bioRxiv preprint doi: https://doi.org/10.1101/051821; this version posted May 4, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Chytrid fungi construct actin-rich pseudopods, implicating actin regulators WASP and SCAR in an ancient mode of cell motility Authors: Lillian K. Fritz-Laylin,a Samuel J. Lord,a and R. Dyche Mullinsa,1 a Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco CA 94158, USA. 1 Corresponding author: Department of Cellular and Molecular Pharmacology University of California, San Francisco Genentech Hall, Room N312, Box 2200 600 16th Street San Francisco, CA 94158 Phone number: 415-502-4838 Email:
[email protected] Abstract Various cells scattered throughout the eukaryotic tree crawl across surfaces or through three- dimensional environments. Evidence now indicates that cell crawling is not a single behavior, but rather a collection of processes, driven by different molecular mechanisms. Understanding these mechanisms and their evolutionary relationships first requires narrowly defining mechanical modes of locomotion, and then identifying phenotypic and molecular markers of each. Here, we focus on a widely dispersed form of cell crawling characterized by dynamic, actin-filled pseudopods and weak, nonspecific adhesion to external substrates, a mode we refer to as “α-motility.” Finding α-motility in cells ranging from free-living amoebae to immune cells hints at a single evolutionary origin of this complex process. By mining recently published genomic data, we identified a clear trend: only organisms with both WASP and SCAR/WAVE— two activators of branched actin assembly—make dynamic, three-dimensional pseudopods.