Overview of Deployment Options on AWS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Security in Cloud Computing a Security Assessment of Cloud Computing Providers for an Online Receipt Storage
Security in Cloud Computing A Security Assessment of Cloud Computing Providers for an Online Receipt Storage Mats Andreassen Kåre Marius Blakstad Master of Science in Computer Science Submission date: June 2010 Supervisor: Lillian Røstad, IDI Norwegian University of Science and Technology Department of Computer and Information Science Problem Description We will survey some current cloud computing vendors and compare them to find patterns in how their feature sets are evolving. The start-up firm dSafe intends to exploit the promises of cloud computing in order to launch their business idea with only marginal hardware and licensing costs. We must define the criteria for how dSafe's application can be sufficiently secure in the cloud as well as how dSafe can get there. Assignment given: 14. January 2010 Supervisor: Lillian Røstad, IDI Abstract Considerations with regards to security issues and demands must be addressed before migrating an application into a cloud computing environment. Different vendors, Microsoft Azure, Amazon Web Services and Google AppEngine, provide different capabilities and solutions to the individual areas of concern presented by each application. Through a case study of an online receipt storage application from the company dSafe, a basis is formed for the evaluation. The three cloud computing vendors are assessed with regards to a security assessment framework provided by the Cloud Security Alliance and the application of this on the case study. Finally, the study is concluded with a set of general recommendations and the recommendation of a cloud vendor. This is based on a number of security as- pects related to the case study’s existence in the cloud. -
[XIAY]⋙ Big Data Science & Analytics: a Hands-On Approach By
Big Data Science & Analytics: A Hands-On Approach Arshdeep Bahga, Vijay Madisetti Click here if your download doesn"t start automatically Big Data Science & Analytics: A Hands-On Approach Arshdeep Bahga, Vijay Madisetti Big Data Science & Analytics: A Hands-On Approach Arshdeep Bahga, Vijay Madisetti We are living in the dawn of what has been termed as the "Fourth Industrial Revolution", which is marked through the emergence of "cyber-physical systems" where software interfaces seamlessly over networks with physical systems, such as sensors, smartphones, vehicles, power grids or buildings, to create a new world of Internet of Things (IoT). Data and information are fuel of this new age where powerful analytics algorithms burn this fuel to generate decisions that are expected to create a smarter and more efficient world for all of us to live in. This new area of technology has been defined as Big Data Science and Analytics, and the industrial and academic communities are realizing this as a competitive technology that can generate significant new wealth and opportunity. Big data is defined as collections of datasets whose volume, velocity or variety is so large that it is difficult to store, manage, process and analyze the data using traditional databases and data processing tools. Big data science and analytics deals with collection, storage, processing and analysis of massive-scale data. Industry surveys, by Gartner and e-Skills, for instance, predict that there will be over 2 million job openings for engineers and scientists trained in the area of data science and analytics alone, and that the job market is in this area is growing at a 150 percent year-over-year growth rate. -
Data Warehousing on AWS
Data Warehousing on AWS March 2016 Amazon Web Services – Data Warehousing on AWS March 2016 © 2016, Amazon Web Services, Inc. or its affiliates. All rights reserved. Notices This document is provided for informational purposes only. It represents AWS’s current product offerings and practices as of the date of issue of this document, which are subject to change without notice. Customers are responsible for making their own independent assessment of the information in this document and any use of AWS’s products or services, each of which is provided “as is” without warranty of any kind, whether express or implied. This document does not create any warranties, representations, contractual commitments, conditions or assurances from AWS, its affiliates, suppliers or licensors. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements, and this document is not part of, nor does it modify, any agreement between AWS and its customers. Page 2 of 26 Amazon Web Services – Data Warehousing on AWS March 2016 Contents Abstract 4 Introduction 4 Modern Analytics and Data Warehousing Architecture 6 Analytics Architecture 6 Data Warehouse Technology Options 12 Row-Oriented Databases 12 Column-Oriented Databases 13 Massively Parallel Processing Architectures 15 Amazon Redshift Deep Dive 15 Performance 15 Durability and Availability 16 Scalability and Elasticity 16 Interfaces 17 Security 17 Cost Model 18 Ideal Usage Patterns 18 Anti-Patterns 19 Migrating to Amazon Redshift 20 One-Step Migration 20 Two-Step Migration 20 Tools for Database Migration 21 Designing Data Warehousing Workflows 21 Conclusion 24 Further Reading 25 Page 3 of 26 Amazon Web Services – Data Warehousing on AWS March 2016 Abstract Data engineers, data analysts, and developers in enterprises across the globe are looking to migrate data warehousing to the cloud to increase performance and lower costs. -
Amazon Documentdb Deep Dive
DAT326 Amazon DocumentDB deep dive Joseph Idziorek Antra Grover Principal Product Manager Software Development Engineer Amazon Web Services Fulfillment By Amazon © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Agenda What is the purpose of a document database? What customer problems does Amazon DocumentDB (with MongoDB compatibility) solve and how? Customer use case and learnings: Fulfillment by Amazon What did we deliver for customers this year? What’s next? © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Purpose-built databases Relational Key value Document In-memory Graph Search Time series Ledger Why document databases? Denormalized data Normalized data model model { 'name': 'Bat City Gelato', 'price': '$', 'rating': 5.0, 'review_count': 46, 'categories': ['gelato', 'ice cream'], 'location': { 'address': '6301 W Parmer Ln', 'city': 'Austin', 'country': 'US', 'state': 'TX', 'zip_code': '78729'} } Why document databases? GET https://api.yelp.com/v3/businesses/{id} { 'name': 'Bat City Gelato', 'price': '$', 'rating': 5.0, 'review_count': 46, 'categories': ['gelato', 'ice cream'], 'location': { 'address': '6301 W Parmer Ln', 'city': 'Austin', 'country': 'US', 'state': 'TX', 'zip_code': '78729'} } Why document databases? response = yelp_api.search_query(term='ice cream', location='austin, tx', sort_by='rating', limit=5) Why document databases? for i in response['businesses']: col.insert_one(i) db.businesses.aggregate([ { $group: { _id: "$price", ratingAvg: { $avg: "$rating"}} } ]) db.businesses.find({ -
Getting Started with AWS Deploying a Web Application Getting Started with AWS Deploying a Web Application
Getting Started with AWS Deploying a Web Application Getting Started with AWS Deploying a Web Application Getting Started with AWS: Deploying a Web Application Copyright © 2014 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. The following are trademarks of Amazon Web Services, Inc.: Amazon, Amazon Web Services Design, AWS, Amazon CloudFront, Cloudfront, Amazon DevPay, DynamoDB, ElastiCache, Amazon EC2, Amazon Elastic Compute Cloud, Amazon Glacier, Kindle, Kindle Fire, AWS Marketplace Design, Mechanical Turk, Amazon Redshift, Amazon Route 53, Amazon S3, Amazon VPC. In addition, Amazon.com graphics, logos, page headers, button icons, scripts, and service names are trademarks, or trade dress of Amazon in the U.S. and/or other countries. Amazon©s trademarks and trade dress may not be used in connection with any product or service that is not Amazon©s, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. Getting Started with AWS Deploying a Web Application Table of Contents Welcome ..................................................................................................................................... 1 Overview of the Project .................................................................................................................. 2 AWS Elastic Beanstalk .......................................................................................................... -
AWS Certified Developer – Associate (DVA-C01) Sample Exam Questions
AWS Certified Developer – Associate (DVA-C01) Sample Exam Questions 1) A company is migrating a legacy application to Amazon EC2. The application uses a user name and password stored in the source code to connect to a MySQL database. The database will be migrated to an Amazon RDS for MySQL DB instance. As part of the migration, the company wants to implement a secure way to store and automatically rotate the database credentials. Which approach meets these requirements? A) Store the database credentials in environment variables in an Amazon Machine Image (AMI). Rotate the credentials by replacing the AMI. B) Store the database credentials in AWS Systems Manager Parameter Store. Configure Parameter Store to automatically rotate the credentials. C) Store the database credentials in environment variables on the EC2 instances. Rotate the credentials by relaunching the EC2 instances. D) Store the database credentials in AWS Secrets Manager. Configure Secrets Manager to automatically rotate the credentials. 2) A Developer is designing a web application that allows the users to post comments and receive near- real-time feedback. Which architectures meet these requirements? (Select TWO.) A) Create an AWS AppSync schema and corresponding APIs. Use an Amazon DynamoDB table as the data store. B) Create a WebSocket API in Amazon API Gateway. Use an AWS Lambda function as the backend and an Amazon DynamoDB table as the data store. C) Create an AWS Elastic Beanstalk application backed by an Amazon RDS database. Configure the application to allow long-lived TCP/IP sockets. D) Create a GraphQL endpoint in Amazon API Gateway. Use an Amazon DynamoDB table as the data store. -
Introduction to Amazon Web Services
Introduction to Amazon Web Services Jeff Barr Senior AWS Evangelist @jeffbarr / [email protected] What Does It Take to be a Global Online Retailer? The Obvious Part… And the Not-So Obvious Part How Did Amazon Get in to Cloud Computing? • We’d been working on it for over a decade • Development of a platform to enable sellers on the Amazon global infrastructure • Internal need for centralized, scalable deployment environment for applications • Early forays into web services proved developers were hungry for more This Led to a Broader Mission • Enable businesses and developers to use web services (what people now call “the cloud”) to build scalable, sophisticated applications. “It's not the customers' job to invent for themselves. It's your job to invent on their behalf. You need to listen to customers. You need to invent on their behalf. Kindle, EC2 would not have been developed if we did not have an inventive culture.” - Jeff Bezos, Founder & CEO, Amazon.com Attributes of Cloud Computing No Up-Front Capital Low Cost Pay Only for What Expense You Use Self-Service Easily Scale Up and Improve Agility & Time- Infrastructure Down to-Market Deploy Last-Generation IT Services Cloud-Generation IT Services Cloud-Generation IT Services What’s the Difference? Last-Generation Cloud-Generation • IT department • Empowered users • Manual Setup • Automated Setup • Hours/Days/Weeks • Seconds/Minutes • Error-prone • Scripted & repeatable • Small scale • Any scale AWS PLATFORM Cloud-Powered Applications Management & Administration Administration Identity & -
Web Application Hosting in the AWS Cloud AWS Whitepaper Web Application Hosting in the AWS Cloud AWS Whitepaper
Web Application Hosting in the AWS Cloud AWS Whitepaper Web Application Hosting in the AWS Cloud AWS Whitepaper Web Application Hosting in the AWS Cloud: AWS Whitepaper Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. Web Application Hosting in the AWS Cloud AWS Whitepaper Table of Contents Abstract ............................................................................................................................................ 1 Abstract .................................................................................................................................... 1 An overview of traditional web hosting ................................................................................................ 2 Web application hosting in the cloud using AWS .................................................................................... 3 How AWS can solve common web application hosting issues ........................................................... 3 A cost-effective alternative to oversized fleets needed to handle peaks ..................................... 3 A scalable solution to handling unexpected traffic -
Implementación De Los Algoritmos De Factorización 201
Universidad Complutense de Madrid Facultad de Informática Sistemas Informáticos 2010/2011 RSA@Cloud Criptoanálisis eficiente en la Nube Autores: Directores de proyecto: Alberto Megía Negrillo José Luis Vázquez-Poletti Antonio Molinera Lamas Ignacio Martin Llorente José Antonio Rueda Sánchez Dpto. Arquitectura de Computadores Página 0 Facultad de Informática UCM RSA@Cloud Sistemas Informáticos – FDI Se autoriza a la Universidad Complutense a difundir y utilizar con fines académicos, no comerciales y mencionando expresamente a sus autores, tanto la propia memoria, como el código, la documentación y/o el prototipo desarrollado. Alberto Megía Negrillo Antonio Molinera Lamas José Antonio Rueda Sánchez Página 1 Facultad de Informática UCM RSA@Cloud Sistemas Informáticos – FDI Página 2 Facultad de Informática UCM RSA@Cloud Sistemas Informáticos – FDI Agradecimientos Un trabajo como este no habría sido posible sin la cooperación de mucha gente. En primer lugar queremos agradecérselo a nuestras familias que tanto han confiado y nos han dado. A nuestros directores José Luis Vázquez-Poletti e Ignacio Martín Llorente, por conseguir llevar adelante este proyecto. Por último, a todas y cada una de las personas que forman parte de la Facultad de Informática de la Universidad Complutense de Madrid, nuestro hogar durante estos años. Página 3 Facultad de Informática UCM RSA@Cloud Sistemas Informáticos – FDI Página 4 Facultad de Informática UCM RSA@Cloud Sistemas Informáticos – FDI Resumen En el presente documento se describe un sistema que aprovecha las virtudes de la computación Cloud y el paralelismo para la factorización de números grandes, base de la seguridad del criptosistema RSA, mediante el empleo de diferentes algoritmos matemáticos como la división por tentativa y criba cuadrática. -
Planning and Designing Databases on AWS (AWS-PD-DB)
Planning and Designing Databases on AWS (AWS-PD-DB) COURSE OVERVIEW: In this course, you will learn about the process of planning and designing both relational and nonrelational databases. You will learn the design considerations for hosting databases on Amazon Elastic Compute Cloud (Amazon EC2). You will learn about our relational database services including Amazon Relational Database Service (Amazon RDS), Amazon Aurora, and Amazon Redshift. You will also learn about our nonrelational database services including Amazon DocumentDB, Amazon DynamoDB, Amazon ElastiCache, Amazon Neptune, and Amazon QLDB. By the end of this course, you will be familiar with the planning and design requirements of all 8 of these AWS databases services, their pros and cons, and how to know which AWS databases service is right for your workloads. WHO WILL BENEFIT FROM THIS COURSE? • Data platform engineers • Database administrators • Solutions architects • IT professionals PREREQUISITES: We recommend that attendees of this course have previously completed the following AWS courses: • AWS Database Offerings digital training • Data Analytics Fundamentals digital training • Architecting on AWS classroom training COURSE OBJECTIVES: After completion of this course, students will be able to... • Apply database concepts, database management, and data modeling techniques • Evaluate hosting databases on Amazon EC2 instances • Evaluate relational database services (Amazon RDS, Amazon Aurora, and Amazon Redshift) and their features • Evaluate nonrelational database services -
Cisco Workload Automation Amazon EC2 Adapter Guide
Cisco Workload Automation Amazon EC2 Adapter Guide Version 6.3 First Published: August, 2015 Last Updated: September 6, 2016 Cisco Systems, Inc. www.cisco.com THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. -
Building Devops on Amazon Web Services (AWS) 2 Building Devops on Amazon Web Services (AWS)
IBM Global Business Services January 2018 White paper Building DevOps on Amazon Web Services (AWS) 2 Building DevOps on Amazon Web Services (AWS) Abstract IBM defines DevOps as an enterprise capability that enables organizations to seize market opportunities and reduce time to At its core, DevOps makes delivery of applications more customer feedback, and has three main business objectives: efficient. Amazon Web Services (AWS) has the platform and services to recognize a code change and automate delivery of 1. Speeding continuous innovation of ideas by enabling that change from development, through the support collaborative development and testing across the value environments, to production. However, delivery of code is just chain one aspect of DevOps. 2. Enabling continuous delivery of these innovations by automating software delivery processes and eliminating IBM extends the DevOps definition, making it an enterprise waste, while also helping to meet regulatory concerns capability that enables organizations to seize market 3. Providing a feedback loop for continuous learning from opportunities and reduce time to customer feedback. IBM’s customers by monitoring and optimizing software-driven main objectives are speeding continuous innovation of ideas, innovation enabling continuous delivery of those innovations, and providing meaningful feedback for continuous learning, thereby putting all the emphasis on deciding what code to change. IBM extends DevOps to include all stakeholders in an organization who develop, operate or benefit from businesses systems. DevOps enables design thinking, which focuses on user outcomes, restless reinvention, and empowering teams to act. In addition, DevOps enables lean and agile methodologies, which guide teams to deliver in smaller increments and get early feedback.