Radiation Physics ; QC100 .U57 N6.461, 1977 C.2 NBS-PUB-C 19

Total Page:16

File Type:pdf, Size:1020Kb

Radiation Physics ; QC100 .U57 N6.461, 1977 C.2 NBS-PUB-C 19 7 NATL INST OF STANDARDS & TECH R.I.C. A111 0308861 Intei-nationai Sympos/Radiation physics ; QC100 .U57 n6.461, 1977 C.2 NBS-PUB-C 19 V) NBS SPECIAL PUBLICATION 461 J U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards " NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, the Office of Radiation Measurement and the following Center and divisions: Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Center for Radiation Research: Nuclear Sciences; Applied Radiation — Laboratory Astrophysics — Cryogenics — Electromagnetics — Time and Frequency THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials, the Office of Air and Water Measurement, and the following divisions: Analytical Chemistry — Polymers — Metallurgy — Inorganic Materials — Reactor Radiation — Physical Chemistry. THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations leading to the development of technological standards (including mandatory safety standards), codes and methods of test; and provides technical advice and services to Government agencies upon request. The Insti- tute consists of the following divisions and Centers: Standards Application and Analysis — Electronic Technology — Center for Consumer Product Technology: Product Systems Analysis; Product Engineering — Center for Building Technology: Structures, Materials, and Life Safety; Building Environment; Technical Evalua- tion and Application — Center for Fire Research: Fire Science; Fire Safety Engineering. THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effec- tiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Institute consists of the following divisions: Computer Services — Systems and Software — Computer Systems Engineering — Informa- tion Technology. THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units: Office of Standard Reference Data — Office of Information Activities — Office of Technical Publications — Library — Office of International Relations — Office of International Standards. , 1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington. D.C. 20234. - Located at Boulder, Colorado 80302. , 1 7 »77 ^^'^ Radiation Physics ^-7- ___ _________________ ^ ^ ^ Proceedings of the International Radiation (^^1 Symposium on Physics, held at Bose Institute, Calcutta, India November 30-December 4, 1974 Edited by: . A. M. Ghose Nuclear Physics Laboratory Bose Institute, Calcutta— 700 009, India D. V. Gopinath Safety Research Laboratory Reactor Research Center Kalpakkam 603 102, India J. H. Hubbell Institute for Basic Standards National Bureau of Standards Washington, D.C. 20234 S. C. Roy Nuclear Physics Laboratory Bose Institute, Calcutta— 700 009, India Organized by. Bose Institute, Calcutta, India Co-sponsored by: Department of Atomic Energy, India Assistance from: International Atomic Energy Agency National Bureau of Standards U.S. DEPARTMENT OF COMMERCE, Elliot L. Richardson, Secretary Edward 0. Vetter, Under Secretary Dr. Betsy Ancker-Johnson, Assistant Secretary for Science and Technology U.^NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director Issued January 1977 - Library of Congress Cataloging in Publication Data International Symposium on Radiation Physics, Bose Institute, 1974. Radiation physics. (NBS special publication ; 461) "CODEN: XNBSAV." Supt. of Docs. No.; C 13.10:461 1. Ionizing radiation-Congresses. 2. Radiation- Congresses. 3. Radia- tion-Measurement-Congresses. 4. Cross sections (Nuclear physics) Congresses. I. Chose, A. M. II. Bose Research Institute, Calcutta. III. India (Republic) . Dept. of Atomic Energy. IV. Title. V. Series; United States. National Bureau of Standards. Special publication ; 461. QC100U.S7 no. 461 (QC474] 602Ms [539.7"2) 76-608379 National Bureau of Standards Special Publication 461 Nat. Bur. Stand. (U.S.), Spec Publ. 461, 268 pages (Jan. 1977) CODEN: XNBSAV U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1977 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Order by SD Catalog No. C13. 10:461). Stock No. 003-003-01733-7 Price $3.25 (Add 25 percent additional for other than U.S. mailing) . PREFACE Radiation Physics is an interdisci- All papers were retyped at Bose plinary science and in the past different Institute, Calcutta, on composition (25% aspects of the subject such as nuclear and reduction) guide sheets supplied by the atomic cross section measurements and National Bureau of Standards for direct analysis, shielding of accelerators, dosi- photo-reproduction. In some cases the metry, nuclear electronics, radiation inserted figures and tables, although the biophysics, etc., have been discussed in best available to the editors, suffer in specialized symposia and seminars. It has legibility, particularly after the size- been increasingly felt that a symposium reduction. In these cases we suggest that presenting the subject matter in an inte- interested readers write to the authors grated manner would be useful to special- for more detailed versions of these papers ists working in isolated areas of radiation which in most cases have been published physics as well as to those interested in elsewhere the global view of the entire subject. The International Symposium on Radiation When commercial equipment, instru- Physics held in Bose Institute, Calcutta ments and materials are mentioned or from November 30 to December 4, 1974, with identified in these proceedings it is these ends in view provided a forum for intended only to adequately specify exchange of experiences and ideas among experimental procedure. In no case does different vjorkers in Radiation Physics such identification imply recommendation from different countries. or endorsement by the National Bureau of Standards, nor does it Imply that the The symposium was organized by Bose material or equipment identified Is Institute, Calcutta. Moral and financial necessarily the best available for the support was received from the Departments purpose of Atomic Energy and Science and Technol- ogy, Govt, of India; National Bureau of We regret the inordinate delay in Standards, U.S.A. and International Atomic publishing the proceedings, the reasons Energy Agency, Vienna. Vie express our of which are beyond our control. appreciation to those organizations. The editorial board gratefully Apart from a few minor changes, the acknowledges the assistance of the U.S. papers published in these proceedings National Bureau of Standards Office of essentially represent wha.t the authors Technical Information and Publications submitted as the "final versions of their received for printing and publishing presentations in the symposium. The these proceedings. editorial board apologizes for any mistake that might have crept in inadvertently. A. M. Ghose D. V. Goplnath J. H. Hubbell S. C. Roy ill I ABSTRACT These proceedings contain Invited and contributed papers presented at the International Symposium on Radiation Physics
Recommended publications
  • How Do Radioactive Materials Move Through the Environment to People?
    5. How Do Radioactive Materials Move Through the Environment to People? aturally occurring radioactive materials Radionuclides can be removed from the air in Nare present in our environment and in several ways. Particles settle out of the our bodies. We are, therefore, continuously atmosphere if air currents cannot keep them exposed to radiation from radioactive atoms suspended. Rain or snow can also remove (radionuclides). Radionuclides released to them. the environment as a result of human When these particles are removed from the activities add to that exposure. atmosphere, they may land in water, on soil, or Radiation is energy emitted when a on the surfaces of living and non-living things. radionuclide decays. It can affect living tissue The particles may return to the atmosphere by only when the energy is absorbed in that resuspension, which occurs when wind or tissue. Radionuclides can be hazardous to some other natural or human activity living tissue when they are inside an organism generates clouds of dust containing radionu- where radiation released can be immediately clides. absorbed. They may also be hazardous when they are outside of the organism but close ➤ Water enough for some radiation to be absorbed by Radionuclides can come into contact with the tissue. water in several ways. They may be deposited Radionuclides move through the environ- from the air (as described above). They may ment and into the body through many also be released to the water from the ground different pathways. Understanding these through erosion, seepage, or human activities pathways makes it possible to take actions to such as mining or release of radioactive block or avoid exposure to radiation.
    [Show full text]
  • Arxiv:2104.05705V3 [Gr-Qc] 11 May 2021
    Bremsstrahlung of Light through Spontaneous Emission of Gravitational Waves Charles H.-T. Wang and Melania Mieczkowska Department of Physics, University of Aberdeen, King's College, Aberdeen AB24 3UE, United Kingdom 11 May 2021 Published in the Special Issue of Symmetry: New Frontiers in Quantum Gravity Abstract Zero-point fluctuations are a universal consequence of quantum theory. Vacuum fluctuations of electro- magnetic field have provided crucial evidence and guidance for QED as a successful quantum field theory with a defining gauge symmetry through the Lamb shift, Casimir effect, and spontaneous emission. In an accelerated frame, the thermalisation of the zero-point electromagnetic field gives rise to the Unruh effect linked to the Hawking effect of a black hole via the equivalence principle. This principle is the basis of general covariance, the symmetry of general relativity as the classical theory of gravity. If quantum gravity exists, the quantum vacuum fluctuations of the gravitational field should also lead to the quantum deco- herence and dissertation of general forms of energy and matter. Here we present a novel theoretical effect involving the spontaneous emission of soft gravitons by photons as they bend around a heavy mass and dis- cuss its observational prospects. Our analytic and numerical investigations suggest that the gravitational bending of starlight predicted by classical general relativity should also be accompanied by the emission of gravitational waves. This in turn redshifts the light causing a loss of its energy somewhat analogous to the bremsstrahlung of electrons by a heavier charged particle. It is suggested that this new effect may be important for a combined astronomical source of intense gravity and high-frequency radiation such as X-ray binaries and that the proposed LISA mission may be potentially sensitive to the resulting sub-Hz stochastic gravitational waves.
    [Show full text]
  • Dose Measurements of Bremsstrahlung-Produced Neutrons at the Advanced Photon Source
    ANL/APS/LS-269 Dose Measurements of Bremsstrahlung-Produced Neutrons at the Advanced Photon Source by M. Pisharody, E. Semones, and P. K. Job August 1998 Advanced Photon Source Argonne National Laboratory operated by The University of Chicago for the US Department of Energy under Contract W-31-I09-Eng-38 Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States government, and operated by The University of Chicago under the provisions of a contract with the Department of Energy. DISCLAIMER- This report was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or pro- cess disclosed, or represents that its use would not infringe privately owned rights Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessanly constitute or imply its endorsement, recommendation or favoring by the United States Government or any agency thereof The views and opinions of authors expressed herein do not necessanly state or reflect those of the United States Government or any agency thereof. Reproduced from the best available copy Available to DOE and DOE contractors from the Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Prices available from (4231 576-8401 Available to the public from the National Technical Information Service U.S.
    [Show full text]
  • Radionuclides (Including Radon, Radium and Uranium)
    Radionuclides (including Radon, Radium and Uranium) Hazard Summary Uranium, radium, and radon are naturally occurring radionuclides found in the environment. No information is available on the acute (short-term) noncancer effects of the radionuclides in humans. Animal studies have reported inflammatory reactions in the nasal passages and kidney damage from acute inhalation exposure to uranium. Chronic (long-term) inhalation exposure to uranium and radon in humans has been linked to respiratory effects, such as chronic lung disease, while radium exposure has resulted in acute leukopenia, anemia, necrosis of the jaw, and other effects. Cancer is the major effect of concern from the radionuclides. Radium, via oral exposure, is known to cause bone, head, and nasal passage tumors in humans, and radon, via inhalation exposure, causes lung cancer in humans. Uranium may cause lung cancer and tumors of the lymphatic and hematopoietic tissues. EPA has not classified uranium, radon or radium for carcinogenicity. Please Note: The main sources of information for this fact sheet are EPA's Integrated Risk Information System (IRIS) (5), which contains information on oral chronic toxicity and the RfD for uranium, and the Agency for Toxic Substances and Disease Registry's (ATSDR's) Toxicological Profiles for Uranium, Radium, and Radon. (1) Uses Uranium is used in nuclear power plants and nuclear weapons. Very small amounts are used in photography for toning, in the leather and wood industries for stains and dyes, and in the silk and wood industries. (2) Radium is used as a radiation source for treating neoplastic diseases, as a radon source, in radiography of metals, and as a neutron source for research.
    [Show full text]
  • The Basic Interactions Between Photons and Charged Particles With
    Outline Chapter 6 The Basic Interactions between • Photon interactions Photons and Charged Particles – Photoelectric effect – Compton scattering with Matter – Pair productions Radiation Dosimetry I – Coherent scattering • Charged particle interactions – Stopping power and range Text: H.E Johns and J.R. Cunningham, The – Bremsstrahlung interaction th physics of radiology, 4 ed. – Bragg peak http://www.utoledo.edu/med/depts/radther Photon interactions Photoelectric effect • Collision between a photon and an • With energy deposition atom results in ejection of a bound – Photoelectric effect electron – Compton scattering • The photon disappears and is replaced by an electron ejected from the atom • No energy deposition in classical Thomson treatment with kinetic energy KE = hν − Eb – Pair production (above the threshold of 1.02 MeV) • Highest probability if the photon – Photo-nuclear interactions for higher energies energy is just above the binding energy (above 10 MeV) of the electron (absorption edge) • Additional energy may be deposited • Without energy deposition locally by Auger electrons and/or – Coherent scattering Photoelectric mass attenuation coefficients fluorescence photons of lead and soft tissue as a function of photon energy. K and L-absorption edges are shown for lead Thomson scattering Photoelectric effect (classical treatment) • Electron tends to be ejected • Elastic scattering of photon (EM wave) on free electron o at 90 for low energy • Electron is accelerated by EM wave and radiates a wave photons, and approaching • No
    [Show full text]
  • 6.2.43A Radiation-Dominated Model of the Universe
    6 BIG BANG COSMOLOGY – THE EVOLVING UNIVERSE 6.2.43A radiation-dominated model of the Universe R We have just seen that in the early Universe, the dominant energy density is that due to the radiation within the Universe. The Friedmann equation that was described in Chapter 5 (Box 5.4) can be solved for such conditions and the way in which the scale factor varies with time for such a model is shown in Figure 6.7. One important feature of such a model is that the scale factor varies in the following way: R(t) ∝ t1/2 (6.17) 0 t −4 Because the energy density of radiation is dominant for times when R(t)/R(t0) < 10 , all cosmological models which start at t = 0 with R(0) = 0, will go through a phase Figure 6.73The evolution of the that is well described by this radiation-dominated model. Thus we are in the rather scale factor with time in a remarkable position that regardless of which type of cosmological model best cosmological model in which the dominant contribution to the describes the Universe at the present, we can be reasonably confident that we energy density arises from the know how the scale factor varied with time in the first few tens of thousands of radiation within the Universe years of the big bang. (i.e. during the radiation-dominated However, the temperature of the background radiation varies with scale factor era). according to T(t) ∝ 1/R(t) (Equation 6.6). It follows that during the radiation- dominated era the temperature of the background radiation varies with time according to T(t) ∝ t −1/2 (6.18) This describes how temperature changes with time in an expanding universe where the energy density of radiation is the dominant component.
    [Show full text]
  • PE1128 Radiation Exposure in Medical Imaging
    Radiation Exposure in Medical Imaging This handout answers questions about radiation exposure and what Seattle Children’s Hospital is doing to keep your child safe. Medical imaging uses machines and techniques to provide valuable information about your child’s health. It plays an important role in helping your doctor make the correct diagnosis. Some of these machines use radiation to get these images. We are all exposed to small amounts of radiation in normal daily life from soil, rocks, air, water and even some of the foods we eat. This is called background radiation. The amount of background radiation that you are exposed to depends on where you live and varies throughout the country. The average person in the United States receives about 3 milli-Sieverts (mSv) per year from background radiation. A mSv is a unit of measurement for radiation, like an inch is a unit of length. Which medical MRI and ultrasound do not use ionizing (high-energy) radiation to make imaging exams images. MRI uses magnets and radio waves, and ultrasound uses sound waves. use radiation? Diagnostic An X-ray is a form of energy that can pass through your child’s bones and Radiography tissues to create an image. The image created is called a radiograph, sometimes referred to as an “X-ray.” X-rays are used to detect and diagnose conditions in the body. CT scan A CT (computed tomography) scan, sometimes called a “CAT scan,” uses X-rays, special equipment, and computers to make pictures that provide a multidimensional view of a body part.
    [Show full text]
  • Quantum Electric Field Fluctuations and Potential Scattering
    Quantum Electric Field Fluctuations and Potential Scattering Haiyun Huang1, ∗ and L. H. Ford1, y 1Institute of Cosmology, Department of Physics and Astronomy Tufts University, Medford, Massachusetts 02155, USA Abstract Some physical effects of time averaged quantum electric field fluctuations are discussed. The one loop radiative correction to potential scattering are approximately derived from simple arguments which invoke vacuum electric field fluctuations. For both above barrier scattering and quantum tunneling, this effect increases the transmission probability. It is argued that the shape of the potential determines a sampling function for the time averaging of the quantum electric field oper- ator. We also suggest that there is a nonperturbative enhancement of the transmission probability which can be inferred from the probability distribution for time averaged electric field fluctuations. PACS numbers: 03.70.+k, 12.20.Ds, 05.40.-a arXiv:1503.02962v1 [hep-th] 10 Mar 2015 ∗Electronic address: [email protected] yElectronic address: [email protected] 1 I. INTRODUCTION The vacuum fluctuations of the quantized electromagnetic field give rise a number of physical effects, including the Casimir effect, the Lamb shift, and the anomalous magnetic moment of the electron. Many of these effects are calculated in perturbative quantum electrodynamics, often by a procedure which does not easily lend itself to an interpretation in terms of field fluctuations. An exception is Welton's [1] calculation of the dominant contribution to the Lamb shift, which leads to a simple physical picture in which electric field fluctuations cause an electron in the 2s state of hydrogen to be shifted upwards in energy.
    [Show full text]
  • General Terms for Radiation Studies: Dose Reconstruction Epidemiology Risk Assessment 1999
    General Terms for Radiation Studies: Dose Reconstruction Epidemiology Risk Assessment 1999 Absorbed dose (A measure of potential damage to tissue): The Bias In epidemiology, this term does not refer to an opinion or amount of energy deposited by ionizing radiation in a unit mass point of view. Bias is the result of some systematic flaw in the of tissue. Expressed in units of joule per kilogram (J/kg), which design of a study, the collection of data, or in the analysis of is given the special name Agray@ (Gy). The traditional unit of data. Bias is not a chance occurrence. absorbed dose is the rad (100 rad equal 1 Gy). Biological plausibility When study results are credible and Alpha particle (ionizing radiation): A particle emitted from the believable in terms of current scientific biological knowledge. nucleus of some radioactive atoms when they decay. An alpha Birth defect An abnormality of structure, function or body particle is essentially a helium atom nucleus. It generally carries metabolism present at birth that may result in a physical and (or) more energy than gamma or beta radiation, and deposits that mental disability or is fatal. energy very quickly while passing through tissue. Alpha particles cannot penetrate the outer, dead layer of skin. Cancer A collective term for malignant tumors. (See “tumor,” Therefore, they do not cause damage to living tissue when and “malignant”). outside the body. When inhaled or ingested, however, alpha particles are especially damaging because they transfer relatively Carcinogen An agent or substance that can cause cancer. large amounts of ionizing energy to living cells.
    [Show full text]
  • What Is Electromagnetic Radiation?
    WHATHAT ISIS ELELECTRT R OMAGNETICOMAGNETIC RADIAADIATITIONON? MEET A PLANETARY SCIENTIST — Dr. Carlé Pieters, Brown University How are radio waves, visible light, and X-rays similar? They are all types of electromagnetic radiation. All three travel — radiate — What do you do? and are made or detected by electronic (or magnetic) sensors, like a T.V., a digital camera, or a dentist’s X-ray machine. Types of electromagnetic radiation with which we are most familiar include ultraviolet light (causing sunburn), infrared light (in remote controls), and microwaves (in ovens). Electromagnetic radiation is made of electromagnetic waves. It is classified by the distance from the crest of one wave to the crest of the next — the wavelength. These waves can be thousands of miles long, like radiowaves, or smaller than an atom, like gamma rays! Collectively, these wavelengths make a spectrum — the electromagnetic spectrum. The shorter the wavelength, the more energetic the electromagnetic radiation. Radio waves, including microwaves, have long wavelengths and relatively low energy levels. Visible light, ultraviolet rays, X-rays, and gamma rays have shorter wavelengths and correspondingly higher levels of energy. The wavelengths of ultraviolet light, X-rays, and gamma rays are short enough to interact with human tissue and even alter DNA. What have you investigated on the Moon? Radiation Cosmic and Ultraviolet Visible Infrared Type X-Rays Microwaves and Radio Waves Gamma Rays Light Light Light 0.01 10 400 700 1 million nanometers nanometers nanometers nanometers nanometers Relative Why should we return to the Moon? Size tip of atomic atom molecule bacterium butterflyastronaut buildings nucleus a pin (you!) WHATHAT ISIS REFLECTANCEEFLECTANCE SPECPECTRTROSCOPYOSCOPY? If someone wants to become a scientist, what should they do? Spectroscopy is the study of the electromagnetic radiation emitted, absorbed, or reflected by an object.
    [Show full text]
  • Radiation Glossary
    Radiation Glossary Activity The rate of disintegration (transformation) or decay of radioactive material. The units of activity are Curie (Ci) and the Becquerel (Bq). Agreement State Any state with which the U.S. Nuclear Regulatory Commission has entered into an effective agreement under subsection 274b. of the Atomic Energy Act of 1954, as amended. Under the agreement, the state regulates the use of by-product, source, and small quantities of special nuclear material within said state. Airborne Radioactive Material Radioactive material dispersed in the air in the form of dusts, fumes, particulates, mists, vapors, or gases. ALARA Acronym for "As Low As Reasonably Achievable". Making every reasonable effort to maintain exposures to ionizing radiation as far below the dose limits as practical, consistent with the purpose for which the licensed activity is undertaken. It takes into account the state of technology, the economics of improvements in relation to state of technology, the economics of improvements in relation to benefits to the public health and safety, societal and socioeconomic considerations, and in relation to utilization of radioactive materials and licensed materials in the public interest. Alpha Particle A positively charged particle ejected spontaneously from the nuclei of some radioactive elements. It is identical to a helium nucleus, with a mass number of 4 and a charge of +2. Annual Limit on Intake (ALI) Annual intake of a given radionuclide by "Reference Man" which would result in either a committed effective dose equivalent of 5 rems or a committed dose equivalent of 50 rems to an organ or tissue. Attenuation The process by which radiation is reduced in intensity when passing through some material.
    [Show full text]
  • UV Radiation (PDF)
    United States Air and Radiation EPA 430-F-10-025 Environmental Protection 6205J June 2010 Agency www.epa.gov/ozone/strathome.html UV Radiation This fact sheet explains the types of ultraviolet radiation and the various factors that can affect the levels reaching the Earth’s surface. The sun emits energy over a broad spectrum of wavelengths: visible light that you see, infrared radiation that you feel as heat, and ultraviolet (UV) radiation that you can’t see or feel. UV radiation has a shorter wavelength and higher energy than visible light. It affects human health both positively and negatively. Short exposure to UVB radiation generates vitamin D, but can also lead to sunburn depending on an individual’s skin type. Fortunately for life on Earth, our atmosphere’s stratospheric ozone layer shields us from most UV radiation. What does get through the ozone layer, however, can cause the following problems, particularly for people who spend unprotected time outdoors: ● Skin cancer ● Suppression of the immune system ● Cataracts ● Premature aging of the skin Did You Since the benefits of sunlight cannot be separated from its damaging effects, it is important to understand the risks of overexposure, and take simple precautions to protect yourself. Know? Types of UV Radiation Ultraviolet (UV) radiation, from the Scientists classify UV radiation into three types or bands—UVA, UVB, and UVC. The ozone sun and from layer absorbs some, but not all, of these types of UV radiation: ● tanning beds, is UVA: Wavelength: 320-400 nm. Not absorbed by the ozone layer. classified as a ● UVB: Wavelength: 290-320 nm.
    [Show full text]