Technical Paper HDR Demystified

Total Page:16

File Type:pdf, Size:1020Kb

Technical Paper HDR Demystified Technical Paper HDR Demystified EMERGING UHDTV SYSTEMS By Tom Schulte, with Joel Barsotti The CE industry is currently migrating from High High Dynamic Range is the capability to represent a Definition TV (HDTV) to Ultra High Definition TV large luminance variation in the video signal, i.e., (UHDTV). In addition to higher resolution, UHDTV from very dark values (0.00005 cd/m2) to very benefits greatly from additional visual quality bright values (greater than 1000 cd/m2). Existing enhancements like Higher Dynamic Range (HDR) systems, now referred to as Standard Dynamic and Wide Color Gamut (WCG). Range (SDR), support luminance values only in the These enhanced features have been received very range of 0.0002 to 100 cd/m2. positively by consumers, and CE manufacturers are HDR creates brighter whites, darker blacks, and moving very quickly to introduce equipment to the brighter colors that better match images we see in market with various levels of UHD capability. This the real world. The enhanced image quality due to fast movement in the industry has left many of us HDR is appreciable under virtually any viewing confused about UHDTV capabilities, proposed condition. system features, system compatibility, and standards. Wide Color Gamut (WCG) – A TV’s color gamut In this preliminary draft document, we attempt to indicates the level of saturation and number of colors shed some light on High Dynamic Range and Wide that a TV can produce. Wide Color Gamut indicates Color Gamut, the two significant features of UHDTV the capability of displaying images with a wider that will affect how we test and calibrate the image range of colors than have been supported by accuracy of these new generation TVs. conventional systems. We cover the different industry proposals related to Video systems up to now have been based on the HDR and WCG and we briefly discuss how CalMAN BT.709 and BT.601 color spaces, which contain display calibration software addresses these new only a small percentage (about 33.5%) of all 1976 technologies. CIE visible chromaticity values. This legacy color space leaves a large set of visible colors that cannot UHDTV Capabilities be rendered on SDTV or HDTV displays. The new UHDTV system comprises a number of Note: The NTSC color gamut was never used, even advanced technologies. Those technologies include: for the NTSC system, and is totally irrelevant. Larger color spaces, such as DCI-P3 and BT.2020 High Resolution Video – Higher spatial resolution can represent a much larger set of visible colors was the first promoted feature of UHDTV. A UHD (about 41.8% and 57.3% respectively). Displays TV's native resolution will be 3840x2160 pixels. capable of producing a majority of these color This is four times the total number of pixels spaces can render more colorful and realistic produced by HDTV at 1920x1080. However, the content. visible resolution improvement over HDTV could be less pronounced in a home environment, due to the The UHD spec will call for a wider color gamut, limitations of human visual acuity, screen size, and creating more vivid colors and more detailed color home viewing distances. gradation than with HDTVs. High Dynamic Range (HDR) – The dynamic range of a TV refers to its luminance, the maximum and minimum amount of light the TV is capable of producing. SpectraCal, Inc. Page 1 HDR Demystified continued High Dynamic Range (HDR) not increase an image’s dynamic range, nor does it involve the method with which the image is High dynamic range will potentially provide the transmitted to a display device or the method with most significant UHD picture quality improvement which the image is rendered on the display. over HDTV. HDR provides a more lifelike range of image light levels than previously possible. High Dynamic Range TV – HDR TV is not about overcoming limitations on the capture end, as with The average picture level (APL) of UHD images consumer photography. Professional film and digital will remain fairly consistent with HDTV images, but video cameras have long had greater dynamic range the black level detail will be enhanced and the than the 6 exposure stops (or a few more with highest luminance levels will occur only in specular camera s-curves and grading correction) supported highlights within the HDR images. by the BT.709 HDTV SDR system. (An exposure The contrast range and light levels in specular stop is a doubling or halving of light.) Most digital highlights will increase dramatically, coming closer cinema cameras today can capture at least 14 stops to reproducing the rich contrast, tonal details, and of exposure range, but this wide dynamic range is bright picture highlights that we see in the real not currently preserved, even for cinema world. HDR, along with wide color gamut, enables a presentation. HDR grading for the home can be more natural saturation of bright colors, without the delivered with 8-10 stops of exposure range. artificially muted saturation inherent in the BT.709 HDR TV is also not primarily about overcoming HDTV system (figure 1). limitations on the playback end. Late model TVs have become capable of displaying much brighter images than the current BT.709 HDTV luminance spec of 100 cd/m2 (now commonly known as nits). Even before the push to HDR, many TVs with LED backlights could produce brighter colors than the BT.709 standard and could produce peak luminance Figure 1: HDR produces bright highlights, but it levels over 400 nits. Current displays can produce also yields brighter, natural colors and improved greater dynamic range than the current specifications shadow detail. Image credit: Scott Wilkinson, for the content distribution chain can handle. Trends AVS Forum post suggest that HDR-capable consumer TVs should be High Dynamic Range Photography – The first able to produce "specular highlights" with luminance experience many of us had with HDR was with a of 1,000-1,500 nits or brighter in the next few years. smartphone camera that provided an HDR function. HDR photography is about overcoming the limitations of consumer image sensors to increase an image’s exposure range. It typically does this by automatically capturing three images, at different exposures, then combining the best exposed parts of the three images into a single HDR photo. This results in a captured image with increased tonal detail in both the dark and bright areas of the photo. However, there is no expanded range; it does not make the dark areas of the photo darker or the bright areas of the photo brighter. HDR photography entirely involves optimizing the Figure 2: The original dynamic range of captured image exposure capture process, basically to tone content will be able to be substantially preserved by a new HDR TV system, compared map an HDR image into an SDR container. It does to the current SDR TV system. Image credit: Dolby SpectraCal, Inc. Page 2 HDR Demystified continued Dual modulation backlights and zone LED delivery system that includes the criterion of backlighting were both introduced prior to HDR and backward compatibility of HDR content with SDR are prime enablers of HDR, but until now we displays. couldn’t fully take advantage of these technologies. CTA – The Consumer Technology Association TVs with LED backlights, OLED displays, or (CTA), formerly the Consumer Electronics quantum dots can also produce a wider range of Association (CEA), has defined the following colors, including more highly saturated colors, minimum guidelines for a TV, monitor, or projector which also look brighter. To accurately render to be referred to as an HDR-Compatible Display: BT.709 images, HDTVs currently need to limit any • Includes at least one interface that supports of these enhanced capabilities. HDR signaling. The main challenges that need to be addressed to • Receives and processes static HDR metadata. enable HDR TV are primarily the specifications and (An HDMI input needs to be HDMI 2.0a to systems for the middle processes of mastering, pass HDR metadata.) encoding and delivering TV images to consumer display devices. • Receives and processes the HDR10 Media Profile from IP, HDMI or other video delivery sources. This requires HDMI 2.0a. Other HDR TV Standards media profiles may additionally be supported. Standards have been and continue to be formulated • Applies an appropriate Electro-Optical for every aspect of HDR content creation, transport, Transfer Function (EOTF) before rendering delivery, and display. The International the image. Telecommunications Union (ITU), Society of Motion Picture and Television Engineers (SMPTE), UHD Alliance – The UHD Alliance is a multi- Consumer Electronics Association (CEA), Motion industry alliance that formed to promote UHD Picture Experts Group (MPEG), and the Blu-ray standards development and UHD branding and Disc Association (BDA) have all developed certification. The alliance members include all major standards relating to some aspect of UHDTV and production studios, content distributors, and display HDR. manufacturers. SMPTE – SMPTE ST2084:2014 (and CEA-861-3) The UHD Alliance has defined an ULTRA HD standardizes an Electro-Optical Transfer Function PREMIUM certification and logo for devices, (EOTF) for HDR that was developed by Dolby Labs content and services that meet the following to define the process by which digital code words are minimum UHD specs. converted into visible light. • Resolution: 3840x2160 for content, SMPTE – SMPTE standard ST2086:2014 defines distribution, and playback displays. static metadata; metadata that does not change • Color bit depth: 10 bits minimum for content during playback of the associated video content. and distribution, 10 bits for playback displays. • Color representation: BT.2020 for content, SMPTE standard ST2094, which is being considered distribution, and playback displays. in committee, along with CEA-861-G/HDMI 2.x, • Mastering display; transfer function: SMPTE will define content-dependent (dynamic) metadata.
Recommended publications
  • Spectracal Videoforge Pro Se
    Setup Guide By Rev. 1.7 CalMAN Setup Guide: SpectraCal VideoForge PRO Introduction The SpectraCal VideoForge PRO test pattern generator can be automatically controlled by the CalMAN Display Calibration Software to produce measurement and calibration test patterns via HDMI for SDR and HDR displays at resolutions from 640x480 up to 3840x2160. CalMAN Required Version • Version 5.8.31 or later CalMAN Recommended Workflows • All available measurement and calibration workflows VideoForge PRO Supported Firmware • Version 1.01 or later VideoForge PRO Control Port • Mini USB VideoForge PRO Connection to Computer The VideoForge PRO uses the FTDI USB device driver. 1. Install the FTDI driver before you connect the VideoForge PRO to your computer. The FTDI driver is available: o As part of the CalMAN Device Driver Pack (http://www.spectracal.com/download.php?id=3), or o From the FTDI web site (http://www.ftdichip.com/FTDrivers.htm). When the driver is properly installed, the Murideo will be listed in Device Manager under Ports (COM & LPT) as "USB Serial Port 2 CalMAN Setup Guide: SpectraCal VideoForge PRO (COMx)." If it is not listed that way, the driver is not yet properly installed. 2. Connect the VideoForge PRO to the CalMAN computer with a USB cable. CalMAN Connection to VideoForge PRO 1. When the VideoForge PRO is properly connected to the computer, launch CalMAN. CalMAN will automatically connect to the VideoForge PRO. 2. If the VideoForge PRO is plugged into the CalMAN computer after CalMAN is open, it can be connected by clicking the Find Source button on the CalMAN Source Settings tab.
    [Show full text]
  • What Is Dolby Vision?
    Dolby Vision™ for the Home 1 WHAT IS DOLBY VISION? Dolby Vision™ transforms the way you experience movies, TV shows, and games with incredible brightness, contrast, and color that bring entertainment to life before your eyes. By fully leveraging the maximum potential of new cinema projection technology and new TVs’ display capabilities, Dolby Vision delivers high-dynamic-range (HDR) and wide-color-gamut content. The result is a refined, lifelike image that will make you forget you are looking at a screen. Current consumer video delivery and cinema standards are based on the limitations of old technologies and require altering the original content before it can be reproduced for playback—dramatically reducing the range of colors, brightness, and contrast from that captured by modern cameras. Dolby Vision changes that, giving creative teams the confidence that images will be reproduced faithfully on TVs, PCs, and mobile devices that feature Dolby Vision. Dolby Vision is a natural complement to Dolby Atmos®. It gives movie, television, and game creators the tools they need to create experiences that preserve the creative intent and let consumers experience truly immersive content without compromise. For manufacturers of televisions, game consoles, personal computers, and mobile devices, Dolby Vision unlocks the full capabilities of their hardware and creates a premium experience that can increase use and enjoyment of these products. 2 DOLBY VISION: ROOTED IN THE SCIENCE OF THE HUMAN VISUAL SYSTEM There are three ways to improve picture quality for movies, TV shows, games, and user-generated content: • More pixels: 4K, 8K, and beyond • Higher frame rate (HFR) • Better pixels (high dynamic range and wider color gamut): Dolby Vision 4K televisions have “more pixels,” and newer standards for UHD TV also include high frame rates, but these standards don’t make each pixel able to better represent the full range of brightness we see in reality.
    [Show full text]
  • Creating 4K/UHD Content Poster
    Creating 4K/UHD Content Colorimetry Image Format / SMPTE Standards Figure A2. Using a Table B1: SMPTE Standards The television color specification is based on standards defined by the CIE (Commission 100% color bar signal Square Division separates the image into quad links for distribution. to show conversion Internationale de L’Éclairage) in 1931. The CIE specified an idealized set of primary XYZ SMPTE Standards of RGB levels from UHDTV 1: 3840x2160 (4x1920x1080) tristimulus values. This set is a group of all-positive values converted from R’G’B’ where 700 mv (100%) to ST 125 SDTV Component Video Signal Coding for 4:4:4 and 4:2:2 for 13.5 MHz and 18 MHz Systems 0mv (0%) for each ST 240 Television – 1125-Line High-Definition Production Systems – Signal Parameters Y is proportional to the luminance of the additive mix. This specification is used as the color component with a color bar split ST 259 Television – SDTV Digital Signal/Data – Serial Digital Interface basis for color within 4K/UHDTV1 that supports both ITU-R BT.709 and BT2020. 2020 field BT.2020 and ST 272 Television – Formatting AES/EBU Audio and Auxiliary Data into Digital Video Ancillary Data Space BT.709 test signal. ST 274 Television – 1920 x 1080 Image Sample Structure, Digital Representation and Digital Timing Reference Sequences for The WFM8300 was Table A1: Illuminant (Ill.) Value Multiple Picture Rates 709 configured for Source X / Y BT.709 colorimetry ST 296 1280 x 720 Progressive Image 4:2:2 and 4:4:4 Sample Structure – Analog & Digital Representation & Analog Interface as shown in the video ST 299-0/1/2 24-Bit Digital Audio Format for SMPTE Bit-Serial Interfaces at 1.5 Gb/s and 3 Gb/s – Document Suite Illuminant A: Tungsten Filament Lamp, 2854°K x = 0.4476 y = 0.4075 session display.
    [Show full text]
  • Ultra HD Playout & Delivery
    Ultra HD Playout & Delivery SOLUTION BRIEF The next major advancement in television has arrived: Ultra HD. By 2020 more than 40 million consumers around the world are projected to be watching close to 250 linear UHD channels, a figure that doesn’t include VOD (video-on-demand) or OTT (over-the-top) UHD services. A complete UHD playout and delivery solution from Harmonic will help you to meet that demand. 4K UHD delivers a screen resolution four times that of 1080p60. Not to be confused with the 4K digital cinema format, a professional production and cinema standard with a resolution of 4096 x 2160, UHD is a broadcast and OTT standard with a video resolution of 3840 x 2160 pixels at 24/30 fps and 8-bit color sampling. Second-generation UHD specifications will reach a frame rate of 50/60 fps at 10 bits. When combined with advanced technologies such as high dynamic range (HDR) and wide color gamut (WCG), the home viewing experience will be unlike anything previously available. The expected demand for UHD content will include all types of programming, from VOD movie channels to live global sporting events such as the World Cup and Olympics. UHD-native channel deployments are already on the rise, including the first linear UHD channel in North America, NASA TV UHD, launched in 2015 via a partnership between Harmonic and NASA’s Marshall Space Flight Center. The channel highlights incredible imagery from the U.S. space program using an end-to-end UHD playout, encoding and delivery solution from Harmonic. The Harmonic UHD solution incorporates the latest developments in IP networking and compression technology, including HEVC (High- Efficiency Video Coding) signal transport and HDR enhancement.
    [Show full text]
  • Encoding H.264 Video for Streaming and Progressive Download
    W4: KEY ENCODING SKILLS, TECHNOLOGIES TECHNIQUES STREAMING MEDIA EAST - 2019 Jan Ozer www.streaminglearningcenter.com [email protected]/ 276-235-8542 @janozer Agenda • Introduction • Lesson 5: How to build encoding • Lesson 1: Delivering to Computers, ladder with objective quality metrics Mobile, OTT, and Smart TVs • Lesson 6: Current status of CMAF • Lesson 2: Codec review • Lesson 7: Delivering with dynamic • Lesson 3: Delivering HEVC over and static packaging HLS • Lesson 4: Per-title encoding Lesson 1: Delivering to Computers, Mobile, OTT, and Smart TVs • Computers • Mobile • OTT • Smart TVs Choosing an ABR Format for Computers • Can be DASH or HLS • Factors • Off-the-shelf player vendor (JW Player, Bitmovin, THEOPlayer, etc.) • Encoding/transcoding vendor Choosing an ABR Format for iOS • Native support (playback in the browser) • HTTP Live Streaming • Playback via an app • Any, including DASH, Smooth, HDS or RTMP Dynamic Streaming iOS Media Support Native App Codecs H.264 (High, Level 4.2), HEVC Any (Main10, Level 5 high) ABR formats HLS Any DRM FairPlay Any Captions CEA-608/708, WebVTT, IMSC1 Any HDR HDR10, DolbyVision ? http://bit.ly/hls_spec_2017 iOS Encoding Ladders H.264 HEVC http://bit.ly/hls_spec_2017 HEVC Hardware Support - iOS 3 % bit.ly/mobile_HEVC http://bit.ly/glob_med_2019 Android: Codec and ABR Format Support Codecs ABR VP8 (2.3+) • Multiple codecs and ABR H.264 (3+) HLS (3+) technologies • Serious cautions about HLS • DASH now close to 97% • HEVC VP9 (4.4+) DASH 4.4+ Via MSE • Main Profile Level 3 – mobile HEVC (5+)
    [Show full text]
  • 55PUS7906/12 Philips 4K UHD Android TV
    Philips LED 4K UHD Android TV Vibrant picture. Smooth motion. Magical light 3-sided Ambilight TV Major HDR formats supported Dolby Vision and Dolby Atmos 4K UHD HDR Android TV 139 cm (55") Android TV The action leaps from the screen with this Philips 4K Android TV. HDR content looks great, and Ambilight makes movies, shows, and games feel bigger and more immersive. Dolby Atmos gives you premium sound to match the brilliant picture. Looks great off or on • Vibrant HDR picture. Philips 4K UHD TV. • The one with magical Ambilight. Only from Philips. • Slim, attractive design • Grey bezel. Slender feet. Smooth motion. Great color and depth. • Cinematic vision and sound. Dolby Vision and Dolby Atmos • Great for gaming. Low latency on any console. 55PUS7906 Content at your command. • Simply smart. Android TV. • Voice control. The Google Assistant. Works with Alexa. 4K UHD Android TV 55PUS7906/12 3-sided Ambilight TV Major HDR formats supported, Dolby Vision and Dolby Atmos, 139 cm (55") Android TV Highlights 3-sided Ambilight Simply smart. Android TV HDMI 2.1 VRR and low latency Your Philips TV boasts the latest HDMI 2.1 connectivity, and the TV automatically With Philips Ambilight every moment feels Your Philips Android TV gives you the content switches to a low latency setting when you closer. Intelligent LEDs around the edge of the you want-when you want it. You can start playing a game on your console. VRR is TV respond to the on-screen action and emit customize the home screen to display your supported for smooth fast-action gameplay.
    [Show full text]
  • OLED C8 PTA (77", 65", 55") OLED TV LG OLED TV AI Thinqtm
    OLED C8 PTA (77", 65", 55") OLED TV LG OLED TV AI ThinQTM DISPLAY & PICTURE QUALITY SMART SHARE Screen Type OLED Network File Browser ● Screen size 55" (139cm), 65" (164cm), 77" (195cm) Miracast 12 ● Resolution 3840 x 2160 Smartphone Remote App 13 LG TV Plus Field Refresh Rate (Hz) - AUDIO FEATURES Response Time Less than 1ms Audio Output 40W 2 way 4 speaker HDR10 - High Dynamic Range 1 ● Speaker System (2 x High-Mid-range, 2 x Woofers) EAC3, HE-AAC, AAC, MP2, MP3, PCM, DTS, DTS-HD, DTS Express, WMA, apt-X, ADPCM, Dolby Vision ™ ● Audio Decoder LPCM, MPEG-1, Dolby Digital, Dolby Digital Plus, Dolby AC-4 HLG (Hybrid Log Gamma) 2 ● Virtual Surround Dolby Atmos Wide Colour Gamut ● Bluetooth Headphone Compartible ● (BT V4.2 +) Nano Cell Technology - Clear Voice Clear Voice III 6 (Standard, Cinema, Clear Voice III, Cricket(Sports), Backlight Type None Sound Modes Music, Game) Perfect Black ● Adaptive Sound Control ● Local Dimming ● (Pixel) Bluetooth Audio Playback ● ULTRA Luminance ● (Pro) Sound Sync Wireless (LG TV) 14 ● Screen Design Flat Audio Return Channel (ARC) 15 ● (HDMI 2) 10 (Vivid, Standard, Technicolor, APS, Cinema, Cricket, Game, Picture Modes CONNECTIONS HDR Effect, ISF Bright Room, ISF Dark Room) HDR Picture Modes 6 (Vivid, Standard, Technicolor, Cinema Home, Cinema, Game) HDMI 16 ● (4) Dolby Vision ™ Picture Modes 5 (Vivid, Standard, Cinema Home, Cinema, Game) USB 2.0 ● (3) Colour Bit Depth 10-bit RF Antenna Input ● (1) HDR Effect ● Component/Composite Input ● (Phone Jack Type - Shared Audio) HDR Game Mode ● Headphone (3.5mm)
    [Show full text]
  • Khronos Data Format Specification
    Khronos Data Format Specification Andrew Garrard Version 1.2, Revision 1 2019-03-31 1 / 207 Khronos Data Format Specification License Information Copyright (C) 2014-2019 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. This version of the Data Format Specification is published and copyrighted by Khronos, but is not a Khronos ratified specification. Accordingly, it does not fall within the scope of the Khronos IP policy, except to the extent that sections of it are normatively referenced in ratified Khronos specifications. Such references incorporate the referenced sections into the ratified specifications, and bring those sections into the scope of the policy for those specifications. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible.
    [Show full text]
  • Yasser Syed & Chris Seeger Comcast/NBCU
    Usage of Video Signaling Code Points for Automating UHD and HD Production-to-Distribution Workflows Yasser Syed & Chris Seeger Comcast/NBCU Comcast TPX 1 VIPER Architecture Simpler Times - Delivering to TVs 720 1920 601 HD 486 1080 1080i 709 • SD - HD Conversions • Resolution, Standard Dynamic Range and 601/709 Color Spaces • 4:3 - 16:9 Conversions • 4:2:0 - 8-bit YUV video Comcast TPX 2 VIPER Architecture What is UHD / 4K, HFR, HDR, WCG? HIGH WIDE HIGHER HIGHER DYNAMIC RESOLUTION COLOR FRAME RATE RANGE 4K 60p GAMUT Brighter and More Colorful Darker Pixels Pixels MORE FASTER BETTER PIXELS PIXELS PIXELS ENABLED BY DOLBYVISION Comcast TPX 3 VIPER Architecture Volume of Scripted Workflows is Growing Not considering: • Live Events (news/sports) • Localized events but with wider distributions • User-generated content Comcast TPX 4 VIPER Architecture More Formats to Distribute to More Devices Standard Definition Broadcast/Cable IPTV WiFi DVDs/Files • More display devices: TVs, Tablets, Mobile Phones, Laptops • More display formats: SD, HD, HDR, 4K, 8K, 10-bit, 8-bit, 4:2:2, 4:2:0 • More distribution paths: Broadcast/Cable, IPTV, WiFi, Laptops • Integration/Compositing at receiving device Comcast TPX 5 VIPER Architecture Signal Normalization AUTOMATED LOGIC FOR CONVERSION IN • Compositing, grading, editing SDR HLG PQ depends on proper signal BT.709 BT.2100 BT.2100 normalization of all source files (i.e. - Still Graphics & Titling, Bugs, Tickers, Requires Conversion Native Lower-Thirds, weather graphics, etc.) • ALL content must be moved into a single color volume space. Normalized Compositing • Transformation from different Timeline/Switcher/Transcoder - PQ-BT.2100 colourspaces (BT.601, BT.709, BT.2020) and transfer functions (Gamma 2.4, PQ, HLG) Convert Native • Correct signaling allows automation of conversion settings.
    [Show full text]
  • Developed by the Consumer Technology Association Video Division
    4K Ultra High-Definition TV A display system may be referred to as 4K Ultra High-Definition if it meets the following minimum performance attributes: Display Resolution – Has at least 8 million active pixels, with at least 3840 horizontally and at least 2160 vertically. Physical pixels shall be individually addressable such that the horizontal and vertical resolution above can be demonstrated over the full range of colors provided by the display. Aspect Ratio – The width to height ratio of the display’s native resolution is 16:9 or wider. Upconversion – The display is capable of upscaling HD video and displaying it at 4K Ultra High- Definition display resolution. Digital Input – Has one or more HDMI inputs supporting at least 3840x2160 native content resolution at 24p, 30p, & 60p frames per second. At least one of the 3840x2160 HDMI inputs shall support HDCP v2.2 or equivalent content protection. Colorimetry – Processes 2160p video inputs encoded according to ITU-R BT.709 color space, and may support wider colorimetry standards. Bit Depth – Has a minimum bit depth of 8 bits. Connected 4K Ultra High-Definition TV A display system may be referred to as Connected 4K Ultra High-Definition (or Connected 4K UHD) if it meets the following minimum performance attributes: 4K Ultra High-Definition Capability – Meets all of the requirements of CTA’s 4K Ultra High-Definition Display Characteristics V3. Video Codec – Decodes IP-delivered video of 3840x2160 resolution that has been compressed using HEVC* and may decode video from other standard encoders. Audio Codec – Receives and reproduces, and/or outputs multichannel audio.
    [Show full text]
  • Growing Importance of Color in a World of Displays and Data Color In
    Importance of Color in Displays Growing Importance of Color in a World of Displays and Data Color in displays Standards for color space and their importance The television and monitor display industry, through numerous standards bodies, including the International Telecommunication Union (ITU) and International Commission on Illumination (CIE), collaborate to create standards for interoperability, delivery, and image quality, providing a basis for delivering value to the consumers and businesses that purchase and rely on these displays. In addition to industry-wide standards, proprietary standards developed by commercial entities, such as Adobe RGB and Dolby Vision, drive innovation and customer value. The benefits of standards for color are tangible. They provide the means for: Color information to be device- and application-independent Maintaining color fidelity through the creation, editing, mastering, and broadcasting process Reproducing color accurately and consistently across diverse display devices By defining a uniform color space, encoding system, and broadcast specification relative to an ideal “reference display,” content can be created almost anywhere and transmitted to virtually any device. In order for that content to be shown correctly and in full detail, the display rendering it should be able to reproduce the same color space. While down-conversion to lesser color spaces is possible, the resulting image quality will be reduced. It benefits a consumer, whenever possible and within reasonable spending, to purchase a display with the closest conformance to standards so that they are assured of the best experience in terms of interoperability and image quality. The Color IQ optic that is referenced as Annex 3 of Exemption 39(b) allows displays to meet these standards, and does so at a lower system cost and higher energy efficiency than alternative solutions.
    [Show full text]
  • How Close Is Close Enough? Specifying Colour Tolerances for Hdr and Wcg Displays
    HOW CLOSE IS CLOSE ENOUGH? SPECIFYING COLOUR TOLERANCES FOR HDR AND WCG DISPLAYS Jaclyn A. Pytlarz, Elizabeth G. Pieri Dolby Laboratories Inc., USA ABSTRACT With a new high-dynamic-range (HDR) and wide-colour-gamut (WCG) standard defined in ITU-R BT.2100 (1), display and projector manufacturers are racing to extend their visible colour gamut by brightening and widening colour primaries. The question is: how close is close enough? Having this answer is increasingly important for both consumer and professional display manufacturers who strive to balance design trade-offs. In this paper, we present “ground truth” visible colour differences from a psychophysical experiment using HDR laser cinema projectors with near BT.2100 colour primaries up to 1000 cd/m2. We present our findings, compare colour difference metrics, and propose specifying colour tolerances for HDR/WCG displays using the ΔICTCP (2) metric. INTRODUCTION AND BACKGROUND From initial display design to consumer applications, measuring colour differences is a vital component of the imaging pipeline. Now that the industry has moved towards displays with higher dynamic range as well as wider, more saturated colours, no standardized method of measuring colour differences exists. In display calibration, aside from metamerism effects, it is crucial that the specified tolerances align with human perception. Otherwise, one of two undesirable situations might result: first, tolerances are too large and calibrated displays will not appear to visually match; second, tolerances are unnecessarily tight and the calibration process becomes uneconomic. The goal of this paper is to find a colour difference measurement metric for HDR/WCG displays that balances the two and closely aligns with human vision.
    [Show full text]