as Perl, as powerful for linear algebra as Matlab, as good at gluing programs together as the shell. Something that is dirt simple to learn, yet keeps the most serious hackers happy.” Collapsing Dichotomies Many of these are just a matter of design and focus ‣ stats vs. linear algebra vs. strings vs. -
WEEK 10: FAREWELL to PYTHON... WELCOME to MAPLE! 1. a Review of PYTHON's Features During the Past Few Weeks, We Have Explored
WEEK 10: FAREWELL TO PYTHON... WELCOME TO MAPLE! 1. A review of PYTHON’s features During the past few weeks, we have explored the following aspects of PYTHON: • Built-in types: integer, long integer, float, complex, boolean, list, se- quence, string etc. • Operations on built-in types: +, −, ∗, abs, len, append, etc. • Loops: N = 1000 i=1 q = [] while i <= N q.append(i*i) i += 1 • Conditional statements: if x < y: min = x else: min = y • Functions: def fac(n): if n==0 then: return 1 else: return n*fac(n-1) • Modules: math, turtle, etc. • Classes: Rational, Vector, Polynomial, Polygon, etc. With these features, PYTHON is a powerful tool for doing mathematics on a computer. In particular, the use of modules makes it straightforward to add greater functionality, e.g. GL (3D graphics), NumPy (numerical algorithms). 2. What about MAPLE? MAPLE is really designed to be an interactive tool. Nevertheless, it can also be used as a programming language. It has some of the basic facilities available in PYTHON: Loops; conditional statements; functions (in the form of “procedures”); good graphics and some very useful additional modules called “packages”: • Built-in types: long integer, float (arbitrary precision), complex, rational, boolean, array, sequence, string etc. • Operations on built-in types: +, −, ∗, mathematical functions, etc. • Loops: 1 2 WEEK 10: FAREWELL TO PYTHON... WELCOME TO MAPLE! Table 1. Some of the most useful MAPLE packages Name Description Example DEtools Tools for differential equations exactsol(ode,y) linalg Linear Algebra gausselim(A) plots Graphics package polygonplot(p,axes=none) stats Statistics package random[uniform](10) N := 1000 : q := array(1..N) : for i from 1 to N do q[i] := i*i : od : • Conditional statements: if x < y then min := x else min := y fi: • Functions: fac := proc(n) if n=0 then return 1 else return n*fac(n-1) fi : end proc : • Packages: See Table 1. -
ARM Code Development in Windows
ARM Code Development in Windows By: Ali Nuhi This guide will describe how to develop code to be run on an embedded Linux system using an ARM processor (specifically the OMAP3530). Environment The Cygwin bash shell will be the environment used for code development. Download it from the below link. http://cygwin.com/install.html READ THE SITE. Download setup.exe and choose the packages you want to install. Some helpful packages to download are: -gcc4-core,g++ etc. (for c and c++ compiling of normal programs) -git core files and completion (version control system) -wget (utility to download files from the internet via HTTP and FTP) -VIM (text editor) -Xemacs (another text editor, better than vim) -nano (simple command line text editor) If you still use windows notepad for writing code please atleast upgrade to notepad++. Toolchain We will be compiling and creating files using CodeSourcery g++ lite toolchains. This is a modified version of GCC which will create files specifically for ARM target systems. Download this at: http://www.codesourcery.com/sgpp/lite/arm/portal/release1803 Download the Windows installer and execute. You can let it install as is unless you have some other install scheme on your computer. I highly recommend reading the getting started pdf that comes with CodeSourcery. Once it’s fully installed open up Cygwin and execute the below lines. $ export CYGPATH=cygpath $ export CYGPATH=c:/cygwin/bin/cygpath If you installed Cygwin to another directory then you must edit the second line. To use the compiler type the following and hit tab twice to see all of the possible options you have. -
Econometrics Oxford University, 2017 1 / 34 Introduction
Do attractive people get paid more? Felix Pretis (Oxford) Econometrics Oxford University, 2017 1 / 34 Introduction Econometrics: Computer Modelling Felix Pretis Programme for Economic Modelling Oxford Martin School, University of Oxford Lecture 1: Introduction to Econometric Software & Cross-Section Analysis Felix Pretis (Oxford) Econometrics Oxford University, 2017 2 / 34 Aim of this Course Aim: Introduce econometric modelling in practice Introduce OxMetrics/PcGive Software By the end of the course: Able to build econometric models Evaluate output and test theories Use OxMetrics/PcGive to load, graph, model, data Felix Pretis (Oxford) Econometrics Oxford University, 2017 3 / 34 Administration Textbooks: no single text book. Useful: Doornik, J.A. and Hendry, D.F. (2013). Empirical Econometric Modelling Using PcGive 14: Volume I, London: Timberlake Consultants Press. Included in OxMetrics installation – “Help” Hendry, D. F. (2015) Introductory Macro-econometrics: A New Approach. Freely available online: http: //www.timberlake.co.uk/macroeconometrics.html Lecture Notes & Lab Material online: http://www.felixpretis.org Problem Set: to be covered in tutorial Exam: Questions possible (Q4 and Q8 from past papers 2016 and 2017) Felix Pretis (Oxford) Econometrics Oxford University, 2017 4 / 34 Structure 1: Intro to Econometric Software & Cross-Section Regression 2: Micro-Econometrics: Limited Indep. Variable 3: Macro-Econometrics: Time Series Felix Pretis (Oxford) Econometrics Oxford University, 2017 5 / 34 Motivation Economies high dimensional, interdependent, heterogeneous, and evolving: comprehensive specification of all events is impossible. Economic Theory likely wrong and incomplete meaningless without empirical support Econometrics to discover new relationships from data Econometrics can provide empirical support. or refutation. Require econometric software unless you really like doing matrix manipulation by hand. -
Cygwin User's Guide
Cygwin User’s Guide Cygwin User’s Guide ii Copyright © Cygwin authors Permission is granted to make and distribute verbatim copies of this documentation provided the copyright notice and this per- mission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this documentation under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this documentation into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation. Cygwin User’s Guide iii Contents 1 Cygwin Overview 1 1.1 What is it? . .1 1.2 Quick Start Guide for those more experienced with Windows . .1 1.3 Quick Start Guide for those more experienced with UNIX . .1 1.4 Are the Cygwin tools free software? . .2 1.5 A brief history of the Cygwin project . .2 1.6 Highlights of Cygwin Functionality . .3 1.6.1 Introduction . .3 1.6.2 Permissions and Security . .3 1.6.3 File Access . .3 1.6.4 Text Mode vs. Binary Mode . .4 1.6.5 ANSI C Library . .4 1.6.6 Process Creation . .5 1.6.6.1 Problems with process creation . .5 1.6.7 Signals . .6 1.6.8 Sockets . .6 1.6.9 Select . .7 1.7 What’s new and what changed in Cygwin . .7 1.7.1 What’s new and what changed in 3.2 . -
Econometric Theory
Econometric Theory John Stachurski January 10, 2014 Contents Preface v I Background Material1 1 Probability2 1.1 Probability Models.............................2 1.2 Distributions................................. 16 1.3 Dependence................................. 25 1.4 Asymptotics................................. 30 1.5 Exercises................................... 39 2 Linear Algebra 49 2.1 Vectors and Matrices............................ 49 2.2 Span, Dimension and Independence................... 59 2.3 Matrices and Equations........................... 66 2.4 Random Vectors and Matrices....................... 71 2.5 Convergence of Random Matrices.................... 74 2.6 Exercises................................... 79 i CONTENTS ii 3 Projections 84 3.1 Orthogonality and Projection....................... 84 3.2 Overdetermined Systems of Equations.................. 90 3.3 Conditioning................................. 93 3.4 Exercises................................... 103 II Foundations of Statistics 107 4 Statistical Learning 108 4.1 Inductive Learning............................. 108 4.2 Statistics................................... 112 4.3 Maximum Likelihood............................ 120 4.4 Parametric vs Nonparametric Estimation................ 125 4.5 Empirical Distributions........................... 134 4.6 Empirical Risk Minimization....................... 137 4.7 Exercises................................... 149 5 Methods of Inference 153 5.1 Making Inference about Theory...................... 153 5.2 Confidence Sets.............................. -
Practical Estimation of High Dimensional Stochastic Differential Mixed-Effects Models
Practical Estimation of High Dimensional Stochastic Differential Mixed-Effects Models Umberto Picchinia,b,∗, Susanne Ditlevsenb aDepartment of Mathematical Sciences, University of Durham, South Road, DH1 3LE Durham, England. Phone: +44 (0)191 334 4164; Fax: +44 (0)191 334 3051 bDepartment of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark Abstract Stochastic differential equations (SDEs) are established tools to model physical phenomena whose dynamics are affected by random noise. By estimating parameters of an SDE intrin- sic randomness of a system around its drift can be identified and separated from the drift itself. When it is of interest to model dynamics within a given population, i.e. to model simultaneously the performance of several experiments or subjects, mixed-effects mod- elling allows for the distinction of between and within experiment variability. A framework to model dynamics within a population using SDEs is proposed, representing simultane- ously several sources of variation: variability between experiments using a mixed-effects approach and stochasticity in the individual dynamics using SDEs. These stochastic differ- ential mixed-effects models have applications in e.g. pharmacokinetics/pharmacodynamics and biomedical modelling. A parameter estimation method is proposed and computational guidelines for an efficient implementation are given. Finally the method is evaluated using simulations from standard models like the two-dimensional Ornstein-Uhlenbeck (OU) and the square root models. Keywords: automatic differentiation, closed-form transition density expansion, maximum likelihood estimation, population estimation, stochastic differential equation, Cox-Ingersoll-Ross process arXiv:1004.3871v2 [stat.CO] 3 Oct 2010 1. INTRODUCTION Models defined through stochastic differential equations (SDEs) allow for the represen- tation of random variability in dynamical systems.