Synthesis of Functionalized Lactones by Thiol-Ene Reaction and Their Application to the Preparation of Tunable Biodegradable Polymers Somprasong Thongkham
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Using Carbon Dioxide As a Building Block in Organic Synthesis
REVIEW Received 10 Jul 2014 | Accepted 21 Nov 2014 | Published 20 Jan 2015 DOI: 10.1038/ncomms6933 Using carbon dioxide as a building block in organic synthesis Qiang Liu1, Lipeng Wu1, Ralf Jackstell1 & Matthias Beller1 Carbon dioxide exits in the atmosphere and is produced by the combustion of fossil fuels, the fermentation of sugars and the respiration of all living organisms. An active goal in organic synthesis is to take this carbon—trapped in a waste product—and re-use it to build useful chemicals. Recent advances in organometallic chemistry and catalysis provide effective means for the chemical transformation of CO2 and its incorporation into synthetic organic molecules under mild conditions. Such a use of carbon dioxide as a renewable one-carbon (C1) building block in organic synthesis could contribute to a more sustainable use of resources. more sensible resource management is the prerequisite for the sustainable development of future generations. However, when dealing with the feedstock of the chemical Aindustry, the level of sustainability is still far from satisfactory. Until now, the vast majority of carbon resources are based on crude oil, natural gas and coal. In addition to biomass, CO2 offers the possibility to create a renewable carbon economy. Since pre-industrial times, the amount of CO2 has steadily increased and nowadays CO2 is a component of greenhouse gases, which are primarily responsible for the rise in atmospheric temperature and probably abnormal changes in the global climate. This increase in CO2 concentration is largely due to the combustion of fossil fuels, which are required to meet the world’s energy demand1. -
Studying the Ring-Opening Polymerization of 1,5-Dioxepan-2-One with Organocatalysts
polymers Article Studying the Ring-Opening Polymerization of 1,5-Dioxepan-2-one with Organocatalysts Jinbao Xu *, Yang Chen, Wenhao Xiao, Jie Zhang, Minglu Bu, Xiaoqing Zhang and Caihong Lei * Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; [email protected] (Y.C.); [email protected] (W.X.); [email protected] (J.Z.); [email protected] (M.B.); [email protected] (X.Z.) * Correspondence: [email protected] (J.X.); [email protected] (C.L.) Received: 23 September 2019; Accepted: 8 October 2019; Published: 10 October 2019 Abstract: Three different organocatalysts, namely, 1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris 5 5 (dimethylamino) phosphoranylidenamino]-2L ,4L -catenadi(phosphazene) (t-BuP4), 1,5,7- triazabicyclo[4.4.0]dec-5-ene (TBD) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), have been used as 1,5-dioxepan-2-one (DXO) ring-opening polymerization (ROP) catalysts at varied reaction conditions. 1H NMR spectra, size exclusion chromatography (SEC) characterizations, and kinetic studies prove that the (co)polymerizations are proceeded in a controlled manner with the three organocatalysts. It is deduced that t-BuP4 and DBU catalysts are in an initiator/chain end activated ROP mechanism and TBD is in a nucleophilic ROP mechanism. Keywords: 1,5-dioxepan-2-one; t-BuP4; DBU; TBD; organocatalyst 1. Introduction During the last several decades, for the ring-opening polymerization (ROP) of cyclic esters, transition metal and organometallic compounds were commonly used as initiators or polymerization catalysts [1–4]. -
Reactive Intermediates in Naquotinib Metabolism
RSC Advances View Article Online PAPER View Journal | View Issue Reactive intermediates in naquotinib metabolism identified by liquid chromatography-tandem mass Cite this: RSC Adv.,2019,9,10211 spectrometry: phase I metabolic profiling Mohamed W. Attwa, ab Adnan A. Kadi,a Haitham AlRabiaha and Hany W. Darwish*ac Tyrosine kinase inhibitors (TKIs) are very efficient for the treatment of EGFR-mutated lung cancer and show improved therapeutic efficacy. However, treatment with both first- and second-generation TKIs results in acquired resistance and is related to various toxicities; the EGFR T790M mutation has been associated with this resistance. Naquotinib (ASP8273, NQT) is a novel third-generation epidermal growth factor receptor tyrosine kinase inhibitor that has been shown to be more potent than osimertinib in the management of L858R plus T790M mutations. However, its bioactivation may occur and promote the formation of reactive electrophiles that are toxic. We hypothesize that these reactive intermediates are potentially involved in the side effects of NQT. Reactive metabolites are often formed by phase I metabolic Creative Commons Attribution 3.0 Unported Licence. reactions and cannot be characterized directly as they are transient in nature. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we screened for in vitro metabolites of NQT formed during incubation with human liver microsomes and evaluated the generation of reactive electrophiles using capturing agents, such as methoxyamine and potassium cyanide, as nucleophiles that form stable adducts for identification by LC-MS/MS. Eight NQT phase I metabolites were found that had been formed by N-demethylation, oxidation, hydroxylation, and reduction. In addition, three reactive Received 10th January 2019 electrophiles, two aldehydes, and one iminium ion were identified, and the corresponding bioactivation Accepted 24th March 2019 mechanisms were proposed. -
Chirality Transfer in 5-Exo Cyclizations of Axially Chiral O-Iodoanilides
CHIRALITY TRANSFER IN 5-EXO CYCLIZATIONS OF AXIALLY CHIRAL O-IODOANILIDES by Andre J. B. Lapierre B. Sc., McMaster University, 2000 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2005 UNIVERSITY OF PITTSBURGH FACULTY OF ARTS AND SCIENCES This dissertation was presented by Andre J. B. Lapierre It was defended on December 6th, 2005 and approved by Dr. Kay Brummond Dr. Theodore Cohen Dr. Michael Mokotoff Dr. Dennis Curran Dissertation Director ii To my wife and family, iii CHIRALITY TRANSFER IN 5-EXO CYCLIZATIONS OF AXIALLY CHIRAL O-IODOANILIDES Andre J. B. Lapierre, Ph.D. University of Pittsburgh, 2005 Stereoselective 5-exo radical and Heck cyclizations of axially chiral o-iodoanilides to enantioenriched oxindoles and dihydroindolones are described. Mechanisms for the transfer of chirality from the atropisomeric anilides to the newly formed stereocenters in the cyclic products are proposed and supported with physical data. Additionally, the N-aryl bond rotation barriers for eight o-iodoanilides are reported. A series of axially chiral N-allyl-o-iodoanilides were cyclized under room temperature radical conditions to dihydroindolones with good to excellent chirality transfer (74–97 %). Cyclization rate constant data is presented to rationalize the regioselective preference for N-allyl over N- acryloyl cyclization when an o-methyl group is present. X-ray crystallography was used to assign absolute configurations to a cyclization precursor/product pair. Radical 5-exo cyclizations of axially chiral o-iodoanilides bearing branched, bulky N-substituents are covered. The bulkiness of N-substituents permitted the resolution of a series of novel o-iodoanilides lacking a second ortho substituent. -
Glycolipids from Candida Bombicola: Polymerization of a 6-O-Acryloyl Sophorolipid Derivative
6208 Macromolecules 2000, 33, 6208-6210 Glycolipids from Candida bombicola: Polymerization of a 6-O-Acryloyl Sophorolipid Derivative Kirpal S. Bisht,† Wei Gao, and Richard A. Gross* Polytechnic University, NSF Center for Biocatalysis and Bioengineering, Six Metrotech Center, Brooklyn, New York 11201 Received January 31, 2000 Revised Manuscript Received May 25, 2000 Polymers with amphiphilic properties are of great Figure 1. Sophorolipids produced by Turolopsis bombicola interest since they are important components of a wide when grown on a mixture of glucose and oleic acid. range of industrial and pharmaceutical products.1 The modification of naturally occurring polysaccharides, was synthesized by refluxing the sophorolipid mixture which has been practiced for over a century, is a viable with an alcoholic solution of sodium methoxide.8 The route to amphiphilic glycolipid containing polymers. sophorolipid methyl ester was then subjected to acry- However, in view of the complex nature of polysaccha- loylation with vinyl acrylate (g2 equiv) in dry THF. The rides, their regioselective modification to form well- ability of the lipases PPL, CCL, PS-30, AK, MAP-10, defined products is tedious and is generally practiced Novozym-435, and Lipozyme IM to catalyze this trans- only as an academic curiosity. Incorporation of sugars formation was studied.9 Of the lipases evaluated, No- in synthetic polymers is a viable alternative for the vozym-435 was found to be the preferred catalyst. generation of amphiphilic polymers.2 However, selectiv- Acryloylation with an excess of vinyl acrylate (vinyl ity in such reactions often requires complex multistep acrylate:sophorolipid methyl ester g2:1) using No- synthetic pathways.3 Enzyme-catalyzed transformations vozym-435 as the catalyst gave 6′,6′′-diacryloylate as the can provide high selectivity. -
Fluorescent Probes for Live Cell Thiol Detection
molecules Review Fluorescent Probes for Live Cell Thiol Detection Shenggang Wang †, Yue Huang † and Xiangming Guan * Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Box 2202C, Brookings, SD 57007, USA; [email protected] (S.W.); [email protected] (Y.H.) * Correspondence: [email protected]; Tel.: +1-605-688-5314; Fax: +1-605-688-5993 † Shenggang Wang and Yue Huang contributed equally to this article. Abstract: Thiols play vital and irreplaceable roles in the biological system. Abnormality of thiol levels has been linked with various diseases and biological disorders. Thiols are known to distribute unevenly and change dynamically in the biological system. Methods that can determine thiols’ concentration and distribution in live cells are in high demand. In the last two decades, fluorescent probes have emerged as a powerful tool for achieving that goal for the simplicity, high sensitivity, and capability of visualizing the analytes in live cells in a non-invasive way. They also enable the determination of intracellular distribution and dynamitic movement of thiols in the intact native environments. This review focuses on some of the major strategies/mechanisms being used for detecting GSH, Cys/Hcy, and other thiols in live cells via fluorescent probes, and how they are applied at the cellular and subcellular levels. The sensing mechanisms (for GSH and Cys/Hcy) and bio-applications of the probes are illustrated followed by a summary of probes for selectively detecting cellular and subcellular thiols. Keywords: live cell thiol fluorescence imaging; cellular thiols; subcellular thiols; non-protein thi- ols; protein thiols; mitochondrial thiols; Lysosomal thiols; glutathione; cysteine; homocysteine; Citation: Wang, S.; Huang, Y.; Guan, thiol specific agents; thiol-sulfide exchange reaction; thiol-disulfide exchange reaction; Michael X. -
UV-Curable Thiol–Ene Networks Based on Renewable Resources
Macromolecular Design: UV-Curable Thiol–Ene Networks Based on Renewable Resources MAURO CLAUDINO Doctoral Thesis in Polymer Technology Stockholm, Sweden 2013 MACROMOLECULAR DESIGN: UV-CURABLE THIOL–ENE NETWORKS BASED ON RENEWABLE RESOURCES MAURO CLAUDINO Doctoral Thesis Kungliga Tekniska högskolan, Stockholm 2013 AKADEMISK AVHANDLING Akademisk avhandling som med tillstånd av Kungliga Tekniska högskolan i Stockholm, framlägges till offentlig granskning för avläggande av teknologie doktorsexamen torsdagen den 03 oktober 2013, kl. 14.30 i sal F3, Lindstedtsvägen 26, KTH, Stockholm. Avhandlingen försvaras på engelska. Fakultetsopponent: Professor Dr. Michael A. R. Meier från Karlsruhe Institute of Technology (KIT), Germany. Copyright © 2013 Mauro Claudino All rights reserved Paper I © 2010 European Polymer Journal Paper II © 2012 Journal of Polymer Science Part A: Polymer Chemistry Paper III © 2013 RSC Advances Paper IV © 2013 TRITA-CHE Report 2013:36 ISSN 1654-1081 ISBN 978-91-7501-845-4 To my parents Eduardo e Mariana Eles não sabem que o sonho é uma constante da vida tão concreta e definida como outra coisa qualquer, Eles não sabem, nem sonham, que o sonho comanda a vida. Que sempre que um homem sonha o mundo pula e avança como bola colorida entre as mãos de uma criança. – António Gedeão (Rómulo de Carvalho, 1906-2006) Excertos de Poema “Pedra Filosofal”, In Movimento Perpétuo, 1956 Abstract Plant oils and terpenes are ubiquitous natural renewable compounds. The double bonds contained in most of these monomers can be utilized via the photo-induced free-radical thiol–ene reaction to create novel bio-derived polymer thermosets representing a valuable ‘green’ alternative to petrochemical olefins and resulting synthetic plastic materials. -
Concerted Nucleophilic Aromatic Substitution Reactions Simon Rohrbach+, Andrew J
Angewandte Reviews Chemie International Edition: DOI: 10.1002/anie.201902216 Nucleophilic Aromatic Substitution German Edition: DOI: 10.1002/ange.201902216 Concerted Nucleophilic Aromatic Substitution Reactions Simon Rohrbach+, Andrew J. Smith+, Jia Hao Pang+, Darren L. Poole, Tell Tuttle,* Shunsuke Chiba,* and John A. Murphy* Keywords: Dedicated to Professor Koichi concerted reactions Narasaka on the occasion of ·cSNAr mechanism · his 75th birthday Meisenheimer complex · nucleophilicaromatic substitution Angewandte Chemie &&&& 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2019, 58,2–23 Ü Ü These are not the final page numbers! Angewandte Reviews Chemie Recent developments in experimental and computational From the Contents chemistry have identified a rapidly growing class of nucleophilic 1. Aromatic Substitution Reactions 3 aromatic substitutions that proceed by concerted (cSNAr) rather than classical, two-step, SNAr mechanisms. Whereas traditional 2. Some Contributions by SNAr reactions require substantial activation of the aromatic ring Computational Studies 6 by electron-withdrawing substituents, such activating groups are not mandatory in the concerted pathways. 3. Fluorodeoxygenation of Phenols and Derivatives 9 4. Aminodeoxygenation of Phenol 1. Aromatic Substitution Reactions Derivatives 10 Substitution reactions on aromatic rings are central to 5. Hydrides as Nucleophiles 11 organic chemistry. Besides the commonly encountered elec- trophilic aromatic substitution,[1] other mechanisms include 6. P, N, Si, C Nucleophiles 13 [2,3] SNAr nucleophilic aromatic substitutions and the distinct [4] but related SNArH and vicarious nucleophilic substitutions, 7. Organic Rearrangements via Spiro substitutions brought about through benzyne intermedi- Species: Intermediates or Transition ates,[5,6] radical mechanisms including electron transfer- States? 14 [7] based SRN1 reactions and base-promoted homolytic aro- matic substitution (BHAS) couplings,[8] sigmatropic rear- 8. -
Organocatalytic Decomposition of Poly(Ethylene Terephthalate) Using Triazabicyclodecene Proposal
San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Fall 2010 Organocatalytic decomposition of poly(ethylene terephthalate) using triazabicyclodecene proposal Julien Matsumoto Lecuyer San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Lecuyer, Julien Matsumoto, "Organocatalytic decomposition of poly(ethylene terephthalate) using triazabicyclodecene proposal" (2010). Master's Theses. 3873. DOI: https://doi.org/10.31979/etd.c3kc-xcdz https://scholarworks.sjsu.edu/etd_theses/3873 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. ORGANOCATALYTIC DECOMPOSITION OF POLYETHYLENE TEREPHTHALATE USING TRIAZABICYCLODECENE A Thesis Presented to The Faculty of the Department of Chemical and Materials Engineering San Jose State University In Partial Fulfillment of the Requirements for the Degree Master of Science by Julien Matsumoto Lecuyer December 2010 © 2010 Julien Matsumoto Lecuyer ALL RIGHTS RESERVED ORGANOCATALYTIC DECOMPOSITION OF POLYETHYLENE TEREPHTHALATE USING TRIAZABICYCLODECENE by Julien Lecuyer APPROVED FOR THE DEPARTMENT OF CHEMICAL & MATERIALS ENGINEERING SAN JOSÉ STATE UNIVERSITY August 2010 Dr. Melanie McNeil Department of Chemical & Materials Engineering Dr. Richard Chung Department of Chemical & Materials Engineering Dr. James Hedrick IBM Almaden Research Center Dr. Kazuki Fukushima IBM Almaden Research Center ABSTRACT ORGANOCATALYTIC DECOMPOSITION OF POLYETHYLENE TEREPHTHALATE USING TRIAZABICYCLODECENE This study focuses on the organocatalytic decomposition of polyethylene terephthalate (PET) using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) to form a diverse library of aromatic amides. -
Exploiting Aldolase Variants in the Synthesis of Fluorinated Analogues of N-Acetyl Neuraminic Acid
Exploiting aldolase variants in the synthesis of fluorinated analogues of N-acetyl neuraminic acid Jennifer Ann Stockwell Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Astbury Centre for Structural Molecular Biology and Department of Chemistry September 2013 The candidate confirms that the work submitted is her own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. ©2013 The University of Leeds and Jennifer Ann Stockwell The right of Jennifer Ann Stockwell to be identified as Author of this work has been asserted by her in accordance with the Copyright, Designs and Patents Act 1988. i Acknowledgements I'd like to start off by thanking my supervisors Prof. Adam Nelson and Prof. Alan Berry for all the help and guidance they have given me over the last four years. Without their support, I wouldn't be sitting here writing these acknowledgements. I'd also like to thank my industrial supervisor Dr. Keith Mulholland, it was with his support and friendship that I was able to gain confidence and realise what I wanted to do with my life. My time at AstraZeneca was brilliant and there are too many people to thank individually, so I would like to say thank you all for making me feel so welcome. I would particularly like to thank Dr. Adam Daniels and Claire Windle for all their contributions, to Adam for his brilliant work towards greater understanding of the enzyme mechanism and to Claire for her beautiful crystal structure. -
(Meth)Acryloyl Group-Containing Compound and Method for Producing the Same
Europäisches Patentamt *EP001308434A1* (19) European Patent Office Office européen des brevets (11) EP 1 308 434 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: C07C 69/54, C07C 67/28 07.05.2003 Bulletin 2003/19 (21) Application number: 02292683.6 (22) Date of filing: 29.10.2002 (84) Designated Contracting States: • Yurugi, Keiji AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Osaka-shi, Osaka 558-0041 (JP) IE IT LI LU MC NL PT SE SK TR • Awaji, Toshio Designated Extension States: Kawanishi-shi, Hyogo 666-0126 (JP) AL LT LV MK RO SI • Otsuki, Nobuaki Suita-shi, Osaka 565-0872 (JP) (30) Priority: 01.11.2001 JP 2001336860 (74) Representative: Hubert, Philippe et al (71) Applicant: Nippon Shokubai Co., Ltd. Cabinet Beau de Loménie Osaka-shi, Osaka 541-0043 (JP) 158, avenue de l’Université 75340 Paris Cédex 07 (FR) (72) Inventors: • Fukada, Akihiko Hyogo 669-1142 (JP) (54) (Meth)acryloyl group-containing compound and method for producing the same (57) It is an object of the present invention to provide pable of an addition reaction with said vinyl ether group, a compound having a (meth)acryloyl group that is suit- and to ably used in various applications, a process for produc- a compound having a (meth)acryloyl group ing such compound simply and under mild conditions, which is obtained by an addition reaction of a func- and an useful photo-curable composition and aqueous tional group of a compound (A) having at least two func- photo-curable composition comprising such compound. -
Llllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllI111Illl USOO5180766A United States Patent [191 [11] Patent Number: 5,180,766 Hayama et al. [45] Date of Patent: Jan. 19, 1993 [54] RESIN COMPOSITION FOR PRIMER USE FOREIGN PATENT DOCUMENTS AND PRIMER COMPOSITION EMPLOYING THE SAME 0308146 3/1989 European Pat. Off, . 2424308 11/1979 France . [75] Inventors: Kazuhide Hayama; Kazuyuki Hata; Katsuhiko Yamada; Keizo Abe; OTHER PUBLICATIONS Takahiro Ozu, all of Mic, Japan Patent Abstracts of Japan, vol. 12, No. 242 (C—510) [73] Assignee: Mitsubishi Petrochemical Co., Ltd., [3089], Jul. 8th, 1988; & JP'A-63 033 406 (Dainippon Tokyo, Japan Ink & Chem. Inc.) Feb. 13, 1988, WPIL, File Supplier, AN=88—101759, Derwent Publi [21] Appl. NO.I 687,517 cations Ltd, London, GB; & JP-A-63 051 477 (Mit [22] Filed: Apr. 19, 1991 subishi Petrochem.) Mar. 4, 1988. Primary Examiner—Jacob Ziegler [30] Foreign Application Priority Data Attorney, Agent, or Firm-Oblon, Spivak, McClelland, May 14, 1990 [JP] Japan ................................ .. 2-123854 Maier & Neustadt [51] Int. Cl.5 .................... .. C08F 255/02; CO8K 5/06; [57] ABSTRACT CO8K 5/07; C08K 5/10 A resin composition for primer use is described, which [52] US. Cl. .................................. .. 524/315; 524/356; contains a copolymer of (I) a radical-polymerizable 524/366; 524/474; 524/482; 524/484; 525/276; ole?n resin and (c) a monomer copolymerizable with 525/285; 525/286; 525/293; 525/301; 525/309 said ole?n resin (I) and containing an alkyl (meth)acry [58] Field of Search ............. .. 524/315, 356, 366, 474, late and/or a fluorine-containing unsaturated monomer 524/482, 484; 525/276, 285, 286, 293, 301, 309 as essential ingredients, said radical-polymerizable ole [56] References Cited ?n resin (I) being a product of the reaction of (a) an ole?n resin having at least one functional group per U.S.