Measurement of Inclusive Radiative B-Meson Decay B -> X S Gamma
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Constraints from Electric Dipole Moments on Chargino Baryogenesis in the Minimal Supersymmetric Standard Model
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by National Tsing Hua University Institutional Repository PHYSICAL REVIEW D 66, 116008 ͑2002͒ Constraints from electric dipole moments on chargino baryogenesis in the minimal supersymmetric standard model Darwin Chang NCTS and Physics Department, National Tsing-Hua University, Hsinchu 30043, Taiwan, Republic of China and Theory Group, Lawrence Berkeley Lab, Berkeley, California 94720 We-Fu Chang NCTS and Physics Department, National Tsing-Hua University, Hsinchu 30043, Taiwan, Republic of China and TRIUMF Theory Group, Vancouver, British Columbia, Canada V6T 2A3 Wai-Yee Keung NCTS and Physics Department, National Tsing-Hua University, Hsinchu 30043, Taiwan, Republic of China and Physics Department, University of Illinois at Chicago, Chicago, Illinois 60607-7059 ͑Received 9 May 2002; revised 13 September 2002; published 27 December 2002͒ A commonly accepted mechanism of generating baryon asymmetry in the minimal supersymmetric standard model ͑MSSM͒ depends on the CP violating relative phase between the gaugino mass and the Higgsino term. The direct constraint on this phase comes from the limit of electric dipole moments ͑EDM’s͒ of various light fermions. To avoid such a constraint, a scheme which assumes that the first two generation sfermions are very heavy is usually evoked to suppress the one-loop EDM contributions. We point out that under such a scheme the most severe constraint may come from a new contribution to the electric dipole moment of the electron, the neutron, or atoms via the chargino sector at the two-loop level. As a result, the allowed parameter space for baryogenesis in the MSSM is severely constrained, independent of the masses of the first two generation sfermions. -
Table of Contents (Print)
PERIODICALS PHYSICAL REVIEW D Postmaster send address changes to: For editorial and subscription correspondence, PHYSICAL REVIEW D please see inside front cover APS Subscription Services „ISSN: 0556-2821… Suite 1NO1 2 Huntington Quadrangle Melville, NY 11747-4502 THIRD SERIES, VOLUME 69, NUMBER 7 CONTENTS D1 APRIL 2004 RAPID COMMUNICATIONS ϩ 0 ⌼ ϩ→ ϩ 0→ 0 Measurement of the B /B production ratio from the (4S) meson using B J/ K and B J/ KS decays (7 pages) ............................................................................ 071101͑R͒ B. Aubert et al. ͑BABAR Collaboration͒ Cabibbo-suppressed decays of Dϩ→ϩ0,KϩK¯ 0,Kϩ0 (5 pages) .................................. 071102͑R͒ K. Arms et al. ͑CLEO Collaboration͒ Ϯ→ Ϯ ͑ ͒ Measurement of the branching fraction for B c0K (7 pages) ................................... 071103R B. Aubert et al. ͑BABAR Collaboration͒ Generalized Ward identity and gauge invariance of the color-superconducting gap (5 pages) .............. 071501͑R͒ De-fu Hou, Qun Wang, and Dirk H. Rischke ARTICLES Measurements of (2S) decays into vector-tensor final states (6 pages) ............................... 072001 J. Z. Bai et al. ͑BES Collaboration͒ Measurement of inclusive momentum spectra and multiplicity distributions of charged particles at ͱsϳ2 –5 GeV (7 pages) ................................................................... 072002 J. Z. Bai et al. ͑BES Collaboration͒ Production of ϩ, Ϫ, Kϩ, KϪ, p, and ¯p in light ͑uds͒, c, and b jets from Z0 decays (26 pages) ........ 072003 Koya Abe et al. ͑SLD Collaboration͒ Heavy flavor properties of jets produced in pp¯ interactions at ͱsϭ1.8 TeV (21 pages) .................. 072004 D. Acosta et al. ͑CDF Collaboration͒ Electric charge and magnetic moment of a massive neutrino (21 pages) ............................... 073001 Maxim Dvornikov and Alexander Studenikin → decays in the resonance effective theory (13 pages) .................................... -
1 Standard Model: Successes and Problems
Searching for new particles at the Large Hadron Collider James Hirschauer (Fermi National Accelerator Laboratory) Sambamurti Memorial Lecture : August 7, 2017 Our current theory of the most fundamental laws of physics, known as the standard model (SM), works very well to explain many aspects of nature. Most recently, the Higgs boson, predicted to exist in the late 1960s, was discovered by the CMS and ATLAS collaborations at the Large Hadron Collider at CERN in 2012 [1] marking the first observation of the full spectrum of predicted SM particles. Despite the great success of this theory, there are several aspects of nature for which the SM description is completely lacking or unsatisfactory, including the identity of the astronomically observed dark matter and the mass of newly discovered Higgs boson. These and other apparent limitations of the SM motivate the search for new phenomena beyond the SM either directly at the LHC or indirectly with lower energy, high precision experiments. In these proceedings, the successes and some of the shortcomings of the SM are described, followed by a description of the methods and status of the search for new phenomena at the LHC, with some focus on supersymmetry (SUSY) [2], a specific theory of physics beyond the standard model (BSM). 1 Standard model: successes and problems The standard model of particle physics describes the interactions of fundamental matter particles (quarks and leptons) via the fundamental forces (mediated by the force carrying particles: the photon, gluon, and weak bosons). The Higgs boson, also a fundamental SM particle, plays a central role in the mechanism that determines the masses of the photon and weak bosons, as well as the rest of the standard model particles. -
Study of $ S\To D\Nu\Bar {\Nu} $ Rare Hyperon Decays Within the Standard
Study of s dνν¯ rare hyperon decays in the Standard Model and new physics → Xiao-Hui Hu1 ∗, Zhen-Xing Zhao1 † 1 INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, MOE Key Laboratory for Particle Physics, Astrophysics and Cosmology, School of Physics and Astronomy, Shanghai Jiao-Tong University, Shanghai 200240, P.R. China FCNC processes offer important tools to test the Standard Model (SM), and to search for possible new physics. In this work, we investigate the s → dνν¯ rare hyperon decays in SM and beyond. We 14 11 find that in SM the branching ratios for these rare hyperon decays range from 10− to 10− . When all the errors in the form factors are included, we find that the final branching fractions for most decay modes have an uncertainty of about 5% to 10%. After taking into account the contribution from new physics, the generalized SUSY extension of SM and the minimal 331 model, the decay widths for these channels can be enhanced by a factor of 2 ∼ 7. I. INTRODUCTION The flavor changing neutral current (FCNC) transitions provide a critical test of the Cabibbo-Kobayashi-Maskawa (CKM) mechanism in the Standard Model (SM), and allow to search for the possible new physics. In SM, FCNC transition s dνν¯ proceeds through Z-penguin and electroweak box diagrams, and thus the decay probablitities are strongly→ suppressed. In this case, a precise study allows to perform very stringent tests of SM and ensures large sensitivity to potential new degrees of freedom. + + 0 A large number of studies have been performed of the K π νν¯ and KL π νν¯ processes, and reviews of these two decays can be found in [1–6]. -
Thesissubmittedtothe Florida State University Department of Physics in Partial Fulfillment of the Requirements for Graduation with Honors in the Major
Florida State University Libraries 2016 Search for Electroweak Production of Supersymmetric Particles with two photons, an electron, and missing transverse energy Paul Myles Eugenio Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] ASEARCHFORELECTROWEAK PRODUCTION OF SUPERSYMMETRIC PARTICLES WITH TWO PHOTONS, AN ELECTRON, AND MISSING TRANSVERSE ENERGY Paul Eugenio Athesissubmittedtothe Florida State University Department of Physics in partial fulfillment of the requirements for graduation with Honors in the Major Spring 2016 2 Abstract A search for Supersymmetry (SUSY) using a final state consisting of two pho- tons, an electron, and missing transverse energy. This analysis uses data collected by the Compact Muon Solenoid (CMS) detector from proton-proton collisions at a center of mass energy √s =13 TeV. The data correspond to an integrated luminosity of 2.26 fb−1. This search focuses on a R-parity conserving model of Supersymmetry where electroweak decay of SUSY particles results in the lightest supersymmetric particle, two high energy photons, and an electron. The light- est supersymmetric particle would escape the detector, thus resulting in missing transverse energy. No excess of missing energy is observed in the signal region of MET>100 GeV. A limit is set on the SUSY electroweak Chargino-Neutralino production cross section. 3 Contents 1 Introduction 9 1.1 Weakly Interacting Massive Particles . ..... 10 1.2 SUSY ..................................... 12 2 CMS Detector 15 3Data 17 3.1 ParticleFlowandReconstruction . .. 17 3.1.1 ECALClusteringandR9. 17 3.1.2 Conversion Safe Electron Veto . 18 3.1.3 Shower Shape . 19 3.1.4 Isolation . -
Pkoduction of RELATIVISTIC ANTIHYDROGEN ATOMS by PAIR PRODUCTION with POSITRON CAPTURE*
SLAC-PUB-5850 May 1993 (T/E) PkODUCTION OF RELATIVISTIC ANTIHYDROGEN ATOMS BY PAIR PRODUCTION WITH POSITRON CAPTURE* Charles T. Munger and Stanley J. Brodsky Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 .~ and _- Ivan Schmidt _ _.._ Universidad Federico Santa Maria _. - .Casilla. 11 O-V, Valparaiso, Chile . ABSTRACT A beam of relativistic antihydrogen atoms-the bound state (Fe+)-can be created by circulating the beam of an antiproton storage ring through an internal gas target . An antiproton that passes through the Coulomb field of a nucleus of charge 2 will create e+e- pairs, and antihydrogen will form when a positron is created in a bound rather than a continuum state about the antiproton. The - cross section for this process is calculated to be N 4Z2 pb for antiproton momenta above 6 GeV/c. The gas target of Fermilab Accumulator experiment E760 has already produced an unobserved N 34 antihydrogen atoms, and a sample of _ N 760 is expected in 1995 from the successor experiment E835. No other source of antihydrogen exists. A simple method for detecting relativistic antihydrogen , - is -proposed and a method outlined of measuring the antihydrogen Lamb shift .g- ‘,. to N 1%. Submitted to Physical Review D *Work supported in part by Department of Energy contract DE-AC03-76SF00515 fSLAC’1 and in Dart bv Fondo National de InvestiPaci6n Cientifica v TecnoMcica. Chile. I. INTRODUCTION Antihydrogen, the simplest atomic bound state of antimatter, rf =, (e+$, has never. been observed. A 1on g- sought goal of atomic physics is to produce sufficient numbers of antihydrogen atoms to confirm the CPT invariance of bound states in quantum electrodynamics; for example, by verifying the equivalence of the+&/2 - 2.Py2 Lamb shifts of H and I?. -
Jhep11(2016)148
Published for SISSA by Springer Received: August 9, 2016 Revised: October 28, 2016 Accepted: November 20, 2016 Published: November 24, 2016 JHEP11(2016)148 Split NMSSM with electroweak baryogenesis S.V. Demidov,a;b D.S. Gorbunova;b and D.V. Kirpichnikova aInstitute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312, Russia bMoscow Institute of Physics and Technology, Institutsky per. 9, Dolgoprudny 141700, Russia E-mail: [email protected], [email protected], [email protected] Abstract: In light of the Higgs boson discovery and other results of the LHC we re- consider generation of the baryon asymmetry in the split Supersymmetry model with an additional singlet superfield in the Higgs sector (non-minimal split SUSY). We find that successful baryogenesis during the first order electroweak phase transition is possible within a phenomenologically viable part of the model parameter space. We discuss several phenomenological consequences of this scenario, namely, predictions for the electric dipole moments of electron and neutron and collider signatures of light charginos and neutralinos. Keywords: Supersymmetry Phenomenology ArXiv ePrint: 1608.01985 Open Access, c The Authors. doi:10.1007/JHEP11(2016)148 Article funded by SCOAP3. Contents 1 Introduction1 2 Non-minimal split supersymmetry3 3 Predictions for the Higgs boson mass5 4 Strong first order EWPT8 JHEP11(2016)148 5 Baryon asymmetry9 6 EDM constraints and light chargino phenomenology 12 7 Conclusion 13 A One loop corrections to Higgs mass in split NMSSM 14 A.1 Tree level potential of scalar sector in the broken phase 14 A.2 Chargino-neutralino sector of split NMSSM 16 A.3 One-loop correction to Yukawa coupling of top quark 17 1 Introduction Any phenomenologically viable particle physics model should explain the observed asym- metry between matter and antimatter in the Universe. -
Supersymmetric Particle Searches
Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov) Supersymmetric Particle Searches A REVIEW GOES HERE – Check our WWW List of Reviews A REVIEW GOES HERE – Check our WWW List of Reviews SUPERSYMMETRIC MODEL ASSUMPTIONS The exclusion of particle masses within a mass range (m1, m2) will be denoted with the notation “none m m ” in the VALUE column of the 1− 2 following Listings. The latest unpublished results are described in the “Supersymmetry: Experiment” review. A REVIEW GOES HERE – Check our WWW List of Reviews CONTENTS: χ0 (Lightest Neutralino) Mass Limit 1 e Accelerator limits for stable χ0 − 1 Bounds on χ0 from dark mattere searches − 1 χ0-p elastice cross section − 1 eSpin-dependent interactions Spin-independent interactions Other bounds on χ0 from astrophysics and cosmology − 1 Unstable χ0 (Lighteste Neutralino) Mass Limit − 1 χ0, χ0, χ0 (Neutralinos)e Mass Limits 2 3 4 χe ,eχ e(Charginos) Mass Limits 1± 2± Long-livede e χ± (Chargino) Mass Limits ν (Sneutrino)e Mass Limit Chargede Sleptons e (Selectron) Mass Limit − µ (Smuon) Mass Limit − e τ (Stau) Mass Limit − e Degenerate Charged Sleptons − e ℓ (Slepton) Mass Limit − q (Squark)e Mass Limit Long-livede q (Squark) Mass Limit b (Sbottom)e Mass Limit te (Stop) Mass Limit eHeavy g (Gluino) Mass Limit Long-lived/lighte g (Gluino) Mass Limit Light G (Gravitino)e Mass Limits from Collider Experiments Supersymmetrye Miscellaneous Results HTTP://PDG.LBL.GOV Page1 Created: 8/21/2014 12:57 Citation: K.A. Olive et al. -
Search for Long-Lived Stopped R-Hadrons Decaying out of Time with Pp Collisions Using the ATLAS Detector
PHYSICAL REVIEW D 88, 112003 (2013) Search for long-lived stopped R-hadrons decaying out of time with pp collisions using the ATLAS detector G. Aad et al.* (ATLAS Collaboration) (Received 24 October 2013; published 3 December 2013) An updated search is performed for gluino, top squark, or bottom squark R-hadrons that have come to rest within the ATLAS calorimeter, and decay at some later time to hadronic jets and a neutralino, using 5.0 and 22:9fbÀ1 of pp collisions at 7 and 8 TeV, respectively. Candidate decay events are triggered in selected empty bunch crossings of the LHC in order to remove pp collision backgrounds. Selections based on jet shape and muon system activity are applied to discriminate signal events from cosmic ray and beam-halo muon backgrounds. In the absence of an excess of events, improved limits are set on gluino, stop, and sbottom masses for different decays, lifetimes, and neutralino masses. With a neutralino of mass 100 GeV, the analysis excludes gluinos with mass below 832 GeV (with an expected lower limit of 731 GeV), for a gluino lifetime between 10 s and 1000 s in the generic R-hadron model with equal branching ratios for decays to qq~0 and g~0. Under the same assumptions for the neutralino mass and squark lifetime, top squarks and bottom squarks in the Regge R-hadron model are excluded with masses below 379 and 344 GeV, respectively. DOI: 10.1103/PhysRevD.88.112003 PACS numbers: 14.80.Ly R-hadrons may change their properties through strong I. -
Charm Meson Molecules and the X(3872)
Charm Meson Molecules and the X(3872) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Masaoki Kusunoki, B.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Professor Eric Braaten, Adviser Professor Richard J. Furnstahl Adviser Professor Junko Shigemitsu Graduate Program in Professor Brian L. Winer Physics Abstract The recently discovered resonance X(3872) is interpreted as a loosely-bound S- wave charm meson molecule whose constituents are a superposition of the charm mesons D0D¯ ¤0 and D¤0D¯ 0. The unnaturally small binding energy of the molecule implies that it has some universal properties that depend only on its binding energy and its width. The existence of such a small energy scale motivates the separation of scales that leads to factorization formulas for production rates and decay rates of the X(3872). Factorization formulas are applied to predict that the line shape of the X(3872) differs significantly from that of a Breit-Wigner resonance and that there should be a peak in the invariant mass distribution for B ! D0D¯ ¤0K near the D0D¯ ¤0 threshold. An analysis of data by the Babar collaboration on B ! D(¤)D¯ (¤)K is used to predict that the decay B0 ! XK0 should be suppressed compared to B+ ! XK+. The differential decay rates of the X(3872) into J=Ã and light hadrons are also calculated up to multiplicative constants. If the X(3872) is indeed an S-wave charm meson molecule, it will provide a beautiful example of the predictive power of universality. -
Introduction to Supersymmetry
Introduction to Supersymmetry Pre-SUSY Summer School Corpus Christi, Texas May 15-18, 2019 Stephen P. Martin Northern Illinois University [email protected] 1 Topics: Why: Motivation for supersymmetry (SUSY) • What: SUSY Lagrangians, SUSY breaking and the Minimal • Supersymmetric Standard Model, superpartner decays Who: Sorry, not covered. • For some more details and a slightly better attempt at proper referencing: A supersymmetry primer, hep-ph/9709356, version 7, January 2016 • TASI 2011 lectures notes: two-component fermion notation and • supersymmetry, arXiv:1205.4076. If you find corrections, please do let me know! 2 Lecture 1: Motivation and Introduction to Supersymmetry Motivation: The Hierarchy Problem • Supermultiplets • Particle content of the Minimal Supersymmetric Standard Model • (MSSM) Need for “soft” breaking of supersymmetry • The Wess-Zumino Model • 3 People have cited many reasons why extensions of the Standard Model might involve supersymmetry (SUSY). Some of them are: A possible cold dark matter particle • A light Higgs boson, M = 125 GeV • h Unification of gauge couplings • Mathematical elegance, beauty • ⋆ “What does that even mean? No such thing!” – Some modern pundits ⋆ “We beg to differ.” – Einstein, Dirac, . However, for me, the single compelling reason is: The Hierarchy Problem • 4 An analogy: Coulomb self-energy correction to the electron’s mass A point-like electron would have an infinite classical electrostatic energy. Instead, suppose the electron is a solid sphere of uniform charge density and radius R. An undergraduate problem gives: 3e2 ∆ECoulomb = 20πǫ0R 2 Interpreting this as a correction ∆me = ∆ECoulomb/c to the electron mass: 15 0.86 10− meters m = m + (1 MeV/c2) × . -
Elementary Particle Physics from Theory to Experiment
Elementary Particle Physics From Theory to Experiment Carlos Wagner Physics Department, EFI and KICP, Univ. of Chicago HEP Division, Argonne National Laboratory Society of Physics Students, Univ. of Chicago, Nov. 10, 2014 Particle Physics studies the smallest pieces of matter, 1 1/10.000 1/100.000 1/100.000.000 and their interactions. Friday, November 2, 2012 Forces and Particles in Nature Gravitational Force Electromagnetic Force Attractive force between 2 massive objects: Attracts particles of opposite charge k e e F = 1 2 d2 1 G = 2 MPl Forces within atoms and between atoms Proportional to product of masses + and - charges bind together Strong Force and screen each other Assumes interaction over a distance d ==> comes from properties of spaceAtoms and timeare made fromElectrons protons, interact with protons via quantum neutrons and electrons. Strong nuclear forceof binds e.m. energy together : the photons protons and neutrons to form atoms nuclei Strong nuclear force binds! togethers! =1 m! = 0 protons and neutrons to form nuclei protonD. I. S. of uuelectronsd formedwith Modeled protons by threeor by neutrons a theoryquarks, based bound on together Is very weak unless one ofneutron theat masses high energies is huge,udd shows by thatthe U(1)gluons gauge of thesymmetry strong interactions like the earth protons and neutrons SU (3) c are not fundamental Friday,p November! u u d 2, 2012 formed by three quarks, bound together by n ! u d d the gluons of the strong interactions Modeled by a theory based on SU ( 3 ) C gauge symmetry we see no free quarks Very strong at large distances confinement " in nature ! Weak Force Force Mediating particle transformations Observation of Beta decay demands a novel interaction Weak Force Short range forces exist only inside the protons 2 and neutrons, with massive force carriers: gauge bosons ! W and Z " MW d FW ! e / d Similar transformations explain the non-observation of heavier elementary particles in our everyday experience.