Elucidating the Role of Smad7 in Pancreatic Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Elucidating the Role of Smad7 in Pancreatic Cancer ELUCIDATING THE ROLE OF SMAD7 IN PANCREATIC CANCER THROUGH IN VIVO STUDIES Sudha Satish Savant Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Biochemistry and Molecular Biology, Indiana University September 2017 Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. _____________________________ Murray Korc, MD, Chair _____________________________ Ronald C. Wek, PhD Doctoral Committee _____________________________ Lawrence A. Quilliam, PhD June16, 2017 _____________________________ Jing Wu Xie, PhD ii Dedication I dedicate this dissertation to my parents, Monica and Satish Savant, and to my husband, Rajesh Sardar, as without their unconditional love and support this would have not been possible. iii Acknowledgments I want to thank my advisor, Murray Korc, and my committee, Ronald Wek, Lawrence A. Quilliam and Jing Wu Xie for their guidance and support during my graduate studies. I would like to thank all the past and current members of the Korc lab for their feedback and scientific discussions in the lab. I would like to thank all the faculty, staff and students of the Biochemistry and Molecular Biology Department and of the Simon Cancer center for their support throughout my graduate studies. Additionally, I would like to thank the Graduate division, especially Randy Brutkiewicz, Tara Hobson-Prater and Brandy Wood for their support throughout graduate school and for providing opportunities and nurturing my professional career. I am grateful to Barry Muhoberac, Melissa Fishel, Lakshmi Prabhu, Eshaani Mitra and my parents for their suggestions and support with this thesis. I would like to thank my brother, family and friends for their continued support and love throughout the graduate journey. iv Sudha Satish Savant Elucidating the role of Smad7 in pancreatic cancer through in vivo studies Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of death with a mere 9% survival rate. PDACs harbor KRAS (92-95%) and CDKN2A (90%) mutations, overexpress tyrosine kinase receptors, their ligands, and transforming growth factor-β (TGF-β) isoforms. Canonical TGF-β signaling is mediated via Smad2, Smad3 and Smad4, whereas inhibitory Smad6 and Smad7 attenuate TGF-β signaling. Smad7 is overexpressed in PDAC and blocks TGF-β-mediated growth inhibition in vitro. However, the exact role of Smad7 in PDAC is not known. We have established a genetically engineered mouse model of PDAC in which conditional expression of Smad7 and oncogenic KrasG12D are driven in the pancreas by Pdx1-Cre. These LSL- KrasG12D;SMAD7;Pdx1-Cre(KS7C) mice exhibit accelerated progression of pancreatic intraepithelial neoplasia (PanIN) to PDAC by comparison with LSL-KrasG12D;Pdx1-Cre (KC) mice harboring the KrasG12D mutation alone, whereas in the absence of oncogenic Kras, pancreatic histology remains normal in spite of a 9- fold increase in Smad7 mRNA levels. KS7C pancreata exhibit increased PanIN and pancreatic cancer cell proliferation, and these changes are recapitulated in a tetracycline (tet) inducible mouse model of Smad7 (KtetS7C). In both models, pre-neoplastic lesions and PDACs exhibited increased levels of anterior gradient 2 (AGR2), hyper-phosphorylated retinoblastoma protein (p-pRb) and p-Smad2, but low levels of p-Smad3 and p21. Smad7 overexpression in human pancreatic cancer cells (hPCCs) results in downregulated p21 and upregulated AGR2 mRNA and protein levels, and decreased binding of Smad3/4 complex to the AGR2 promoter. Smad3 silencing in hPCCS also resulted in downregulated p21 mRNA and upregulated AGR2 mRNA levels. These findings indicate that Smad7 blocks TGF-β pathways, in part, by preferentially decreasing Smad3 v phosphorylation and enhancing AGR2 expression in PDAC, and suggest that targeting Smad7 may constitute a novel therapeutic approach in PDAC. Murray Korc, MD, Chair vi Contents List of Tables ............................................................................................................... xi List of Figures .............................................................................................................. xii Abbreviations .............................................................................................................. xv 1 Introduction 1.1 Pancreatic cancer .................................................................................................. 1 1.2 Risk factors for PDAC ............................................................................................. 4 1.3 Pancreas ................................................................................................................ 5 1.4 Exocrine pancreas .................................................................................................. 6 1.5 TGF-β signaling ...................................................................................................... 7 1.6 Smad7 .................................................................................................................... 9 1.7 Cell cycle .............................................................................................................. 10 1.8 KRAS mutations in PDAC ..................................................................................... 12 1.9 Need for understanding Smad7 in pancreatic cancer ............................................ 14 1.10 Pancreatitis, TGF-β and Smad7 .......................................................................... 16 2 Materials and Methods ............................................................................................. 17 2.1 LSL-SMAD7 Transgene generation ...................................................................... 17 2.2 ES Cell Electroporation, Selection, Injection and Screening ................................. 17 2.3 Generation of SMAD7 overexpressing transgenic mice ........................................ 18 2.4 Mouse Maintenance and Genotyping.................................................................... 20 2.5 Generation of KS7C, KtetS7C and KR+/-S7C mouse models ................................ 20 2.6 DNA extraction from tail ........................................................................................ 21 2.7 Genotyping ........................................................................................................... 21 2.8 RNA isolation from murine pancreatic tissue and cell lysates and conversion to cDNA ...................................................................................................................... 22 2.9 DNA extraction from cells ..................................................................................... 22 2.10 Gene expression analysis ................................................................................... 22 2.11 Protein isolation and quantification ..................................................................... 22 2.12 Immunoblotting and quantification of bands ........................................................ 23 2.13 Histology, Immunohistochemistry and Immunofluorescence ............................... 23 vii 2.14 IF quantification .................................................................................................. 24 2.15 Statistics ............................................................................................................. 24 2.16 Cell culture .......................................................................................................... 24 2.17 Tetracycline inducible SMAD7 overexpressing hPCCs ....................................... 25 2.18 Constitutive overexpression of SMAD7 in hPCCs ............................................... 26 2.19 Knockdown of SMAD3 in COLO-357 .................................................................. 26 2.20 SMAD3 CRISPR of hPCCs ................................................................................. 26 2.21 Isolation of mouse cells from tumor..................................................................... 27 2.22 Immunocytochemistry ......................................................................................... 27 2.23 Cell proliferation assays ...................................................................................... 28 2.24 3-Dimentionsional tissue culture ......................................................................... 28 2.25 Orthotopic injections ........................................................................................... 28 2.26 Induction of Acute Pancreatitis ............................................................................ 29 2.27 Chromatin Immunoprecipitation Assays .............................................................. 29 2.28 Gene Set Enrichment Analysis ........................................................................... 29 2.29 Composition of buffers used ............................................................................... 30 2.30 Primers used ...................................................................................................... 31 2.31 PCR reactions .................................................................................................... 34 2.32 PCR cycling conditions ....................................................................................... 34 2.33 List of antibodies used .......................................................................................
Recommended publications
  • Proteomic Profiling of Liver from Elaphe Taeniura, a Common Snake in Eastern and Southeastern Asia
    Genetics and Molecular Biology, 36, 3, 438-447 (2013) Copyright © 2013, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Research Article Proteomic profiling of liver from Elaphe taeniura, a common snake in eastern and southeastern Asia Liang Chen1, Hengchuan Xia3, Yiting Wang2, Keping Chen3, Lvgao Qin3, Bin Wang3, Qin Yao3, Jun Li4, Yuanqing He3 and Ermi Zhao1,5 1Key Laboratory of Bio-resources and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, China. 2College of Athletic Sports, Yangzhou University, Yangzhou, Jiangsu Province, China. 3Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China. 4Center for Physics and Chemistry, Jiangsu University, Zhenjiang, Jiangsu Province, China. 5Chengdu Institute of Biology, the Chinese Academy of Sciences, Chengdu, Sichuan Province, China. Abstract Snake liver has been implicated in the adaptation of snakes to a variety of habitats. However, to date, there has been no systematic analysis of snake liver proteins. In this study, we undertook a proteomic analysis of liver from the colubrid snake Elaphe taeniura using a combination of two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time of flightmass spectrometry (MALDI-TOF MS). We also constructed a local protein sequence database based on transcriptome sequencing to facilitate protein identification. Of the 268 protein spots revealed by 2-DE 109 gave positive MS signals, 84 of which were identified by searching the NCBInr, Swiss-Prot and local databases. The other 25 protein spots could not be identified, possibly because their transcripts were not be stable enough to be detected by transcriptome sequencing. GO analysis showed that most proteins may be involved in binding, catalysis, cellular processes and metabolic processes.
    [Show full text]
  • Seq2pathway Vignette
    seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway.
    [Show full text]
  • Human C11orf86 (NM 001136485) Cdna/ORF Clone
    Human C11orf86 (NM_001136485) cDNA/ORF clone Catalog Number: 738726-1 General Information Plasmid Resuspension protocol Gene Name: 1.Centrifuge at 5,000×g for 5 min. 2.Carefully open the tube and add 20 μl of sterile chromosome 11 open reading frame 86 water to dissolve the DNA. 3.Close the tube and incubate for 10 minutes at Official Symbol: C11orf86 room temperature. 4.Briefly vortex the tube and then do a quick spin Organism: Homo sapiens to concentrate the liquid at the bottom. Speed is RefSeq: NM_001136485 less than 5000×g. 5.Store the plasmid at -20 ℃. Description The plasmid is ready for: Sequence Description: Restriction enzyme digestion; PCR amplification; Identical with the Gene Bank Ref. ID sequence. E. coli transformation; DNA sequencing Vector: pOTENT-1 E.coli strains for transformation (recommended but not limited): Note: using kanamycin at 25~30 ug/ml, higher concentration may lead to no bacteria Most commercially available competent cells are clones. appropriate for the plasmid, e.g. TOP10, DH5α and TOP10F´. Restriction Sites: Vector Information Shipping carrier: ORFs cloned in this vector will be expressed in mammalian cells as a tagged protein with the C- Each tube contains approximately 5 μg - 10 μg of terminal FLAG-6 His tags. lyophilized plasmid. Such clones are the best for detection and purification of the transgene using anti-FLAG or Storage: anti-His antibodies. The lyophilized plasmid can be stored at ambient Physical Map of pOTENT-1: temperature for three months. Quality control: The plasmid is confirmed by full-length sequencing with primers in the sequencing primer list.
    [Show full text]
  • Age-Related Variations in Gene Expression Patterns of Renal Cell Carcinoma – Biological and Translational Implications
    Age-Related Variations in Gene Expression Patterns of Renal Cell Carcinoma – Biological and Translational Implications Lara Feulner, M.D. Master of Science Department of Human Genetics McGill University Montreal, Quebec August 2018 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Science © Lara Feulner 2018 i DEDICATION This thesis is dedicated to my parents and brother, for their unfailing support throughout my life. Thank you so much. I’d also like to thank my colleagues from Yasser’s lab for making it a pleasant place to work the last two years. ii ABSTRACT Renal cell carcinoma (RCC) is known to occur across a wide age spectrum traversing age-related organismal changes, however little is known as to how the aging process may affect the course of RCC and the repertoire of genes involved. I therefore examined associations between patient age and the gene expression profiles in RCC tumors and normal kidney tissues. Datasets from The Cancer Genome Atlas (TCGA, n=436) and the International Cancer Genome Consortium (ICGC) Cancer Genomics of the Kidney (CAGEKID, n=89) were analyzed for pathways and cellular processes that are affected by aging in RCC. My analysis revealed different age dependent gene expression spectra in RCC tumors and normal kidney tissues. These findings were significant and reproducible in both datasets examined (p < 2.2 × 10-16). Age-upregulated genes, that is genes that show higher expression in older patients, in normal cells were significantly enriched (FDR<0.05) for pathways associated with immune response, collagen formation and semaphorin signaling, whereas age-upregulated genes in tumors were enriched for metabolism and oxidation pathways.
    [Show full text]
  • Genome-Wide Analysis of Thyroid Hormone Receptors Shared and Specific Functions in Neural Cells
    Genome-wide analysis of thyroid hormone receptors shared and specific functions in neural cells Fabrice Chatonneta, Romain Guyota, Gérard Benoîtb, and Frederic Flamanta,1 aInstitut de Génomique Fonctionnelle de Lyon, Université de Lyon, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique, École Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; and bCentre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS, Université Lyon 1, Unité Mixte de Recherche 5334, Villeurbanne F-69622, France Edited by Pierre Chambon, Institut de Génétique et de Biologie Moléculaire et Cellulaire (Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U596, Université de Strasbourg, College de France), Illkirch-Cedex, France, and approved January 4, 2013 (received for review June 25, 2012) TRα1 and TRβ1, the two main thyroid hormone receptors in mam- issue. It would help to develop new selective ligands (6). It might mals, are transcription factors that share similar properties. How- also help to predict the possible detrimental side effects of these ever, their respective functions are very different. This functional synthetic ligands in heart and brain (7) and the toxicity of some divergence might be explained in two ways: it can reflect different environmental contaminants supposed to interfere with TR expression patterns or result from different intrinsic properties of functions (8). The primary sequence and 3D structure of TRα1 β the receptors. We tested this second hypothesis by comparing the and TR 1 are very similar, although differences are observed for – repertoires of 3,3′,5-triiodo-L-thyronine (T3)-responsive genes of key amino acids in the DNA-binding domain (9 12).
    [Show full text]
  • Arnau Soler2019.Pdf
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Genetic responses to environmental stress underlying major depressive disorder Aleix Arnau Soler Doctor of Philosophy The University of Edinburgh 2019 Declaration I hereby declare that this thesis has been composed by myself and that the work presented within has not been submitted for any other degree or professional qualification. I confirm that the work submitted is my own, except where work which has formed part of jointly-authored publications has been included. My contribution and those of the other authors to this work are indicated below. I confirm that appropriate credit has been given within this thesis where reference has been made to the work of others. I composed this thesis under guidance of Dr. Pippa Thomson. Chapter 2 has been published in PLOS ONE and is attached in the Appendix A, chapter 4 and chapter 5 are published in Translational Psychiatry and are attached in the Appendix C and D, and I expect to submit chapter 6 as a manuscript for publication.
    [Show full text]
  • PRODUCT SPECIFICATION Anti-C11orf86 Product Datasheet
    Anti-C11orf86 Product Datasheet Polyclonal Antibody PRODUCT SPECIFICATION Product Name Anti-C11orf86 Product Number HPA039348 Gene Description chromosome 11 open reading frame 86 Clonality Polyclonal Isotype IgG Host Rabbit Antigen Sequence Recombinant Protein Epitope Signature Tag (PrEST) antigen sequence: GTGLRSQSLREPRPSYGKLQEPWGRPQEGQLRRALSLRQGQEKSRSQGLE RGTEGPDATAQE Purification Method Affinity purified using the PrEST antigen as affinity ligand Verified Species Human Reactivity Recommended IHC (Immunohistochemistry) Applications - Antibody dilution: 1:50 - 1:200 - Retrieval method: HIER pH6 Characterization Data Available at atlasantibodies.com/products/HPA039348 Buffer 40% glycerol and PBS (pH 7.2). 0.02% sodium azide is added as preservative. Concentration Lot dependent Storage Store at +4°C for short term storage. Long time storage is recommended at -20°C. Notes Gently mix before use. Optimal concentrations and conditions for each application should be determined by the user. For protocols, additional product information, such as images and references, see atlasantibodies.com. Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use. No products from Atlas Antibodies may be resold, modified for resale or used to manufacture commercial products without prior written approval from Atlas Antibodies AB. Warranty: The products supplied by Atlas Antibodies are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sales for products used, handled and stored according to Atlas Antibodies AB's instructions. Atlas Antibodies AB's sole liability is limited to replacement of the product or refund of the purchase price.
    [Show full text]
  • Investigation of Adiposity Phenotypes in AA Associated with GALNT10 & Related Pathway Genes
    Investigation of Adiposity Phenotypes in AA Associated With GALNT10 & Related Pathway Genes By Mary E. Stromberg A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY In Molecular Genetics and Genomics December 2018 Winston-Salem, North Carolina Approved by: Donald W. Bowden, Ph.D., Advisor Maggie C.Y. Ng, Ph.D., Advisor Timothy D. Howard, Ph.D., Chair Swapan Das, Ph.D. John P. Parks, Ph.D. Acknowledgements I would first like to thank my mentors, Dr. Bowden and Dr. Ng, for guiding my learning and growth during my years at Wake Forest University School of Medicine. Thank you Dr. Ng for spending so much time ensuring that I learn every detail of every protocol, and supporting me through personal difficulties over the years. Thank you Dr. Bowden for your guidance in making me a better scientist and person. I would like to thank my committee for their patience and the countless meetings we have had in discussing this project. I would like to say thank you to the members of our lab as well as the Parks lab for their support and friendship as well as their contributions to my project. Special thanks to Dean Godwin for his support and understanding. The umbrella program here at WFU has given me the chance to meet some of the best friends I could have wished for. I would like to also thank those who have taught me along the way and helped me to get to this point of my life, with special thanks to the late Dr.
    [Show full text]
  • Supplementary File 1
    Supplementary Materials Figure S1. RNA sequencing quality control report. The upper panel showed per base sequence quality of (a) miRNA from 786-O and ACHN, and (b) RNA from 786-O and ACHN; the lower panel showed the per sequence quality scores of (c) miRNA from 786-O and ACHN, and (d) RNA from 786-O and ACHN. The quality score from 15 to 99 bp fell into the green background, indicating good quality calls. The majority read > 35 indicated good sequencing quality. Table S1. The list of miRNA with significant changes (ACHN vs 786-O) #miRNA Fold Change #miRNA Fold Change #miRNA Fold Change hsa-let-7a-2-3p -490.00 hsa-miR-192-5p 21.37 hsa-miR-323a-3p 135.76 hsa-let-7c-3p -10.30 hsa-miR-194-3p 31.18 hsa-miR-323b-3p 53.75 hsa-miR-100-3p -26.39 hsa-miR-194-5p 21.87 hsa-miR-326 -16.46 hsa-miR-100-5p -63.93 hsa-miR-195-5p 8.31 hsa-miR-329-3p 101.81 hsa-miR-105-5p -288.00 hsa-miR-196a-3p 5.28 hsa-miR-329-5p 436 hsa-miR-1185-1-3p 32.08 hsa-miR-199b-5p -9.75 hsa-miR-335-3p 73.67 hsa-miR-1185-2-3p 37.22 hsa-miR-203a-3p 222.25 hsa-miR-335-5p 71.58 hsa-miR-1185-5p 91.13 hsa-miR-205-5p -5.12 hsa-miR-337-3p 1696 hsa-miR-1197 7.38 hsa-miR-20b-5p 5.28 hsa-miR-337-5p 12141 hsa-miR-125b-1-3p -301.58 hsa-miR-211-5p 118 hsa-miR-34b-3p 1110.62 hsa-miR-125b-2-3p 5.91 hsa-miR-215-5p 18.88 hsa-miR-34b-5p 796.38 hsa-miR-1262 16.28 hsa-miR-218-5p 14.37 hsa-miR-34c-3p 10751 hsa-miR-1266-5p 6.62 hsa-miR-224-5p 118 hsa-miR-34c-5p 836.81 hsa-miR-127-3p 1723.39 hsa-miR-2277-3p 6.65 hsa-miR-3614-5p 141 hsa-miR-127-5p 4334.00 hsa-miR-2682-3p 6.63 hsa-miR-3617-5p -140 hsa-miR-1271-5p
    [Show full text]
  • Original Article Assessment for Prognostic Value of Differentially Expressed Genes in Immune Microenvironment of Clear Cell Renal Cell Carcinoma
    Am J Transl Res 2020;12(9):5416-5432 www.ajtr.org /ISSN:1943-8141/AJTR0112847 Original Article Assessment for prognostic value of differentially expressed genes in immune microenvironment of clear cell renal cell carcinoma Xiaoxue Yin1,2*, Xingming Zhang3,4*, Zhenhua Liu3,4*, Guangxi Sun3,4, Xudong Zhu3,4, Haoran Zhang3,4, Sha Zhu3,4, Jinge Zhao3,4, Junru Chen3,4, Pengfei Shen3,4, Jia Wang3,4, Ni Chen1,2, Qiao Zhou1,2, Hao Zeng3,4 1Department of Pathology, 2Institute of Pathology, 3Department of Urology, 4Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China. *Co-first authors. Received April 19, 2020; Accepted August 1, 2020; Epub September 15, 2020; Published September 30, 2020 Abstract: Tumor-infiltrating immune cells have been recognized to be associated with prognosis and response to immunotherapy; however, genes related to immune microenvironment of clear cell renal cell carcinoma (ccRCC) remains unclear. To better understand the effects of genes involved in immune and stromal cells on prognosis, we used Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC), DAVID database and ESTMATE algorithm, and divided the patients into low and high groups according to immune (median: 1038.45) and stromal scores (median: 667.945), respectively. We found the immune scores were significantly correlated with clinico- pathological parameters and overall survival (OS). Based on immune scores, 890 DEGs were significantly associ- ated with OS among the 1433 up-regulated genes. Based on top 10 DEGs (IL10RA, FCER1G, SASH3, TIGIT, RHOH, IL12RB1, AIF1, LPXN, LAPTM5 and SP140), cases with number of up-regulated genes ≥ 5 were associated poor OS (P = 0.002).
    [Show full text]
  • The Contribution of Technological Advancements in Breast Cancer from Next Generation Sequencing to Mass-Spectrophotometer
    Acta Scientific MEDICAL SCIENCES (ISSN: 2582-0931) Volume 5 Issue 3 March 2021 Review Article Review: The Contribution of Technological Advancements in Breast Cancer from Next Generation Sequencing to Mass-Spectrophotometer Zakaria Eltahir1* and Abdul Samad Firoz1,2 Received: January 27, 2021 1Department of Medical Laboratory Technology, College of Applied Medical Published: February 26, 2021 Sciences, Taibah University, Medina, Saudi Arabia © All rights are reserved by Zakaria Eltahir 2Center for Genetics and Inherited Diseases, Faculty of Medicine, Tabiah University, and Abdul Samad Firoz. Medina, Saudi Arabia *Corresponding Author: Zakaria Eltahir, Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia. Abstract Breast Cancer has been recognized as a global health problem and a complex disease entity. When considering all cancer types, breast cancer is becoming the most frequent type of cancer affecting women of all ages and across the whole world. Era before next generation sequencing, diagnostic approaches employing genetic analysis were focused on individual factors and were unable to illustrate the comprehensive network of biological complexity encountering this aggressive disease. The introduction of next gen- eration sequencing has facilitated the acquisition of high resolution whole genome, exome and transcriptome sequencing data. This previously unattainable data enabled health professionals to gain a global view of breast cancer genomes and the full spectrum of its involvement. With the utilization of Next Generation Sequencing data from large number of breast cancer patients, it is expected that the exact signaling pathways, leading to the oncogenic transformation of breast tissue, become more understood. Next Generation Sequencing promises to revolutionize breast cancer research, therapy and diagnosis.
    [Show full text]
  • Down Syndrome Congenital Heart Disease: a Narrowed Region and a Candidate Gene Gillian M
    March/April 2001 ⅐ Vol. 3 ⅐ No. 2 article Down syndrome congenital heart disease: A narrowed region and a candidate gene Gillian M. Barlow, PhD1, Xiao-Ning Chen, MD1, Zheng Y. Shi, BS1, Gary E. Lyons, PhD2, David M. Kurnit, MD, PhD3, Livija Celle, MS4, Nancy B. Spinner, PhD4, Elaine Zackai, MD4, Mark J. Pettenati, PhD5, Alexander J. Van Riper, MS6, Michael J. Vekemans, MD7, Corey H. Mjaatvedt, PhD8, and Julie R. Korenberg, PhD, MD1 Purpose: Down syndrome (DS) is a major cause of congenital heart disease (CHD) and the most frequent known cause of atrioventricular septal defects (AVSDs). Molecular studies of rare individuals with CHD and partial duplications of chromosome 21 established a candidate region that included D21S55 through the telomere. We now report human molecular and cardiac data that narrow the DS-CHD region, excluding two candidate regions, and propose DSCAM (Down syndrome cell adhesion molecule) as a candidate gene. Methods: A panel of 19 individuals with partial trisomy 21 was evaluated using quantitative Southern blot dosage analysis and fluorescence in situ hybridization (FISH) with subsets of 32 BACs spanning the region defined by D21S16 (21q11.2) through the telomere. These BACs span the molecular markers D21S55, ERG, ETS2, MX1/2, collagen XVIII and collagen VI A1/A2. Fourteen individuals are duplicated for the candidate region, of whom eight (57%) have the characteristic spectrum of DS-CHD. Results: Combining the results from these eight individuals suggests the candidate region for DS-CHD is demarcated by D21S3 (defined by ventricular septal defect), through PFKL (defined by tetralogy of Fallot). Conclusions: These data suggest that the presence of three copies of gene(s) from the region is sufficient for the production of subsets of DS-CHD.
    [Show full text]