ATLAS Lar Phase-II Upgrade

Total Page:16

File Type:pdf, Size:1020Kb

ATLAS Lar Phase-II Upgrade ATL-TDR-027 · LHCC-2017-018 ATLASATLAS LAr Calorimeter Phase-II UpgradeUpgrade CERN-LHCC-2017-018 / ATLAS-TDR-027 10/07/2018 Technical Design Report ATLAS Liquid Argon Calorimeter Phase-II Upgrade Technical Design Report Reference: CERN-LHCC-2017-018 ATLAS-TDR-027 Created: 15th June 2018 Last modified: 15th June 2018 Prepared by: The ATLAS Collaboration c 2018 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license. ATLAS Technical Design Report Liquid Argon Calorimeter Phase-II Upgrade 15th June 2018 Abstract This Technical Design Report documents plans to upgrade the Liquid Argon calorimeters’ readout electronics for the ATLAS experiment for operation at the High Luminosity LHC. When the High Luminosity LHC begins operations in 2026 it will be able to reach a peak instantaneous luminosity of 7.5 × 1034 cm−2s−1, which corresponds to approximately 200 inelastic proton-proton collisions per beam crossing. The new Liquid Argon readout elec- tronics will be operational for more than ten years, during which time the LHC is expected to deliver 4 000 fb−1 of proton-proton collision data. These requirements are a significant challenge in the design of the new readout system. The design, construction and expected performance of the future readout electronics are presented in detail. These include the res- ults of measurements of prototypes and the plans for their mass production. This document also describes the management of the project, its schedule and major milestones. The costs of the new readout electronics and the collaboration that plans to build it are also presented. i ATLAS Technical Design Report Liquid Argon Calorimeter Phase-II Upgrade 15th June 2018 ATLAS Institutions Argentina Departamento de Física, Universidad de Buenos Aires, Buenos Aires Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata Armenia Yerevan Physics Institute, Yerevan Australia Department of Physics, University of Adelaide, Adelaide School of Physics, University of Sydney, Sydney School of Physics, University of Melbourne, Victoria Austria Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck Fachhochschule Wiener Neustadt, Wiener Neustadt Azerbaijan Institute of Physics, Azerbaijan Academy of Sciences, Baku Belarus B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk Research Institute for Nuclear Problems of Byelorussian State University, Minsk Brazil Brazil Cluster: Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora; Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; Universidade Federal de Sao Joao del Rei (UFSJ), Sao Joao del Rei; Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo Canada Department of Physics, Simon Fraser University, Burnaby BC Department of Physics, University of Alberta, Edmonton AB Department of Physics, McGill University, Montreal QC Group of Particle Physics, University of Montreal, Montreal QC Department of Physics, Carleton University, Ottawa ON Department of Physics, University of Toronto, Toronto ON Department of Physics, University of British Columbia, Vancouver BC TRIUMF, Vancouver BC; Department of Physics and Astronomy, York University, Toronto ON Department of Physics and Astronomy, University of Victoria, Victoria BC CERN iii Technical Design Report ATLAS 15th June 2018 Liquid Argon Calorimeter Phase-II Upgrade European Organization for Nuclear Research, Geneva, Switzerland Chile Chile Cluster: Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso China China IHEP-NJU-THU Cluster: Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; Department of Physics, Nanjing University, Nanjing; Physics Department, Tsinghua University, Beijing China USTC-SDU-SJTU Cluster: Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei; School of Physics, Shandong University, Shandong; School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shanghai; Tsung-Dao Lee Institute, Shanghai Hong Kong Cluster: Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Department of Physics, University of Hong Kong, Hong Kong; Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Colombia Centro de Investigaciónes, Universidad Antonio Nariño, Bogota Czech Republic Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc Charles University, Faculty of Mathematics and Physics, Prague Czech Technical University in Prague, Prague Institute of Physics, Academy of Sciences of the Czech Republic, Prague Denmark Niels Bohr Institute, University of Copenhagen, Copenhagen France LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand DRF/IRFU, CEA Saclay, Gif-sur-Yvette LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris Georgia Georgia Cluster: E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; High Energy Physics Institute, Tbilisi State University, Tbilisi iv ATLAS Technical Design Report Liquid Argon Calorimeter Phase-II Upgrade 15th June 2018 Germany Institut für Physik, Humboldt Universität zu Berlin, Berlin Physikalisches Institut, Universität Bonn, Bonn Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg Institut für Physik, Universität Mainz, Mainz Fakultät für Physik, Ludwig-Maximilians-Universität München, München Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München Department Physik, Universität Siegen, Siegen Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg Greece National Centre for Scientific Research "Demokritos", Agia Paraskevi Physics Department, National and Kapodistrian University of Athens, Athens Department of Physics, Aristotle University of Thessaloniki, Thessaloniki Physics Department, National Technical University of Athens, Zografou Israel Department of Physics, Technion, Israel Institute of Technology, Haifa Department of Particle Physics, Weizmann Institute of Science, Rehovot Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv Italy INFN Sezione di Bologna; Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna INFN e Laboratori Nazionali di Frascati, Frascati INFN Sezione di Genova; Dipartimento di Fisica, Università di Genova, Genova INFN Sezione di Lecce; Dipartimento di Matematica e Fisica, Università del Salento, Lecce INFN Sezione di Milano; Dipartimento di Fisica, Università di Milano, Milano INFN Sezione di Napoli; Dipartimento di Fisica, Università di Napoli, Napoli INFN Sezione di Pavia; Dipartimento di Fisica, Università di Pavia, Pavia INFN Sezione di Pisa; Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; Dipartimento di Fisica, Università della Calabria, Rende v Technical Design Report ATLAS 15th June 2018 Liquid Argon Calorimeter Phase-II Upgrade INFN Sezione di Roma; Dipartimento di Fisica, Sapienza Università di Roma, Roma INFN Sezione di Roma Tor Vergata; Dipartimento di Fisica, Università di Roma Tor Vergata, Roma INFN Sezione di Roma Tre; Dipartimento di Matematica e Fisica, Università Roma Tre, Roma INFN-TIFPA; Università degli Studi di Trento, Trento INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; ICTP, Trieste; Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine Japan Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima Graduate School of Science, Kobe University, Kobe Faculty of Science, Kyoto University, Kyoto Kyoto University of Education, Kyoto Department of Physics, Shinshu University, Nagano Nagasaki Institute of Applied Science, Nagasaki Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya Faculty of Science, Okayama University, Okayama Graduate School of Science, Osaka University, Osaka Department of Physics, Tokyo Institute of Technology, Tokyo Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo Waseda University, Tokyo
Recommended publications
  • Geometric Manifolds
    Wintersemester 2015/2016 University of Heidelberg Geometric Structures on Manifolds Geometric Manifolds by Stephan Schmitt Contents Introduction, first Definitions and Results 1 Manifolds - The Group way .................................... 1 Geometric Structures ........................................ 2 The Developing Map and Completeness 4 An introductory discussion of the torus ............................. 4 Definition of the Developing map ................................. 6 Developing map and Manifolds, Completeness 10 Developing Manifolds ....................................... 10 some completeness results ..................................... 10 Some selected results 11 Discrete Groups .......................................... 11 Stephan Schmitt INTRODUCTION, FIRST DEFINITIONS AND RESULTS Introduction, first Definitions and Results Manifolds - The Group way The keystone of working mathematically in Differential Geometry, is the basic notion of a Manifold, when we usually talk about Manifolds we mean a Topological Space that, at least locally, looks just like Euclidean Space. The usual formalization of that Concept is well known, we take charts to ’map out’ the Manifold, in this paper, for sake of Convenience we will take a slightly different approach to formalize the Concept of ’locally euclidean’, to formulate it, we need some tools, let us introduce them now: Definition 1.1. Pseudogroups A pseudogroup on a topological space X is a set G of homeomorphisms between open sets of X satisfying the following conditions: • The Domains of the elements g 2 G cover X • The restriction of an element g 2 G to any open set contained in its Domain is also in G. • The Composition g1 ◦ g2 of two elements of G, when defined, is in G • The inverse of an Element of G is in G. • The property of being in G is local, that is, if g : U ! V is a homeomorphism between open sets of X and U is covered by open sets Uα such that each restriction gjUα is in G, then g 2 G Definition 1.2.
    [Show full text]
  • Affine Connections and Second-Order Affine Structures
    Affine connections and second-order affine structures Filip Bár Dedicated to my good friend Tom Rewwer on the occasion of his 35th birthday. Abstract Smooth manifolds have been always understood intuitively as spaces with an affine geometry on the infinitesimal scale. In Synthetic Differential Geometry this can be made precise by showing that a smooth manifold carries a natural struc- ture of an infinitesimally affine space. This structure is comprised of two pieces of data: a sequence of symmetric and reflexive relations defining the tuples of mu- tual infinitesimally close points, called an infinitesimal structure, and an action of affine combinations on these tuples. For smooth manifolds the only natural infin- itesimal structure that has been considered so far is the one generated by the first neighbourhood of the diagonal. In this paper we construct natural infinitesimal structures for higher-order neighbourhoods of the diagonal and show that on any manifold any symmetric affine connection extends to a second-order infinitesimally affine structure. Introduction A deeply rooted intuition about smooth manifolds is that of spaces that become linear spaces in the infinitesimal neighbourhood of each point. On the infinitesimal scale the geometry underlying a manifold is thus affine geometry. To make this intuition precise requires a good theory of infinitesimals as well as defining precisely what it means for two points on a manifold to be infinitesimally close. As regards infinitesimals we make use of Synthetic Differential Geometry (SDG) and adopt the neighbourhoods of the diagonal from Algebraic Geometry to define when two points are infinitesimally close. The key observations on how to proceed have been made by Kock in [8]: 1) The first neighbourhood arXiv:1809.05944v2 [math.DG] 29 Aug 2020 of the diagonal exists on formal manifolds and can be understood as a symmetric, reflexive relation on points, saying when two points are infinitesimal neighbours, and 2) we can form affine combinations of points that are mutual neighbours.
    [Show full text]
  • Verification of Vulnerable Zones Identified Under the Nitrate
    CONTENTS 1 INTRODUCTION 1 1.1 OVERVIEW OF THE QUALITY OF CONTINENTAL WATERS 1 1.2 PROBLEMS ENCOUNTERED DURING THE INVESTIGATIONS 2 2 PROCEDURES FOR DESIGNATING SENSITIVE AREAS AND VULNERABLE ZONES AND APPLICATION OF CRITERIA ESTABLISHED IN DIRECTIVES 5 2.1 INTRODUCTION 5 2.2 PROCEDURES FOR DESIGNATING SENSITIVE AND LESS SENSITIVE AREAS (DIRECTIVE 91/271/EEC) 8 2.3 PROCEDURES FOR DESIGNATING VULNERABLE ZONES (DIRECTIVE 91/676/EEC). 14 2.4 ANALYSIS OF THE APPLICATION OF CRITERIA FOR DESIGNATION OF SITES UNDER DIRECTIVES 91/271/EEC AND 91/676/EEC. 20 3 CONCLUSIONS REGARDING THE RELATIONSHIP BETWEEN VULNERABLE ZONES AND SENSITIVE AREAS IN SPAIN, TAKING INTO ACCOUNT COMMON STANDARDS. 30 1 INTRODUCTION 1.1 OVERVIEW OF THE QUALITY OF CONTINENTAL WATERS At the end of 1998, the national Ministry of the Environment completed the “Libro Blanco del Agua en España”, or (White Paper for Water in Spain). This document was designed as a tool for assessing and guiding water management in Spain. Although Spain’s future water policy is outlined in the conclusions, the points mentioned refer only to quantitative aspects of water resources without considering the issue of quality. Nonetheless, the issue of river, reservoir, lake and groundwater pollution is taken into account in the assessment section. Amongst the problems related to water quality, the White Paper notes, among others, problems related with Directives 91/271/EEC and 91/676/EEC. A brief summary of the main issues addressed is provided below. Surface water and diffuse pollution. In general, diffuse pollution produced by agricultural and livestock raising activities (e.g.
    [Show full text]
  • Sepuerta De Arganda
    Hospital Universitario BARRIO DE MALMEA F las u C. Islas Molucas r e Ramón y Cajal ke rz COLONIA ec as Múgica P VIRGEN DE uis C. de Narcís e L Gta. de Calle d sé BEGOÑA Jo Ricardo de e de d de Bastida Pedro ida lle Gta. de Nudo de Fuente de la Mora Aven a A Avenida de José Antonio Corrales San C r Julián C. de Julio Palacios Julio de C. Manoteras m Gta. de Antonio ad Otamendi Calle Rico Gta. de as José María sto Fuente de José Luis García Mode Nudo Calle de Alcobendas Fernández del Amo de Paredes Saura o POLIGONO Norte A Gta. de s venid Calle de laBARRIO Robla DE LAS CARCAVAS s Calle la Moraa Recintos de Isidro González a L MANILVA Begoña Call Velázquez Avenida e o P C. Briviesca Hortaleza C. Laud n a a d Calle e s Valdebebas s o (Metro de Madrid) C R g Avenida de t r oq u o las Fuerzas Armadas u B et r Calle de Caleruega as a del Ma a d o e nu Calle Hermanos Gascón i Jazmín c el l I i Gta. de Gta. de m n Ma e u Hospital URBANIZACIÓN r Gta. de J ó d Luis Antoñete p l a APÓSTOL SANTIAGO Valdebebas Arzobispo ro e e Calle o Antonio Morcillo NUEVO MUNDO S C. Cubillo t d Universitario r on i M H o Perpiñá e Tíjola l Az e l C. Viejas añ o C. Quinta d a La Paz a j o e in ta C Legendre i AEROPUERTO V am C C C.
    [Show full text]
  • Human Issues Related to Spacecraft Vibration During Ascent
    Human Issues related to Spacecraft Vibration during Ascent Consultant Report to the Constellation Program Standing Review Board Jonathan B. Clark M.D., M.P.H. Suite NA 425 One Baylor Plaza Baylor College of Medicine Houston TX 77030-3498 1731 Sunset Blvd Houston TX 77005 713 859 1381 281 989 8721 [email protected] [email protected] Opinions expressed herein are those of the author and do not reflect the views of the National Space Biomedical Research Institute (NSBRI), Baylor College of Medicine (BCM), the University of Texas Medical Branch (UTMB), or the National Aeronautics and Space Administration (NASA). Human Issues related to Spacecraft Vibration during Ascent Consultant Report to the Constellation Program Standing Review Board Jonathan B. Clark M.D., M.P.H. Opinions expressed herein are those of the author and do not reflect the views of the National Space Biomedical Research Institute (NSBRI), Baylor College of Medicine (BCM), the University of Texas Medical Branch (UTMB), or the National Aeronautics and Space Administration (NASA). Pogo in Liquid Fueled Rocket Motors The pogo phenomenon, or fuel pump inlet pressure fluctuation/ cavitation due to tuning feed line resonant frequencies was a major concern in the early space program. Pump tests showed that as inlet pressures were reduced toward cavitation, the pump started acting as an amplifier, causing large oscillations in the thrust chamber pressure. As the rocket engine thrust develops, liquid propellant is cyclically forced into the turbopump. This fluctuating fluid pressure is converted into an unintended and variable increase in engine thrust, with the net effect being longitudinal axis vibration that could result in spacecraft structural failure.
    [Show full text]
  • Guía Del Camino De Santiago a Su Paso Por La Provincia De Segovia (Camino De Madrid a Sahagún)
    Guia_Portada:Portada 26/10/2012 13:29 Página 1 El Camino de Santiago a su paso por la provincia de Segovia (Camino de Madrid a Sahagún) Ángel Luis Hoces de la Guardia Bermejo Mariano Díez Lozano Asociación de Amigos del Camino de Santiago de Segovia Segovia Guia_Portada:Portada 29/10/2012 12:27 Página 2 Trabajo de campo, documentación y textos: Ángel Luis Hoces de la Guardia Bermejo y Mariano Díez Lozano Otro textos: Juan Pedro Velasco Sayago Revisión de textos: Juan Pedro Velasco Sayago Luis Miguel Pascual Gómez Dibujos: Ignacio Davía San José Fotografías y retoque de mapas: Á.L. Hoces de la Guardia Bermejo Mapas: tomados del Instituto Geográfico Nacional, visor Iberpix 2 Datos de GPS: Mariano Díez Lozano y José Ángel Gil Sanz (localización de mojones 589) Vehículo todoterreno (para comprobación de variantes): Jesús María Llorente Llorente (Brodis) Diseño gráfico y preimpresión: HdG Servicios Informáticos (Segovia) Edita: Asociación de Amigos del Camino de Santiago de Segovia Centro Cívico San Lorenzo Calle de Anselmo Carretero, 15. 40003 Segovia http://www.caminodesantiagoensegovia.es mail: [email protected] Guia_Portada:Portada 29/10/2012 12:27 Página I Presentación - I Agradecimientos En esta relación se recoge a aquellas personas que de alguna manera han contribuido a la creación de esta guía del Camino de Santiago a su paso por la provincia de Segovia (Camino de Madrid a Sahagún). Juan Pedro Velasco Sayago Ignacio Davía San José José Ángel Gil Sanz Amador García Sanz Jesús María Llorente Llorente Guia_Portada:Portada 26/10/2012 13:29 Página II Presentación - II Presentación (y justificación) de la guía La presente guía recoge el Camino a Santiago señalizado entre Madrid y Sahagún a su paso por la provincia de Segovia; concretamente entre la lo- calidad madrileña de Cercedilla, importante nudo de comunicaciones, y el lí- mite provincial Segovia-Valladolid en el término municipal de Villeguillo.
    [Show full text]
  • EXOTIC SPHERES and CURVATURE 1. Introduction Exotic
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 45, Number 4, October 2008, Pages 595–616 S 0273-0979(08)01213-5 Article electronically published on July 1, 2008 EXOTIC SPHERES AND CURVATURE M. JOACHIM AND D. J. WRAITH Abstract. Since their discovery by Milnor in 1956, exotic spheres have pro- vided a fascinating object of study for geometers. In this article we survey what is known about the curvature of exotic spheres. 1. Introduction Exotic spheres are manifolds which are homeomorphic but not diffeomorphic to a standard sphere. In this introduction our aims are twofold: First, to give a brief account of the discovery of exotic spheres and to make some general remarks about the structure of these objects as smooth manifolds. Second, to outline the basics of curvature for Riemannian manifolds which we will need later on. In subsequent sections, we will explore the interaction between topology and geometry for exotic spheres. We will use the term differentiable to mean differentiable of class C∞,and all diffeomorphisms will be assumed to be smooth. As every graduate student knows, a smooth manifold is a topological manifold that is equipped with a smooth (differentiable) structure, that is, a smooth maximal atlas. Recall that an atlas is a collection of charts (homeomorphisms from open neighbourhoods in the manifold onto open subsets of some Euclidean space), the domains of which cover the manifold. Where the chart domains overlap, we impose a smooth compatibility condition for the charts [doC, chapter 0] if we wish our manifold to be smooth. Such an atlas can then be extended to a maximal smooth atlas by including all possible charts which satisfy the compatibility condition with the original maps.
    [Show full text]
  • Lecture Notes on Foliation Theory
    INDIAN INSTITUTE OF TECHNOLOGY BOMBAY Department of Mathematics Seminar Lectures on Foliation Theory 1 : FALL 2008 Lecture 1 Basic requirements for this Seminar Series: Familiarity with the notion of differential manifold, submersion, vector bundles. 1 Some Examples Let us begin with some examples: m d m−d (1) Write R = R × R . As we know this is one of the several cartesian product m decomposition of R . Via the second projection, this can also be thought of as a ‘trivial m−d vector bundle’ of rank d over R . This also gives the trivial example of a codim. d- n d foliation of R , as a decomposition into d-dimensional leaves R × {y} as y varies over m−d R . (2) A little more generally, we may consider any two manifolds M, N and a submersion f : M → N. Here M can be written as a disjoint union of fibres of f each one is a submanifold of dimension equal to dim M − dim N = d. We say f is a submersion of M of codimension d. The manifold structure for the fibres comes from an atlas for M via the surjective form of implicit function theorem since dfp : TpM → Tf(p)N is surjective at every point of M. We would like to consider this description also as a codim d foliation. However, this is also too simple minded one and hence we would call them simple foliations. If the fibres of the submersion are connected as well, then we call it strictly simple. (3) Kronecker Foliation of a Torus Let us now consider something non trivial.
    [Show full text]
  • Oferta De Formación Profesional Para
    OFERTA DE FORMACIÓN PROFESIONAL PARA EXTREMADURA Grado SUPERIOR Curso15/16 (Ordenado por Familia Profesional, Ciclo Formativo, Provincia, Localidad y Centro) Código - Denominación Ciclo Localidad Cód. centro Centro Educativo Turno Capa- Curso Bilingë Dual (M/T) cidad ACTIVIDADES FÍSICAS Y DEPORTIVAS AFD31-Animación de Actividades Físicas y ALMENDRALEJO 06000289 I.E.S. SANTIAGO APÓSTOL M 30 1 NO Deportivas AFD31-Animación de Actividades Físicas y ALMENDRALEJO 06000289 I.E.S. SANTIAGO APÓSTOL M 30 2 NO Deportivas AFD31-Animación de Actividades Físicas y BADAJOZ 06000952 I.E.S. ZURBARÁN T 30 2 NO Deportivas AFD31-Animación de Actividades Físicas y BADAJOZ 06000952 I.E.S. ZURBARÁN M 30 1 NO Deportivas AFD31-Animación de Actividades Físicas y BADAJOZ 06000952 I.E.S. ZURBARÁN M 30 2 NO Deportivas AFD31-Animación de Actividades Físicas y BADAJOZ 06000952 I.E.S. ZURBARÁN T 30 1 NO Deportivas AFD31-Animación de Actividades Físicas y VILLANUEVA DE LA 06007818 I.E.S. PUERTA DE LA SERENA M 30 1 NO Deportivas SERENA AFD31-Animación de Actividades Físicas y VILLANUEVA DE LA 06007818 I.E.S. PUERTA DE LA SERENA M 30 2 NO Deportivas SERENA AFD31-Animación de Actividades Físicas y CÁCERES 10007707 I.E.S. AL-QÁZERES M 30 2 NO Deportivas AFD31-Animación de Actividades Físicas y CÁCERES 10007707 I.E.S. AL-QÁZERES M 30 1 NO Deportivas AFD31-Animación de Actividades Físicas y PLASENCIA 10007720 I.E.S. PARQUE DE M 25 1 NO Deportivas MONFRAGÜE AFD31-Animación de Actividades Físicas y PLASENCIA 10007720 I.E.S. PARQUE DE M 25 1 NO Deportivas MONFRAGÜE AFD31-Animación de Actividades Físicas y PLASENCIA 10007720 I.E.S.
    [Show full text]
  • Math 600 Day 6: Abstract Smooth Manifolds
    Math 600 Day 6: Abstract Smooth Manifolds Ryan Blair University of Pennsylvania Tuesday September 28, 2010 Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 1 / 21 Outline 1 Transition to abstract smooth manifolds Partitions of unity on differentiable manifolds. Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 2 / 21 A Word About Last Time Theorem (Sard’s Theorem) The set of critical values of a smooth map always has measure zero in the receiving space. Theorem Let A ⊂ Rn be open and let f : A → Rp be a smooth function whose derivative f ′(x) has maximal rank p whenever f (x) = 0. Then f −1(0) is a (n − p)-dimensional manifold in Rn. Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 3 / 21 Transition to abstract smooth manifolds Transition to abstract smooth manifolds Up to this point, we have viewed smooth manifolds as subsets of Euclidean spaces, and in that setting have defined: 1 coordinate systems 2 manifolds-with-boundary 3 tangent spaces 4 differentiable maps and stated the Chain Rule and Inverse Function Theorem. Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 4 / 21 Transition to abstract smooth manifolds Now we want to define differentiable (= smooth) manifolds in an abstract setting, without assuming they are subsets of some Euclidean space. Many differentiable manifolds come to our attention this way. Here are just a few examples: 1 tangent and cotangent bundles over smooth manifolds 2 Grassmann manifolds 3 manifolds built by ”surgery” from other manifolds Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 5 / 21 Transition to abstract smooth manifolds Our starting point is the definition of a topological manifold of dimension n as a topological space Mn in which each point has an open neighborhood homeomorphic to Rn (locally Euclidean property), and which, in addition, is Hausdorff and second countable.
    [Show full text]
  • Hausdorff Morita Equivalence of Singular Foliations
    Hausdorff Morita Equivalence of singular foliations Alfonso Garmendia∗ Marco Zambony Abstract We introduce a notion of equivalence for singular foliations - understood as suitable families of vector fields - that preserves their transverse geometry. Associated to every singular foliation there is a holonomy groupoid, by the work of Androulidakis-Skandalis. We show that our notion of equivalence is compatible with this assignment, and as a consequence we obtain several invariants. Further, we show that it unifies some of the notions of transverse equivalence for regular foliations that appeared in the 1980's. Contents Introduction 2 1 Background on singular foliations and pullbacks 4 1.1 Singular foliations and their pullbacks . .4 1.2 Relation with pullbacks of Lie groupoids and Lie algebroids . .6 2 Hausdorff Morita equivalence of singular foliations 7 2.1 Definition of Hausdorff Morita equivalence . .7 2.2 First invariants . .9 2.3 Elementary examples . 11 2.4 Examples obtained by pushing forward foliations . 12 2.5 Examples obtained from Morita equivalence of related objects . 15 3 Morita equivalent holonomy groupoids 17 3.1 Holonomy groupoids . 17 arXiv:1803.00896v1 [math.DG] 2 Mar 2018 3.2 Morita equivalent holonomy groupoids: the case of projective foliations . 21 3.3 Pullbacks of foliations and their holonomy groupoids . 21 3.4 Morita equivalence for open topological groupoids . 27 3.5 Holonomy transformations . 29 3.6 Further invariants . 30 3.7 A second look at Hausdorff Morita equivalence of singular foliations . 31 4 Further developments 33 4.1 An extended equivalence for singular foliations . 33 ∗KU Leuven, Department of Mathematics, Celestijnenlaan 200B box 2400, BE-3001 Leuven, Belgium.
    [Show full text]
  • Especialidad 001 FILOSOFIA DNI Apellidos Y Nombre Centro Asignado Caracter Localidad Ord
    JUNTA DE EXTREMADURA CONSEJERÍA DE EDUCACIÓN Y EMPLEO RELACIÓN POR ORDEN DE PUNTUACIÓN PROFESORES DE ENSEÑANZA SECUNDARIA Dirección General de Personal Docente PERSONAL INTERINO CURSO 2015-2016 Especialidad 001 FILOSOFIA DNI Apellidos y Nombre Centro Asignado Caracter Localidad Ord. Bar. 80044066 SUAREZ GOMEZ M. JOSE 06000289 I.E.S. SANTIAGO APOSTOL Ordinario ALMENDRALEJO 1 76241353 GARCIA HIDALGO MARIA 06004969 I.E.S. SAN JOSE Ordinario VILLANUEVA DE LA SERENA 2 29784557 MOYANO COBOS CANDIDO 10000816 I.E.S. NORBA CAESARINA Ordinario CACERES 3 08683709 LOBATO DELGADO FAUSTINO 06006905 I.E.S. FRANCISCO VERA Ordinario ALCONCHEL 4 04159317 ALONSO SARRO JOSE RAMON 10008499 I.E.S. VALLE DEL JERTE (CABEZUELA- Ordinario CABEZUELA DEL VALLE 5 NAVACONCEJO) 08765475 GARCIA VARA JOAQUIN MANUEL 06006322 I.E.S. SIBERIA EXTREMENA Ordinario TALARRUBIAS 6 08770103 GODOY OLEA WENCESLAO 06007429 I.E.S. JOAQUIN SAMA Ordinario SAN VICENTE DE ALCANTARA 7 33869099 BAUTISTA PECELLIN ISABEL M. 06006191 I.E.S. PUENTE AJUDA Ordinario OLIVENZA 8 11770351 ALEGRE AMOR M. GEMA 06004787 I.E.S. SIERRA DE SAN PEDRO Ordinario ROCA DE LA SIERRA (LA) 9 08778105 GONZALEZ TORRES FAUSTINO CIPRI 06006516 I.E.S. EUGENIO FRUTOS Ordinario GUAREÑA 10 14618871 CURADO MUÑOZ JESUS 06002092 I.E.S. CUATRO CAMINOS Ordinario DON BENITO 13 09748855 HERNANDEZ REY FRANCISCO JAVI 10004482 I.E.S. VIRGEN DEL PUERTO Ordinario PLASENCIA 14 44782045 PACHON PACHON EVA M. 06006711 I.E.S. PEDRO ALFONSO DE ORELLANA Ordinario ORELLANA LA VIEJA 15 50947760 CACERES CERRATO MARIA 10003854 I.E.S. AUGUSTOBRIGA Ordinario NAVALMORAL DE LA MATA 16 27323524 JARAMILLO LUGO JERONIMO 10007513 I.E.S.
    [Show full text]