Ensemble Learning Algorithm Based on Multi-Parameters for Sleep Staging

Total Page:16

File Type:pdf, Size:1020Kb

Ensemble Learning Algorithm Based on Multi-Parameters for Sleep Staging Medical & Biological Engineering & Computing https://doi.org/10.1007/s11517-019-01978-z ORIGINAL ARTICLE Ensemble learning algorithm based on multi-parameters for sleep staging Qiangqiang Wang1 & Dechun Zhao1 & Yi Wang1 & Xiaorong Hou2 Received: 21 May 2018 /Accepted: 4 April 2019 # International Federation for Medical and Biological Engineering 2019 Abstract The aim of this study is to propose a high-accuracy and high-efficiency sleep staging algorithm using single-channel electroen- cephalograms (EEGs). The process consists four parts: signal preprocessing, feature extraction, feature selection, and classifi- cation algorithms. In the preconditioning of EEG, wavelet function and IIR filter are used for noise reduction. In feature selection, 15 feature algorithms in time domain, time-frequency domain, and nonlinearity are selected to obtain 30 feature parameters. Feature selection is very important for eliminating irrelevant and redundant features. Feature selection algorithms as Fisher score, Sequential Forward Selection (SFS), Sequential Floating Forward Selection (SFFS), and Fast Correlation-Based Filter Solution (FCBF) were used. The paper establishes a new ensemble learning algorithm based on stacking model. The basic layers are k- Nearest Neighbor (KNN), Random Forest (RF), Extremely Randomized Trees (ERT), Multi-layer Perceptron (MLP), and Extreme Gradient Boosting (XGBoost) and the second layer is a Logistic regression. Comparing classification of RF, Gradient Boosting Decision Tree (GBDT), and XGBoost, the accuracies and kappa coefficients are 96.67% and 0.96 using the proposed method. It is higher than other classification algorithms.The results show that the proposed method can accurately sleep staging using single-channel EEG and has a high ability to predict sleep staging. Keywords EEG signal . Sleep stage . Feature selection . Ensemble learning algorithm . Stacking 1 Introduction sleep (REM). NREM can be divided into N-REM1, N-REM2, N-REM3, and N-REM4. Sleep is an important physiological phenomenon and a neces- The sleep stage classification is classically performed by sary physiological process. Sleep can be used to analyze the identifying the characteristics extracted from cerebral rhythms. quality of sleep for sleep conditions and to detect certain The awake stage contains alpha (more than 50%) wave activity sleep-based diseases such as neurasthenia and cardiovascular and low-amplitude mixed-frequency activity. N-REM1 is the disease. It has important clinical significance and broad appli- transitional phase of the brain from the awake phase to the sleep cation prospects. Sleep stage is an important prerequisite for phase. It is manifested by the transition from the alpha wave (8– understanding sleep status. In 1968, Rechtschaffen and Kates 13 Hz) to theta wave (4–7Hz).IntheN-REM2,theEEGbrain propose R&K staging rules [26] based on factors such as wave with low amplitude was mainly composed of sleep spin- EEG, electrooculogram (EOG), eye movements in electromy- dle, k complex wave, and delta (0.5–2Hz)wave(lessthan ography (EMG), and muscle size during sleep. According to 20%). The delta (0.5–2 Hz) wave is the dominant wave in N- the rules, sleep is divided into the awake stage, the non-rapid REM3. In the N-REM4, the ratio of delta (0.5–2Hz)wavesis eye movement sleep (NREM), and the rapid eye movement higher than 50% and saw-tooth waves appear. In REM, brainwave waveform is similar to the NREM1/2, but there is a period of rapid eye movements during this period. This period * Dechun Zhao is also the main period of dreaming. [email protected] Figure 1 shows the brain activity during different periods of sleep. NREM and REM sleep occur in alternating cycles, each 1 Chongqing University of Posts and Telecommunications, lasting approximately 90–110 min (min) in adults, with ap- Chongqing, China proximately 4–6 cycles during the course of a normal 6–8-h 2 Chongqing Medical University, Chongqing, China (h) sleep period. Med Biol Eng Comput Fig. 1 EEG signals at different sleep stages In clinical practice, sleep stages are widely classified using et al. [56] used Support Vector Machine classification algo- manual judgment. Manual staging is based upon visual in- rithm (SVM) to get an 87.5% accuracy rate. In order to obtain spection of the EEG as well as the EOG and EMG traces. It higher accuracy rate, Kaveh et al. [42] used Fpz-Cz EEG has a high sleep recognition rate. However, it needs to be signals and RDSTFT as a feature algorithm. Then they used completed by expert visual analysis. It is subjective and inef- a random forest to perform four-stage sleep classification. A ficient and can easily lead to misjudgment. Automated sleep 92.5% accuracy rate was obtained. analysis has been around for almost 30 years [10]. Automated The most important part of the sleep staging algorithm is the sleep analysis uses modern signal processing technology to accuracy of identification [41]. Features are important factors that achieve effective and accurate staging. Arthur et al. [15]ex- affect recognition. How to select the feature parameters with high tracted the complexity and correlation coefficients and used accuracy is the key to the algorithm. Most papers do not specify the hidden Markov model (HMM) by C3 and C4 EEG data. this point in detail, and they are all based on their respective char- The accuracy rate of the algorithm was 80%. Luay et al. [18] acteristic parameters for the staging algorithm. In this paper, 30 extracted wavelet coefficients and used the regression tree feature parameters are derived from 15 feature algorithm groups, classification algorithm to classify sleep for six periods by which are highly reliable feature sets, are synthesized. The inte- Pz-Oz EEG signals. In this regard, they obtain a 75% accuracy grated feature set will inevitably have problems of redundancy rate. By using the C4-A1 EEG signal and a decision tree and time-consuming. Then, feature selection algorithm is used to classification algorithm (DT), Salih et al. [19]extractedthe obtain the optimal feature set. For sleep staging, most of the early Welch coefficients and divided EEG waves into six periods. classification algorithms are SVM and NN [1]. Currently, random The authors obtained an 82.15% accuracy rate finally. In an- forests are widely used in this field and get good results [18]. The other study, Thiago et al. [11] used Pz-Oz EEG signals to integration algorithm has many advantages. Random forest is a extract variance, skewness, and kurtosis. Then they obtained prominent representative. In this paper, 30 feature parameters are a 90.5% accuracy rate by using a random forest classification derived from 15 feature algorithms (Stacking) is proposed to in- algorithm (RF) to classify sleep into six periods. Farideh et al. tegrate random forest and other algorithms. Compared with sev- [13] who extracted wavelet packet coefficients by using Pz-Oz eral integration algorithms as RF, GBDT, and XGBoost, the sleep EEG signal, used Artificial Neural Network classification al- staging results are greatly improved. gorithm (ANN) to get a result a 93% accuracy rate when The paper is organized in the following manner: The first divided it into six periods. By Pz-Oz EEG signal and thinking part introduces current research status and the main research Different Visibility Graph (DVG) as a feature algorithm, Zhu results in the automatic stage of sleep. The second part Med Biol Eng Comput introduces the datum and the detailed algorithm including data preprocessing, feature extraction, feature selection, and clas- sification algorithms. The third part provides the results of feature selection algorithm and integrated classification algo- rithm through the simulation of MATLAB and python. The fourth part compares and discusses the accuracy. In the fifth part, it describes and summarizes the results of this paper and look forward to the direction of future research in the automat- ic staging of sleep. 2Methods 2.1 Data description and preprocessing Fig. 2 The raw signal and noise-reduced signal consist of the awake The data set used in the study was provided by the Sleep-EDF period in Pz-Oz, with a total of 3000 epochs. The raw EEG signal is database [23, 28]. It was obtained from Caucasian males and shown in the first plot, then the following is noise-reduced signal females (21–35 years old) without any medication. They con- tain horizontal EOG, Fpz-Cz, and Pz-Oz EEG, each sampled as features of sleep staging. Hjorth activity, Hjorth complexity, at 100 Hz. Hypnograms are manually scored according to Hjorth mobility, Energy (δ/α), LZ complexity, and the energy Rechtschaffen & Kales based on Fpz-Cz / Pz-Oz EEG instead of the four rhythmic waves (α, β, θ,andδ) are taken from of C4-A1 / C3-A2 EEG [50]. In this study, the Pz-Oz channel [29]. Fractal dimension, largest Lyapunov exponent, and EEG signal was selected to analyze and identify the sleep Hurst exponent are taken from [37]. Kurtosis and skewness stages because it can provide better automatic classification are taken from [45]. Tsallis entropy and permutation entropy accuracy than the Fpz-Cz channel [56]. The interval of each are taken from [43]. Fuzzy entropy is taken from [8]. Sample segment (or epoch) in this study is defined as 30 s and contains entropy is taken from [22]. Based on the important influence 3000 data points. The data composition is shown in Table 1. of four rhythmic waves on sleep staging in sleep staging, this The study uses an adaptive threshold discrete wavelet func- paper statistically makes the following feature selection: the tion and IIR filter function filtering method to reduce the noise standard deviation of four rhythm waves (α, β, θ,andδ)and of EEG signals, which can effectively improve the signal-to- maximum value of four rhythm waves (α, β, θ,andδ). All the noise ratio of the signal.
Recommended publications
  • A Study of EEG Feature Complexity in Epileptic Seizure Prediction
    applied sciences Article A Study of EEG Feature Complexity in Epileptic Seizure Prediction Imene Jemal 1,2,∗, Amar Mitiche 1 and Neila Mezghani 2,3 1 INRS-Centre Énergie, Matériaux et Télécommunications, Montréal, QC H5A 1K6, Canada; [email protected] 2 Centre de Recherche LICEF, Université TÉLUQ, Montréal, QC H2S 3L4, Canada; [email protected] 3 Laboratoire LIO, Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada * Correspondence: [email protected] Abstract: The purpose of this study is (1) to provide EEG feature complexity analysis in seizure prediction by inter-ictal and pre-ital data classification and, (2) to assess the between-subject variability of the considered features. In the past several decades, there has been a sustained interest in predicting epilepsy seizure using EEG data. Most methods classify features extracted from EEG, which they assume are characteristic of the presence of an epilepsy episode, for instance, by distinguishing a pre-ictal interval of data (which is in a given window just before the onset of a seizure) from inter-ictal (which is in preceding windows following the seizure). To evaluate the difficulty of this classification problem independently of the classification model, we investigate the complexity of an exhaustive list of 88 features using various complexity metrics, i.e., the Fisher discriminant ratio, the volume of overlap, and the individual feature efficiency. Complexity measurements on real and synthetic data testbeds reveal that that seizure prediction by pre-ictal/inter-ictal feature distinction is a problem of significant complexity. It shows that several features are clearly useful, without decidedly identifying an optimal set.
    [Show full text]
  • Computer-Aided Detection of Sleep Apnea and Sleep Stage Classification Using HRV and EEG Signals Edson F
    University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2010-01-01 Computer-Aided Detection Of Sleep Apnea And Sleep Stage Classification Using HRV And EEG Signals Edson F. Estrada University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Biomedical Commons, Electrical and Electronics Commons, European Languages and Societies Commons, and the Scandinavian Studies Commons Recommended Citation Estrada, Edson F., "Computer-Aided Detection Of Sleep Apnea And Sleep Stage Classification Using HRV And EEG Signals" (2010). Open Access Theses & Dissertations. 2482. https://digitalcommons.utep.edu/open_etd/2482 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. COMPUTER-AIDED DETECTION OF SLEEP APNEA AND SLEEP STAGE CLASSIFICATION USING HRV AND EEG SIGNALS EDSON F. ESTRADA Department of Electrical and Computer Engineering APPROVED: ___________________________________ Homer Nazeran, Ph.D., Chair ___________________________________ Patricia A. Nava, Ph.D., Co-Chair ___________________________________ Scott Starks, Ph.D. ___________________________________ Humberto Ochoa, Ph.D. ___________________________________ Luis Carcoba, Ph.D. ____________________________ Patricia D. Witherspoon, Ph.D. Dean of the Graduate School COMPUTER-AIDED DETECTION OF SLEEP APNEA AND SLEEP STAGE CLASSIFICATION USING HRV AND EEG SIGNALS By EDSON F. ESTRADA, M.S. EE DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at El Paso In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Department of Electrical and Computer Engineering THE UNIVERSITY OF TEXAS AT EL PASO DICEMBER 2010 Acknowledgements I would like to express my gratitude to the following people for their support and assistance in developing this dissertation.
    [Show full text]
  • Hidden Conditional Random Fields for Classification of Imaginary Motor Tasks from Eeg Data
    HIDDEN CONDITIONAL RANDOM FIELDS FOR CLASSIFICATION OF IMAGINARY MOTOR TASKS FROM EEG DATA Jaime F. Delgado Saa†‡,Mujdat¨ C¸etin† † Signal Processing and Information Systems Laboratory, Sabanci University Orhanli, Tuzla, 34956 Istanbul, Turkey ‡ Department of Electrical and Electronics Engineering, Universidad del Norte Barranquilla, Colombia [ email: delgado, mcetin ]@sabanciuniv.edu ABSTRACT the EEG signals have been proposed [4, 5, 6]. Furthermore, algo- rithms involving stochastic time series models taking into account Brain-computer interfaces (BCIs) are systems that allow the changes of the signal power with time, such as hidden Markov mod- control of external devices using information extracted from brain els (HMMs) [7, 8, 9, 10] have been used in combination with fea- signals. Such systems find application in rehabilitation of patients tures describing the temporal behavior of the EEG signals [11, 12]. with limited or no muscular control. One mechanism used in BCIs We share the perspective with this latter body of work that changes is the imagination of motor activity, which produces variations on in the power of the signals during execution of motor tasks reflect the power of the electroencephalography (EEG) signals recorded the underlying states in the brain and that the sequence of states pro- over the motor cortex. In this paper, we propose a new approach for vides useful information for discrimination of different imaginary classification of imaginary motor tasks based on hidden conditional motor tasks. In previous work based
    [Show full text]
  • A Comparative Review on Sleep Stage Classification Methods in Patients and Healthy Individuals Reza Boostani, Foroozan Karimzadeh, Mohammad Torabi-Nami
    A Comparative Review on Sleep Stage Classification Methods in Patients and healthy Individuals Reza Boostani, Foroozan Karimzadeh, Mohammad Torabi-Nami To cite this version: Reza Boostani, Foroozan Karimzadeh, Mohammad Torabi-Nami. A Comparative Review on Sleep Stage Classification Methods in Patients and healthy Individuals. 2016. hal-01390384 HAL Id: hal-01390384 https://hal.archives-ouvertes.fr/hal-01390384 Preprint submitted on 1 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Comparative Review on Sleep Stage Classification Methods in Patients and healthy Individuals Reza Boostania, Foroozan Karimzadehb∗, Mohammad Torabi-Namic a;b Department of Computer Science and Information technology, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran. c Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran. [email protected] , [email protected] ∗ Corresponding author: Tel: +987136474605, E-mail: [email protected] Abstract Background and objective: Proper scoring of sleep stages can give clinical information on diagnosing patients with sleep disor- ders. Since traditional visual scoring of the entire sleep is highly time-consuming and dependent to experts’ experience, automatic schemes based on electroencephalogram (EEG) analysis are broadly developed to solve these problems.
    [Show full text]
  • A Fast and Accurate Approach for Real-Time Seizure Detection in the Iomt
    A Fast and Accurate Approach for Real-Time Seizure Detection in the IoMT Md Abu Sayeed Saraju P. Mohanty Dept. of Computer Science and Engineering Dept. of Computer Science and Engineering University of North Texas, USA. University of North Texas, USA. Email: [email protected] Email: [email protected] Elias Kougianos Hitten Zaveri Dept. of Engineering Technology Department of Neurology University of North Texas, USA. Yale University, USA. Email: [email protected] Email: [email protected] Abstract—We propose an EEG-based seizure detection method monitoring brain function and dysfunction. In epilepsy we are which uses the discrete wavelet transform (DWT), Hjorth pa- primarily interested in two states: ictal (seizure) and interictal rameters and a k-NN classifier. Seizure detection is performed in (between seizure). Seizures can be identified by visual inspec- three stages. In the first stage, EEG signals are decomposed by the DWT into sub-bands and Hjorth parameters are extracted from tion of the EEG, though this takes considerable time and effort each of these sub-bands. In the second stage, a k-NN classifier [10]. Computer assisted detection of seizures can be valuable is used to classify the EEG data. The results demonstrate a if it can overcome these drawbacks. EEG signals can be well significant difference in Hjorth parameters between interictal and characterized from extracted features which serve to capture ictal EEG with ictal EEG being less complex than interictal EEG. distinctive information and can be central to the accuracy of We report an accuracy of 100% for a classification of normal vs.
    [Show full text]
  • Decoding the Neural Signatures of Valence and Arousal from Portable EEG Headset
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.23.453533; this version posted July 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Decoding the Neural Signatures of Valence and Arousal From Portable EEG Headset Nikhil Garg1,2,3,*, Rohit Garg1,3, Parrivesh NS1,3, Apoorv Anand1,3, V.A.S. Abhinav1,3, Veeky Baths1,3,* 1 Cognitive Neuroscience Lab, BITS Pilani - K.K.Birla Goa Campus, Goa, India 2 Institut Interdisciplinaire d'Innovation Technologique (3IT), Laboratoire Nanotechnologies Nanosyst`emes(LN2) { CNRS UMI-3463 { 3IT, Universit´ede Sherbrooke, Sherbrooke, Canada 3 Ironwork Insights Pvt. Ltd., India * Corresponding authors * [email protected] * [email protected] Abstract This paper focuses on classifying emotions on the valence-arousal plane using various feature extraction, feature selection and machine learning techniques. Emotion classification using EEG data and machine learning techniques has been on the rise in the recent past. We evaluate different feature extraction techniques, feature selection techniques and propose the optimal set of features and electrodes for emotion recognition. The images from the OASIS image dataset were used for eliciting the valence and arousal emotions, and the EEG data was recorded using the Emotiv Epoc X mobile EEG headset. The analysis is additionally carried out on publicly available datasets: DEAP and DREAMER. We propose a novel feature ranking technique and incremental learning approach to analyze the dependence of performance on the number of participants.
    [Show full text]
  • Arxiv:1908.00492V1 [Eess.SP] 1 Aug 2019 Review Continuous Electroencephalograms (Eegs) to Monitor Epileptic Patients
    A review of feature extraction and performance evaluation in epileptic seizure detection using EEG Poomipat Boonyakitanont1, Apiwat Lek-uthai1, Krisnachai Chomtho2, and Jitkomut Songsiri1 1Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Thailand 2Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Thailand August 2, 2019 Abstract Since the manual detection of electrographic seizures in continuous electroencephalogram (EEG) monitoring is very time-consuming and requires a trained expert, attempts to develop automatic seizure detection are diverse and ongoing. Machine learning approaches are intensely being applied to this problem due to their ability to classify seizure conditions from a large amount of data, and provide pre-screened results for neurologists. Several features, data trans- formations, and classifiers have been explored to analyze and classify seizures via EEG signals. In the literature, some jointly-applied features used in the classification may have shared simi- lar contributions, making them redundant in the learning process. Therefore, this paper aims to comprehensively summarize feature descriptions and their interpretations in characterizing epileptic seizures using EEG signals, as well as to review classification performance metrics. To provide meaningful information of feature selection, we conducted an experiment to examine the quality of each feature independently. The Bayesian error and non-parametric probability distribution estimation were employed to determine the significance of the individual features. Moreover, a redundancy analysis using a correlation-based feature selection was applied. The results showed that the following features {variance, energy, nonlinear energy, and Shannon entropy computed on a raw EEG signal, as well as variance, energy, kurtosis, and line length calculated on wavelet coefficients{ were able to significantly capture the seizures.
    [Show full text]
  • A MATLAB Toolkit for Computation of Multiple Measures on Time Series Data Bases
    Accepted in the Journal of Statistical Software, January 2010 Measures of Analysis of Time Series (MATS): A MATLAB Toolkit for Computation of Multiple Measures on Time Series Data Bases Dimitris Kugiumtzis, Alkiviadis Tsimpiris Department of Mathematical, Physical and Computational Sciences Faculty of Engineering, Aristotle University of Thessaloniki Thessaloniki 54124, Greece Corresponding author Dimitris Kugiumtzis Department of Mathematical, Physical and Computational Sciences, Faculty of Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece e-mail: [email protected] url: http://users.auth.gr/dkugiu fax: +30 2310995958 Running title Optimal Measures and Preictal States Abstract In many applications, such as physiology and finance, large time series data bases are to be analyzed requir- ing the computation of linear, nonlinear and other measures. Such measures have been developed and imple- mented in commercial and freeware softwares rather selectively and independently. The Measures of Analysis of Time Series (MATS) MATLAB toolkit is designed to handle an arbitrary large set of scalar time series and compute a large variety of measures on them, allowing for the specification of varying measure parameters as well. The variety of options with added facilities for visualization of the results support different settings of time series analysis, such as the detection of dynamics changes in long data records, resampling (surrogate or bootstrap) tests for independence and linearity with various test statistics, and discrimination power of different measures and for different combinations of their parameters. The basic features of MATS are presented and the implemented measures are briefly described. The usefulness of MATS is illustrated on some empirical examples along with screenshots.
    [Show full text]
  • Quality Assessment of Single-Channel EEG for Wearable Devices
    sensors Article Quality Assessment of Single-Channel EEG for Wearable Devices Fanny Grosselin 1,2,* , Xavier Navarro-Sune 2 , Alessia Vozzi 2, Katerina Pandremmenou 2, Fabrizio De Vico Fallani 1,3, Yohan Attal 2 and Mario Chavez 4 1 hlSorbonne Université, UPMC Univ. Paris 06, INSERM U-1127, CNRS UMR-7225, Institut du Cerveau et de la Moelle Épinière (ICM), Groupe Hospitalier Pitié Salpêtrière-Charles Foix, 75013 Paris, France 2 myBrainTechnologies, 75010 Paris, France; [email protected] (X.N.-S.); [email protected] (A.V.); [email protected] (K.P.); [email protected] (Y.A.) 3 INRIA, Aramis Project-Team, F-75013 Paris, France; [email protected] 4 CNRS UMR-7225, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, 75013 Paris, France; [email protected] * Correspondence: [email protected] Received: 22 January 2019; Accepted: 28 January 2019; Published: 31 January 2019 Abstract: The recent embedding of electroencephalographic (EEG) electrodes in wearable devices raises the problem of the quality of the data recorded in such uncontrolled environments. These recordings are often obtained with dry single-channel EEG devices, and may be contaminated by many sources of noise which can compromise the detection and characterization of the brain state studied. In this paper, we propose a classification-based approach to effectively quantify artefact contamination in EEG segments, and discriminate muscular artefacts. The performance of our method were assessed on different databases containing either artificially contaminated or real artefacts recorded with different type of sensors, including wet and dry EEG electrodes. Furthermore, the quality of unlabelled databases was evaluated.
    [Show full text]
  • Neural Networks Time Domain Parameters As a Feature for EEG-Based Brain–Computer Interfaces
    Neural Networks 22 (2009) 1313–1319 Contents lists available at ScienceDirect Neural Networks journal homepage: www.elsevier.com/locate/neunet 2009 Special Issue Time Domain Parameters as a feature for EEG-based Brain–Computer InterfacesI Carmen Vidaurre c,a,∗, Nicole Krämer c, Benjamin Blankertz c,a, Alois Schlögl b a IDA at Fraunhofer FIRST, Kekulestr. 7, 12489 Berlin, Germany b Institute for Human–Computer Interfaces, University of Technology Graz, Krengasse 37/I, 8010 Graz, Austria c Machine Learning Group, Berlin Institute of Technology, Franklinstr. 28/29, 10587 Berlin, Germany article info a b s t r a c t Article history: Several feature types have been used with EEG-based Brain–Computer Interfaces. Among the most Received 14 October 2008 popular are logarithmic band power estimates with more or less subject-specific optimization of the Received in revised form 3 July 2009 frequency bands. In this paper we introduce a feature called Time Domain Parameter that is defined by Accepted 16 July 2009 the generalization of the Hjorth parameters. Time Domain Parameters are studied under two different conditions. The first setting is defined when no data from a subject is available. In this condition our Keywords: results show that Time Domain Parameters outperform all band power features tested with all spatial Brain–Computer Interface filters applied. The second setting is the transition from calibration (no feedback) to feedback, in which Hjorth parameters Band power estimates the frequency content of the signals can change for some subjects. We compare Time Domain Parameters Time Domain Parameters with logarithmic band power in subject-specific bands and show that these features are advantageous in Derivative operator this situation as well.
    [Show full text]
  • Predicting Exact Valence and Arousal Values from EEG
    sensors Article Predicting Exact Valence and Arousal Values from EEG Filipe Galvão, Soraia M. Alarcão and Manuel J. Fonseca * LASIGE, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; [email protected] (F.G.); [email protected] (S.M.A.) * Correspondence: [email protected] Abstract: Recognition of emotions from physiological signals, and in particular from electroen- cephalography (EEG), is a field within affective computing gaining increasing relevance. Although researchers have used these signals to recognize emotions, most of them only identify a limited set of emotional states (e.g., happiness, sadness, anger, etc.) and have not attempted to predict exact values for valence and arousal, which would provide a wider range of emotional states. This paper describes our proposed model for predicting the exact values of valence and arousal in a subject-independent scenario. To create it, we studied the best features, brain waves, and machine learning models that are currently in use for emotion classification. This systematic analysis revealed that the best prediction model uses a KNN regressor (K = 1) with Manhattan distance, features from the alpha, beta and gamma bands, and the differential asymmetry from the alpha band. Results, using the DEAP, AMIGOS and DREAMER datasets, show that our model can predict valence and arousal values with a low error (MAE < 0.06, RMSE < 0.16) and a strong correlation between predicted and expected values (PCC > 0.80), and can identify four emotional classes with an accuracy of 84.4%. The findings of this work show that the features, brain waves and machine learning models, typically used in emotion classification tasks, can be used in more challenging situations, such as the prediction of exact values for valence and arousal.
    [Show full text]
  • Epileptic Seizure Detection Using Deep Ensemble Network with Empirical Wavelet Transform
    MEASUREMENT SCIENCE REVIEW, 21, (2021), No. 4, 110-116 Journal homepage: https://content.sciendo.com Epileptic Seizure Detection using Deep Ensemble Network with Empirical Wavelet Transform Sreelekha Panda1, Abhishek Das2, Satyasis Mishra1, Mihir Narayan Mohanty2* 1Dept. Of ECE, Centurion University of Technology and Management, Odisha, India 2Dept. Of ECE, ITER, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India [email protected] Epileptic seizure attack is caused by abnormal brain activity of human subjects. Certain cases will lead to death. The detection and diagnosis is therefore an important task. It can be performed either by direct patient activity during seizure or by electroencephalogram (EEG) signal analysis by neurologists. EEG signal processing and detection of seizures using machine learning techniques make this task easier than manual detection. To overcome this problem related to a neurological disorder, we have proposed the ensemble learning technique for improved detection of epilepsy seizures from EEG signals. In the first stage, EEG signal decomposition is done by utilizing empirical wavelet transform (EWT) for smooth analysis in terms of sub-bands. Further, features are extracted from each sub. Time and frequency domain features are the two categories used to extract the statistical features. These features are used in a stacked ensemble of deep neural network (DNN) model along with multilayer Perceptron (MLP) for the detection and classification of ictal, inter-ictal, and pre-ictal (normal) signals. The proposed method is verified using two publicly available datasets provided by the University of Bonn (UoB dataset) and Neurology and Sleep Center - New Delhi (NSC-ND dataset).
    [Show full text]