Gene Selection in Cancer Classification Using GPSO/SVM and GA/SVM Hybrid Algorithms Enrique Alba, José Garcia-Nieto, Laetitia Jourdan, El-Ghazali Talbi

Total Page:16

File Type:pdf, Size:1020Kb

Gene Selection in Cancer Classification Using GPSO/SVM and GA/SVM Hybrid Algorithms Enrique Alba, José Garcia-Nieto, Laetitia Jourdan, El-Ghazali Talbi Gene Selection in Cancer Classification using GPSO/SVM and GA/SVM Hybrid Algorithms Enrique Alba, José Garcia-Nieto, Laetitia Jourdan, El-Ghazali Talbi To cite this version: Enrique Alba, José Garcia-Nieto, Laetitia Jourdan, El-Ghazali Talbi. Gene Selection in Cancer Clas- sification using GPSO/SVM and GA/SVM Hybrid Algorithms. Congress on Evolutionary Computa- tion, Sep 2007, Singapor, Singapore. inria-00269967 HAL Id: inria-00269967 https://hal.inria.fr/inria-00269967 Submitted on 3 Apr 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Gene Selection in Cancer Classification using PSO/SVM and GA/SVM Hybrid Algorithms Enrique Alba, JoseGarc´ ´ıa-Nieto, Laetitia Jourdan and El-Ghazali Talbi Abstract— In this work we compare the use of a Particle a filter method, is in definition, independent of the learning Swarm Optimization (PSO) and a Genetic Algorithm (GA) algorithm used after it. The second one, the wrapper method, (both augmented with Support Vector Machines SVM) for which carries out the feature subset selection and classifi- the classification of high dimensional Microarray Data. Both algorithms are used for finding small samples of informative cation in the same process, engages a learning algorithm genes amongst thousands of them. A SVM classifier with 10- to measure the classification accuracy. From a conceptual fold cross-validation is applied in order to validate and evaluate point of view, wrapper approaches are clearly advantageous, the provided solutions. A first contribution is to prove that since the features are selected by optimizing the discriminate PSO SV M is able to find interesting genes and to provide clas- power of the finally used induction algorithm. sification competitive performance. Specifically, a new version of PSO, called Geometric PSO, is empirically evaluated for Feature selection for gene expression analysis in cancer the first time in this work using a binary representation in prediction often uses wrapper classification methods [7] to Hamming space. In this sense, a comparison of this approach discriminate a type of tumor, to reduce the number of genes with a new GASV M and also with other existing methods of to investigate in case of a new patient, and also to assist literature is provided. A second important contribution consists in drug discovery and early diagnosis. Several classification in the actual discovery of new and challenging results on six public datasets identifying significant in the development of a algorithms could be used for wrapper methods, such as K- variety of cancers (leukemia, breast, colon, ovarian, prostate, Nearest Neighbor (K-NN) [8] or Support Vector Machines and lung). (SVM) [9]. By creating clusters a big reduction of the number of considered genes and an improvement of the classification I. INTRODUCTION accuracy can be finally achieved. Microarray technology (DNA microarray) [1] allows to The definition of the feature selection problem is this: simultaneously analyze thousands of genes and thus can give given a set of features F = {f1, ..., fi, ..., fn}, find a subset important insights about cell’s function, since changes in F ⊆ F that maximizes a scoring function Θ:Γ→ G such the physiology of an organism are generally associated with that changes in gene expression patterns. Several gene expres- F = argmaxG⊂Γ{Θ(G)}, (1) sion profiles obtained from tumors such as Leukemia [2], Colon [3] and Breast [4] have been studied and compared to where Γ is the space of all possible feature subsets of expression profiles of normal tissues. However, expression F and G a subset of Γ. The optimal feature selection data are highly redundant and noisy, and most genes are problem has been shown to be NP-hard [10]. Therefore, believed to be uninformative with respect to studied classes, only heuristics approaches are able to deal with large size as only a fraction of genes may present distinct profiles for problems. Recently, such advanced structured methods have different classes of samples. So, tools to deal with these been used to explore the huge space of feature subsets, like issues are critically important. These tools should learn to for example metaheuristics as Evolutionary Algorithms and, robustly identify a subset of informative genes embedded specifically, Genetic Algorithms (GAs) [11], [5], [12]. out of a large dataset which is contaminated with high- In this work, we are interested in gene selection and dimensional noise [5]. classification of DNA Microarray data in order to distin- In this context, feature selection is often considered as guish tumor samples from normal ones. For this purpose, a necessary preprocess step to analyze these data, as this we propose two hybrid models that use metaheuristics and method can reduce the dimensionality of the datasets and classification techniques. The first one consists of a Particle often conducts to better analyses [6]. Swarm Optimization (PSO) [13] combined with a SVM Two models of feature selection exist depending on approach. PSO is a population based metaheuristic inspired whether the selection is coupled with a learning scheme or by the social behavior of bird flocking or fish schooling. not. The first one, filter model, which carries out the feature Specifically, a recent version called Geometric PSO [14] subset selection and the classification in two separate phases, (explained in Section II) has been used in this work. The uses a measure that is simple and fast to compute. Hence, second model is based on the popular GA using a spe- E. Alba and J. Garc´ıa-Nieto are with the Department of Lengua- cialized Size-Oriented Common Feature Crossover Operator jes y Ciencias de la Computacion,´ Universidad de Malaga,´ (email: (SSOCF) [15], which keeps useful informative blocks and {eat,jnieto}@lcc.uma.es, url http://neo.lcc.uma.es) produces offsprings which have the same distribution than L. Jourdan and E-G. Talbi are with the LIFL/INRIA Futurs-Universite´ de Lille 1, Batˆ M3-Cite´ Scientifique, (email: {jourdan,talbi}@lifl.fr, url the parents. This model will be also combined with SVM in http://www2.lifl.fr/OPAC/) our approach. Both proposed approaches are experimentally assessed on B. The SVM Classifier six well-known cancer datasets (Leukemia, Colon, Breast, Support Vector Machines, a technique derived from statis- Ovarian [16], Prostate [17] and Lung [18]), discovering new tical learning theory, is used to classify points by assigning and challenging results and identifying specific genes that them to one of two disjoint half spaces [9]. So, SVM our work suggests as significants. Performances of proposed performs mainly a (binary) 2-class classification. For linearly PSO and GA algorithms solving the gene extraction problem separable data, SVM obtains the hyperplane which maxi- (using SVM) are compared in this paper. Specifically, we fo- mizes the margin (distance) between the training samples cused in the capacity of the PSOSV M combination in order and the class boundary. For non linearly separable cases, to provide considerable performance in this matter. In this samples are mapped to a high dimensional space where sense, comparisons with several state of art methods show such a separating hyperplane can be found. The assignment competitive results according to the conventional criteria. is carried out by means of a mechanism called the kernel The outline of this work as follows. We review the PSO function. and the SVM techniques in order to introduce our PSOSV M SVM is widely used in the domain of cancer studies, hybrid model in Section II. In Section III, the six microarray protein identification and specially in Microarray data [6], datasets used in this study are described. Experimental results [12], [19]. Unfortunately, in many bioinformatics problems are presented in Section IV, including biological descriptions the number of features is significantly larger than the number of several obtained genes. Finally, we summarize our work of samples. For this reason, tools for decreasing the number and present some conclusions and possible future work in of features in order to improve the classification or to help Section V. to identify interesting features (genes) in noisy environments are necessary. In addition, SVM can treat data with a large II. GENE SELECTION AND CLASSIFICATION BY number of genes, but it has been shown that its perfor- PSOSV M mance is increased by reducing the number of genes [20]. In this section, we describe the hybrid PSOSV M approach The hybrid PSO and hybrid GA approaches next proposed for gene selection and classification of Microarray data. The contribute notably in this sense. PSO algorithm is designed for obtaining gene subsets as solutions in order to reduce the high number of genes to C. The Hybrid PSOSV M Approach be later classified. The SVM classifier is used whenever the In order to offer a basic idea of the operation of our fitness evaluation of a tentative gene subset is required. PSOSV M approach, in Figure 1, we can observe a sim- ple scheme of how features are extracted from the initial A. Particle Swarm Optimization microarray dataset and how the resulted subset is evaluated. Particle Swarm Optimization was first proposed by In a first phase, the metaheuristic algorithm involved, PSO Kennedy and Eberhart in 1995 [13]. PSO is a population in this case, provides a binary encoded particle1 where each based evolutionary algorithm inspired in the social behavior bit2 represents a gene. If a bit is 1, it means that this gene of bird flocking or fish schooling.
Recommended publications
  • Green Parallel Metaheuristics: Design, Implementation, and Evaluation
    DOCTORAL THESIS Green Parallel Metaheuristics: Design, Implementation, and Evaluation PhD Thesis Dissertation in Computer Science Author Amr Abdelhafez Directors Enrique Alba Torres and Gabriel Luque Polo E. T. S. I. Informática Lenguajes y Ciencias de la Computación UNIVERSIDAD DE MÁLAGA (España) April 2020 AUTOR: Amr Abdelhafez Abdelsamee Galal http://orcid.org/0000-0003-0469-3791 EDITA: Publicaciones y Divulgación Científica. Universidad de Málaga Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial- SinObraDerivada 4.0 Internacional: http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode Cualquier parte de esta obra se puede reproducir sin autorización pero con el reconocimiento y atribución de los autores. No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer obras derivadas. Esta Tesis Doctoral está depositada en el Repositorio Institucional de la Universidad de Málaga (RIUMA): riuma.uma.es DECLARACIÓN DE AUTORÍA Y ORIGINALIDAD DE LA TESIS DOCTORAL Considerando que la presentación de un trabajo hecho por otra persona o la copia de textos, fotos y gráficas sin citar su procedencia se considera plagio, el abajo firmante Don Amr Abdelhafez con NIE: X que presenta la tesis doctoral con el título: Metaheurísticas Paralelas Verdes: Diseño, Implementación y Evaluación, declara la autoría y asume la originalidad de este trabajo, donde se han utilizado distintas fuentes que han sido todas citadas debidamente en la memoria. Y para que así conste firmo el presente documento en Málaga a……………….. El autor: ………………….….. Departamento de Lenguajes Y Ciencias de La Computación Escuela Técnica Superior de Ingeniería Informática Universidad de Málaga El Dr.
    [Show full text]
  • New Approaches in Parallel Algorithm Portfolios for Metaheuristic Optimization
    New Approaches in Parallel Algorithm Portfolios for Metaheuristic Optimization A Dissertation submitted to the designated by the General Assembly of Special Composition of the Department of Computer Science and Engineering Examination Committee by Dimitrios Souravlias in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY University of Ioannina June 2017 Advisory Committee • Konstantinos E. Parsopoulos, Associate Professor, Department of Computer Science & Engineering, University of Ioannina, Greece • Enrique Alba, Professor, Department of Computer Science & Programming Languages, University of Málaga, Spain • Konstantina Skouri, Associate Professor, Department of Mathematics, Univer- sity of Ioannina, Greece Examination Committee • Konstantinos E. Parsopoulos, Associate Professor, Department of Computer Science & Engineering, University of Ioannina, Greece • Enrique Alba, Professor, Department of Computer Science & Programming Languages, University of Málaga, Spain • Konstantina Skouri, Associate Professor, Department of Mathematics, Univer- sity of Ioannina, Greece • Isaac Lagaris, Professor, Department of Computer Science & Engineering, Uni- versity of Ioannina, Greece • Ilias Kotsireas, Professor, Department of Physics & Computer Science, Wilfrid Laurier University, Canada • Vassilios Dimakopoulos, Associate Professor, Department of Computer Science & Engineering, University of Ioannina, Greece • Dimitrios Papageorgiou, Associate Professor, Department of Materials Science & Engineering, University of Ioannina, Greece Dedication To my family Acknowledgements First and foremost I would like to express my deepest gratitude to my advisor, Professor Konstantinos E. Parsopoulos, for his valuable guidance and continuous support from the beginning of my PhD studies. Our excellent collaboration has given me the opportunity to acquire important knowledge and skills that have helped me in my research endeavor. Our long discussions and his constant encouragement have greatly contributed to my scientific and personal development.
    [Show full text]
  • Deep Neuroevolution: Smart City Applications
    UNIVERSIDAD DE MÁLAGA DOCTORAL THESIS Deep Neuroevolution: Smart City Applications Author: Supervisor: M.Sc. Andrés CAMERO Prof. Dr. Enrique ALBA A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in the Programa de Doctorado en Tecnologías Informáticas Departmento de Lenguajes y Ciencias de la Compuación E.T.S.I. Informática February 12, 2021 ! AUTOR: Andrés Camero Unzueta http://orcid.org/0000-0002-8152-9381 EDITA: Publicaciones y Divulgación Científica. Universidad de Málaga ! Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial- SinObraDerivada 4.0 Internacional: http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode Cualquier parte de esta obra se puede reproducir sin autorización pero con el reconocimiento y atribución de los autores. No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer obras derivadas. Esta Tesis Doctoral está depositada en el Repositorio Institucional de la Universidad de Málaga (RIUMA): riuma.uma.es iii M.Sc. Andrés Camero Unzueta, estudiante del programa de doctorado Tec- nologías Informáticas de la Universidad de Málaga, autor de la tesis, presentada para la obtención del título de doctor por la Universidad de Málaga, titulada: Deep Neuroevolution: Smart City Applications Realizada bajo la tutorización y dirección del Prof. Dr. Enrique Alba Torres. Declaro que La tesis presentada es una obra original que no infringe los derechos de propiedad intelectual ni los derechos de propiedad industrial u otros, conforme al ordenamiento jurídico vigente (Real Decreto Legislativo 1/1996, de 12 de abril, por el que se aprueba el texto refundido de la Ley de Propiedad Intelectual, regularizando, aclarando y armonizando las disposiciones legales vigentes sobre la materia), modificado por la Ley 2/2019, de 1 de marzo.
    [Show full text]
  • Investigating Recurrent Neural Network Memory Structures Using Neuro-Evolution
    Investigating Recurrent Neural Network Memory Structures using Neuro-Evolution Travis Desell ([email protected]) Associate Professor Department of Software Engineering Co-Authors: AbdElRahman ElSaid (PhD GRA) Alex Ororbia (Assistant Professor, RIT Computer Science) Collaborators: Steven Benson, Shuchita Patwardhan, David Stadem (Microbeam Technologies, Inc.) James Higgins, Mark Dusenbury, Brandon Wild (University of North Dakota) Overview • What is Neuro-Evolution? • Distributed Neuro- Evolution • Background: • Recurrent Neural • Results Networks for Time Series Prediction • Future Work • Recurrent Memory Cells • Discussion • EXAMM: • NEAT Innovations • Edge and Node Mutations • Crossover The 2019 Genetic and Evolutionary Computation Conference Prague, Czech Republic July 13th-17th, 2019 Motivation The 2019 Genetic and Evolutionary Computation Conference Prague, Czech Republic July 13th-17th, 2019 Neuro-Evolution • Applying evolutionary strategies to artificial neural networks (ANNs): • EAs to train ANNs (weight selection) • EAs to design ANNs (what architecture is best?) • Hyperparameter optimization (what parameters do we use for our backpropagation algorithm) The 2019 Genetic and Evolutionary Computation Conference Prague, Czech Republic July 13th-17th, 2019 Neuro-Evolution for Recurrent Neural Networks • Most people use human-designed ANNs, selecting from a few architectures that have done well in the literature. • No guarantees these are most optimal (e.g., in size, predictive ability, generalizability, robustness, etc). • Recurrent
    [Show full text]
  • Systolic Genetic Search, a Parallel Metaheuristic for Gpus
    Tesis de Doctorado en Informática Systolic Genetic Search, A Parallel Metaheuristic for GPUs Martín Pedemonte Director de Tesis: Prof. Enrique Alba Torres Co-Director de Tesis: Prof. Francisco Luna Valero Director Académico: Prof. Héctor Cancela PEDECIBA Informática Instituto de Computación – Facultad de Ingeniería Universidad de la República Setiembre 2017 “Life is what happens to you, while you’re busy making other plans” John Lennon, Beautiful Boy (Darling Boy) To Juan Pablo and Isabel, two by-products of this thesis. Agradecimientos Finalmente ha llegado el día y el Doctorado está terminando. Este momento nunca hubiera sido posible sin la colaboración de un conjunto de personas, que me apoyaron a lo largo de este proceso, a las que quiero expresar mi agradecimiento. En primer lugar, quiero agradecer a mis directores de Tesis Enrique y Paco por su guía académica, su aporte a este trabajo, y la confianza en mí y en mi trabajo. También agradezco a Héctor, quien fue mi director académico, por su ayuda y su estímulo. A Pablo y Ernesto por aportarme otras perspectivas, por los intercambios de ideas y por sus valiosos comentarios que contribuyeron con este trabajo. A Eduardo por sus sugerencias e ideas para el diseño de una nueva grilla. Agradezco a mi compañera Leonella por su apoyo incondicional y su paciencia infinita, y también por haberme facilitado las cosas para que pudiera dedicarle tiempo a esta tesis. También agradezco a mis hijos Juan Pablo e Isabel por todos los ratos que les tuve que robar. A mi madre Graciela y a mi hermano Gerardo por su continuo aliento y por su cariño.
    [Show full text]
  • CURRICULUM VITAE Carlos Artemio Coello Coello February 27Th, 2021
    CURRICULUM VITAE Carlos Artemio Coello Coello February 27th, 2021 Personal Information DATE OF BIRTH : October 18, 1967 PLACE OF BIRTH : Tonala,´ Chiapas, Mexico´ PHONE : +52 (55) 5747 3800 x 6564 EMAIL : [email protected] WORLD WIDE WEB : http://delta.cs.cinvestav.mx/˜ccoello CURRENT WORKPLACE: Departamento de Computacion´ CINVESTAV-IPN, Av. IPN No. 2508, Mexico,´ D.F. 07360, Mexico´ CURRENT POSITION: Investigador CINVESTAV 3F (Professor with Distinction) ORCID ID: 0000-0002-8435-680X ResearcherID: B-1845-2008 Scopus Author ID: 7003514400 Academic Degrees • BSc in Civil Engineering, Universidad Autonoma´ de Chiapas, 1985–1990. Degree awarded in 1991 with the thesis “Analysis of Grid Structures using a personal computer (stiffness method)” (summa cum laude). • Master of Science in Computer Science, Tulane University, New Orleans, Louisiana, EUA, 1991–1993. Degree awarded in December, 1993. • PhD in Computer Science, Tulane University, New Orleans, Louisiana, EUA, 1993–1996. Degree awarded in May, 1996, with the thesis entitled “An Empirical Study of Evolutionary Techniques for Multiobjective Optimization in Engineering Design”. Advisor: Dr. Alan D. Christiansen. Most Relevant Publications Monographic Books 1. Carlos A. Coello Coello, David A. Van Veldhuizen and Gary B. Lamont, Evolutionary Algorithms for Solving Multi-Objective Problems, Kluwer Academic Publishers, New York, USA, May 2002, ISBN 0-3064-6762-3. 2. Carlos A. Coello Coello, Gary B. Lamont and David A. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems, Springer, New York, USA, Second Edition, ISBN 978-0-387-33254-3, September 2007. Edited Books 1. Carlos A. Coello Coello and Gary B. Lamont (eds), Applications of Multi-Objective Evolutionary Algorithms, World Scientific, Singapore, 2004, ISBN 981-256-106-4.
    [Show full text]
  • In This Issue
    Volume 7 SIGEVOLution Issue 4 newsletter of the ACM Special Interest Group on Genetic and Evolutionary Computation in this issue GECCO 2015 Summary GECCO best paper winners Latest contents from ECJ and GPEM CFPs for upcoming conferences Latest vacancies Track: Estimation of Distribution Algorithms (EDA)+ EDITORIAL THEORY Those of you who managed to make it to sunny Winner: Improved Runtime Bounds for the (1+1) Madrid for GECCO this year will already know EA on Random 3-CNF Formulas Based on Fitness- what a fantastic conference it was from every Distance Correlation perspective – great science, great company and Benjamin Doerr, Frank Neumann, Andrew M. great food! For those who missed it, you can catch Sutton (Full text) up with best paper awards and read a summary from this year’s General Chair Anna Esparcia- Track: Evolutionary Combinatorial Optimization Alcazar inside. You will also find the latest tables and Metaheuristics (ECOM) of contents from ECJ and GPEM, as well as calls Winner: Global vs Local Search on Multi-objective for some of the conferences coming up in 2016. NK-landscapes: Contrasting the Impact of Problem Get writing those papers! The next issue of the Features newsletter will provide an insider’s view on Denver Fabio Daolio, Arnaud Liefooghe, Sébastien Verel, which will be the location for GECCO 2016, just in Hernán Aguirre, Kiyoshi Tanaka (Full text) case you need any persuasion to attend. I’d also like to take this opportunity to congratulate Marc Track: Evolutionary Machine Learning -EML Schoenauer on becoming Chair of SIGEVO from July and to extend a warm thank you to Wolfgang Winner: Subspace clustering using evolvable Banzhaf for his hard work over the last four years.
    [Show full text]
  • Bayesian Neural Architecture Search Using a Training-Free Performance Metric
    Bayesian Neural Architecture Search using A Training-Free Performance Metric Andr´esCamerob,a,∗, Hao Wangc, Enrique Albaa, Thomas B¨ackc aUniversidad de M´alaga,ITIS Software, Espa~na bGermanAerospace Center (DLR), Remote Sensing Technology Institute (IMF), Germany cLeiden University, LIACS, The Netherlands Abstract Recurrent neural networks (RNNs) are a powerful approach for time se- ries prediction. However, their performance is strongly affected by their architecture and hyperparameter settings. The architecture optimization of RNNs is a time-consuming task, where the search space is typically a mixture of real, integer and categorical values. To allow for shrinking and expanding the size of the network, the representation of architectures often has a variable length. In this paper, we propose to tackle the architecture optimization problem with a variant of the Bayesian Optimization (BO) algorithm. To reduce the evaluation time of candidate architectures the Mean Absolute Error Random Sampling (MRS), a training-free method to estimate the network performance, is adopted as the objective function for BO. Also, we propose three fixed-length encoding schemes to cope with the variable-length architecture representation. The result is a new perspective on accurate and efficient design of RNNs, that we validate on three problems. Our findings show that 1) the BO algorithm can explore different network architectures using the proposed encoding schemes and successfully designs well-performing architectures, and 2) the optimization time is significantly
    [Show full text]
  • Candidate for Executive Committee Enrique Alba Universidad De
    Candidate for Executive Committee Enrique Alba Universidad de Malaga, Spain BIOGRAPHY Academic Background: Ph.D. Computer Science, University of Malaga (Spain), 1999, Parallel Advanced GAs for Neural Network Design. Professional Experience: Full Professor, Universidad de Malaga, Spain, 2009 – Present; Associate Professor, Universidad de Malaga, Spain, 2001 – 2009; Assistant Professor, Universidad de Malaga, Spain, 1993 – 2001. Professional Interest: Intelligent Systems for Smart Cities; High Performance Computing for Artificial Intelligence; Software Engineering and Artificial Intelligence; Advanced Algorithms: Multiobjective, Hybrid, Dynamic Machine Learning, Search & Complex Optimization in Real Problems. ACM Activities: Executive Board Member, SIGEVO, 2014 – Present. Membership and Offices in Related Organizations: Executive Commission, Spanish AI organization for National Master on AI, 2016 – 2018; ERC reviewer, Horizon 2020 evaluator, European Union, 2000 – Present; CLAIRE initiative for AI in Europe, European Union, 2018 – Present. Awards Received: Best papers at ACM GECCO MO Track and in INCoS 2016; Best Paper in Conference EVOCOP, 2007; Best Paper in Conference PPSN, 2006; National Award "Jose Garcia Santesmases" best Graduate Thesis, 1993. STATEMENT I have been dealing with complex problems and different types of AI during all my 25 years of research. I hold links and active collaborations in all continents, working hard to promote Evolutionary Computing and related fields at graduate and postgraduate levels. My intention is to help ACM SIGEVO by using my experience and network to endorse the main goals of this SIG throughout the world, both in research and in teaching. I would also like to stress the importance of transferring knowledge from academia to industry, to have a positive impact in the lives of people.
    [Show full text]
  • Conference Program
    Genn etic and Evolutionary Computation Conference (GECCO-2004) CONFERENCE PROGRAM June 26 – 30, 2004 Red Lion Hotel on Fifth Avenue Seattle, Washington, USA A Recombination of the Ninth Annual Genetic Programming Conference and the Thirteenth International Conference on Genetic Algorithms International Society for Genetic and Evolutionary Computation, Inc. In Association with the American Association for Artificial Intelligence Table of Contents GECCO Organizers ................................................................................................................................................... 2 Program Committee................................................................................................................................................... 3 Best Paper Awards..................................................................................................................................................... 4 About the Evolutionary Computation in Industry Track ........................................................................................... 5 Hotel Floor Plan......................................................................................................................................................... 5 Saturday Workshops and Tutorials............................................................................................................................ 6 Sunday Workshops, Tutorials and Human-competitive Results ..............................................................................
    [Show full text]
  • Hadoop, Spark and MPI
    Big Optimization with Genetic Algorithms: Hadoop, Spark and MPI Carolina Salto Universidad Nacional de La Pampa Gabriela Minetti ( [email protected] ) Universidad Nacional de La Pampa https://orcid.org/0000-0003-1076-6766 Enrique Alba Universidad de Málaga Gabriel Luque Universidad de Málaga: Universidad de Malaga Research Article Keywords: Big optimization, Genetic Algorithms, MapReduce, Hadoop, Spark, MPI Posted Date: July 31st, 2021 DOI: https://doi.org/10.21203/rs.3.rs-725766/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Noname manuscript No. (will be inserted by the editor) 1 2 3 4 5 6 Big Optimization with Genetic Algorithms: Hadoop, Spark 7 8 and MPI 9 10 Carolina Salto · Gabriela Minetti · Enrique Alba · Gabriel Luque 11 12 13 14 15 16 17 18 the date of receipt and acceptance should be inserted later 19 20 21 Abstract Solving problems of high dimensionality (and benefits of these systems, namely file, memory and com- 22 complexity) usually needs the intense use of technolo- munication management, over the resulting algorithms. 23 gies, like parallelism, advanced computers and new types We analyze our MRGA solvers from relevant points of 24 of algorithms. MapReduce (MR) is a computing paradigm view like scalability, speedup, and communication vs. 25 long time existing in computer science that has been computation time in big optimization. The results for 26 proposed in the last years for dealing with big data ap- high dimensional datasets show that the MRGA over 27 plications, though it could also be used for many other Hadoop outperforms the implementations in Spark and 28 tasks.
    [Show full text]
  • Table of Contents
    Table of Contents EvoCOMNET Contributions Web Application Security through Gene Expression Programming 1 Jaroslaw Skaruz and Franciszek Seredynski Location Discovery in Wireless Sensor Networks Using a Two-Stage Simulated Annealing 11 Guillermo Molina and Enrique Alba Wireless Communications for Distributed Navigation in Robot Swarms 21 Gianni A. Di Caro, Frederick Ducatelle, and Luca M. Gambardella An Evolutionary Algorithm for Survivable Virtual Topology Mapping in Optical WDM Networks 31 Fatma Corut Ergin, Aygegiil Yayimli, and §ima Uyar Extremal Optimization as a Viable Means for Mapping in Grids 41 Ivanoe De Falco, Antonio Delia Cioppa, Domenico Maisto. Umberto Scafuri, and Ernesto Tarantino Swarm Intelligence Inspired Multicast Routing: An Ant Colony Optimization Approach 51 Xiao-Min Hu, Jun Zhang, and Li-Ming Zhang A Framework for Evolutionary Peer-to-Peer Overlay Schemes 61 Michele Amoretti Multiuser Scheduling in HSDPA with Particle Swarm Optimization .... 71 Mehmet E. Aydin, Raymond Kwan, Cyril Leung, and Jie Zhang Efficient Signal Processing and Anomaly Detection in Wireless Sensor Networks 81 Markus Wdlchli and Torsten Braun Peer-to-Peer Optimization in Large Unreliable Networks with Branch-and-Bound and Particle Swarms 87 Baldzs Bdnhelyi, Marco Biazzini, Alberto Montresor. and Mark Jelasity Evolving High-Speed, Easy-to-Understand Network Intrusion Detection Rules with Genetic Programming 93 Agustin Orfila, Juan M. Estevez-Tapiador. and Ariuro Ribagorda Bibliografische Informationen digitalisiert durch http://d-nb.info/993136311 XXIV Table of Contents Soft Computing Techniques for Internet Backbone Traffic Anomaly Detection 99 Antonia Azzini, Matteo De Felice, Sandro Meloni, and Andrea G.B. Tettamanzi Testing Detector Parameterization Using Evolutionary Exploit Generation 105 Hilmi G.
    [Show full text]