Introduction to Linear Algebra, 5Th Edition

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Linear Algebra, 5Th Edition 2.5. Inverse Matrices 83 2.5 Inverse Matrices 1 1 '1 If the square matrix A has an inverse, then both A− A = I and AA− = I. $ 2 The algorithm to test invertibility is elimination : A must have n (nonzero) pivots. 3 The algebra test for invertibility is the determinant of A : det A must not be zero. 4 The equation that tests for invertibility is Ax = 0 : x = 0 must be the only solution. 1 1 1 5 If A and B (same size) are invertible then so is AB : |(AB)− = B− A− . 1 1 1 6 AA− = I is n equations for n columns of A− . Gauss-Jordan eliminates [AI] to [IA− ]. 7 The last page of the book gives 14 equivalent conditions for a square A to be invertible. & 1 % Suppose A is a square matrix. We look for an “inverse matrix” A− of the same size, 1 1 such that A− times A equals I. Whatever A does, A− undoes. Their product is the 1 1 identity matrix—which does nothing to a vector, so A− Ax = x. But A− might not exist. 1 What a matrix mostly does is to multiply a vector x. Multiplying Ax = b by A− 1 1 1 1 gives A− Ax = A− b. This is x = A− b. The product A− A is like multiplying by a number and then dividing by that number. A number has an inverse if it is not zero— 1 matrices are more complicated and more interesting. The matrix A− is called “A inverse.” 1 DEFINITION The matrix A is invertible if there exists a matrix A− that “inverts” A : 1 1 Two-sided inverse A− A = I and AA− = I. (1) Not all matrices have inverses. This is the first question we ask about a square matrix: 1 Is A invertible ? We don’t mean that we immediately calculate A− . In most problems 1 we never compute it! Here are six “notes” about A− . Note 1 The inverse exists if and only if elimination produces n pivots (row exchanges 1 are allowed). Elimination solves Ax = b without explicitly using the matrix A− . Note 2 The matrix A cannot have two different inverses. Suppose BA = I and also AC = I. Then B = C, according to this “proof by parentheses”: B(AC) = (BA)C gives BI = IC or B = C. (2) This shows that a left-inverse B (multiplying from the left) and a right-inverse C (mul- tiplying A from the right to give AC = I) must be the same matrix. 1 Note 3 If A is invertible, the one and only solution to Ax = b is x = A− b: 1 1 1 Multiply Ax = b by A− . Then x = A− Ax = A− b. 84 Chapter 2. Solving Linear Equations Note 4 (Important) Suppose there is a nonzero vector x such that Ax = 0. Then A cannot have an inverse. No matrix can bring 0 back to x. 1 If A is invertible, then Ax = 0 can only have the zero solution x = A− 0 = 0. Note 5 A 2 by 2 matrix is invertible if and only if ad bc is not zero: − 1 a b − 1 d b 2 by 2 Inverse: = − . (3) c d ad bc c a − − This number ad bc is the determinant of A. A matrix is invertible if its determinant is not zero (Chapter 5).− The test for n pivots is usually decided before the determinant appears. Note 6 A diagonal matrix has an inverse provided no diagonal entries are zero : d1 1/d1 .. 1 .. If A = . then A− = . . d 1/d n n 1 2 Example 1 The 2 by 2 matrix A = 1 2 is not invertible. It fails the test in Note 5, because ad bc equals 2 2 = 0. It fails the test in Note 3, because Ax = 0 when x = (2, 1)−. It fails to have− two pivots as required by Note 1. Elimination− turns the second row of this matrix A into a zero row. The Inverse of a Product AB For two nonzero numbers a and b, the sum a + b might or might not be invertible. The 1 1 numbers a = 3 and b = 3 have inverses 3 and 3 . Their sum a + b = 0 has no inverse. − − 1 1 But the product ab = 9 does have an inverse, which is 3 times 3 . For two matrices A− and B, the situation is similar. It is hard− to say much about the invertibility of A + B. But the product AB has an inverse, if and only if the two factors A 1 and B are separately invertible (and the same size). The important point is that A− and 1 B− come in reverse order : If A and B are invertible then so is AB. The inverse of a product AB is 1 1 1 (AB)− = B− A− . (4) 1 1 1 To see why the order is reversed, multiply AB times B− A− . Inside that is BB− = I: 1 1 1 1 Inverse of AB (AB)(B− A− ) = AIA− = AA− = I. 1 1 1 We moved parentheses to multiply BB− first. Similarly B− A− times AB equals I. 2.5. Inverse Matrices 85 1 1 B− A− illustrates a basic rule of mathematics: Inverses come in reverse order. It is also common sense: If you put on socks and then shoes, the first to be taken off are the . The same reverse order applies to three or more matrices: 1 1 1 1 Reverse order (ABC)− = C− B− A− . (5) Example 2 Inverse of an elimination matrix. If E subtracts 5 times row 1 from row 2, 1 then E− adds 5 times row 1 to row 2 : 1 0 0 1 0 0 E subtracts 1 − E = 5 1 0 and E− = 5 1 0 . E 1 adds − 0 0 1 0 0 1 1 1 Multiply EE− to get the identity matrix I. Also multiply E− E to get I. We are adding and subtracting the same 5 times row 1. If AC = I then automatically CA = I. For square matrices, an inverse on one side is automatically an inverse on the other side. 1 Example 3 Suppose F subtracts 4 times row 2 from row 3, and F − adds it back: 1 0 0 1 0 0 1 F = 0 1 0 and F − = 0 1 0 . 0 4 1 0 4 1 − 1 1 Now multiply F by the matrix E in Example 2 to find FE. Also multiply E− times F − 1 1 1 to find (FE)− . Notice the orders FE and E− F − ! 1 0 0 1 0 0 5 1 0 is inverted by 1 1 5 1 0 (6) FE = − E− F − = . 20 4 1 0 4 1 − The result is beautiful and correct. The product FE contains “20” but its inverse doesn’t. E subtracts 5 times row 1 from row 2. Then F subtracts 4 times the new row 2 (changed by row 1) from row 3. In this order FE, row 3 feels an effect from row 1. 1 1 1 In the order E− F − , that effect does not happen. First F − adds 4 times row 2 to 1 row 3. After that, E− adds 5 times row 1 to row 2. There is no 20, because row 3 doesn’t change again. In this order E−1F −1, row 3 feels no effect from row 1. This is why the next section chooses A = LU, to go back from the triangular U to A. The multipliers fall into place perfectly in the lower triangular L. 1 1 In elimination order F follows E. In reverse order E− follows F − . E−1F −1 is quick. The multipliers 5, 4 fall into place below the diagonal of 1’s. 86 Chapter 2. Solving Linear Equations Calculating A−1 by Gauss-Jordan Elimination 1 I hinted that A− might not be explicitly needed. The equation Ax = b is solved by 1 1 x = A− b. But it is not necessary or efficient to compute A− and multiply it times b. 1 Elimination goes directly to x. And elimination is also the way to calculate A− , as we 1 1 now show. The Gauss-Jordan idea is to solve AA− = I, finding each column of A− . 1 A multiplies the first column of A− (call that x1) to give the first column of I (call that e1). This is our equation Ax1 = e1 = (1, 0, 0). There will be two more equations. −1 Each of the columns x1, x2, x3 of A is multiplied by A to produce a column of I: 1 1 3 columns of A− AA− = A x1 x2 x3 = e1 e2 e3 = I. (7) To invert a 3 by 3 matrix A, we have to solve three systems of equations: Ax1 = e1 and 1 Ax2 = e2 = (0, 1, 0) and Ax3 = e3 = (0, 0, 1). Gauss-Jordan finds A− this way. The Gauss-Jordan method computes A−1 by solving all n equations together. Usually the “augmented matrix” [A b] has one extra column b. Now we have three right sides e1, e2, e3 (when A is 3 by 3). They are the columns of I, so the augmented matrix is really the block matrix [ AI ]. I take this chance to invert my favorite matrix K, with 2’s on the main diagonal and 1’s next to the 2’s: − 2 1 0 1 0 0 Start Gauss-Jordan on K − K e1 e2 e3 = 1 2 1 0 1 0 −0 1 −2 0 0 1 − 2 1 0 1 0 0 − 0 3 1 1 1 0 ( 1 row 1 + row 2) 2 − 2 2 → 0 1 2 0 0 1 − 2 1 0 1 0 0 −3 1 0 2 1 2 1 0 → −4 1 2 2 0 0 3 3 3 1 ( 3 row 2 + row 3) 1 We are halfway to K− .
Recommended publications
  • 18.06 Linear Algebra, Problem Set 2 Solutions
    18.06 Problem Set 2 Solution Total: 100 points Section 2.5. Problem 24: Use Gauss-Jordan elimination on [U I] to find the upper triangular −1 U : 2 3 2 3 2 3 1 a b 1 0 0 −1 4 5 4 5 4 5 UU = I 0 1 c x1 x2 x3 = 0 1 0 : 0 0 1 0 0 1 −1 Solution (4 points): Row reduce [U I] to get [I U ] as follows (here Ri stands for the ith row): 2 3 2 3 1 a b 1 0 0 (R1 = R1 − aR2) 1 0 b − ac 1 −a 0 4 5 4 5 0 1 c 0 1 0 −! (R2 = R2 − cR2) 0 1 0 0 1 −c 0 0 1 0 0 1 0 0 1 0 0 1 ( ) 2 3 R1 = R1 − (b − ac)R3 1 0 0 1 −a ac − b −! 40 1 0 0 1 −c 5 : 0 0 1 0 0 1 Section 2.5. Problem 40: (Recommended) A is a 4 by 4 matrix with 1's on the diagonal and −1 −a; −b; −c on the diagonal above. Find A for this bidiagonal matrix. −1 Solution (12 points): Row reduce [A I] to get [I A ] as follows (here Ri stands for the ith row): 2 3 1 −a 0 0 1 0 0 0 6 7 60 1 −b 0 0 1 0 07 4 5 0 0 1 −c 0 0 1 0 0 0 0 1 0 0 0 1 2 3 (R1 = R1 + aR2) 1 0 −ab 0 1 a 0 0 6 7 (R2 = R2 + bR2) 60 1 0 −bc 0 1 b 07 −! 4 5 (R3 = R3 + cR4) 0 0 1 0 0 0 1 c 0 0 0 1 0 0 0 1 2 3 (R1 = R1 + abR3) 1 0 0 0 1 a ab abc (R = R + bcR ) 60 1 0 0 0 1 b bc 7 −! 2 2 4 6 7 : 40 0 1 0 0 0 1 c 5 0 0 0 1 0 0 0 1 Alternatively, write A = I − N.
    [Show full text]
  • [Math.RA] 19 Jun 2003 Two Linear Transformations Each Tridiagonal with Respect to an Eigenbasis of the Ot
    Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the parameter array∗ Paul Terwilliger Abstract Let K denote a field. Let d denote a nonnegative integer and consider a sequence ∗ K p = (θi,θi , i = 0...d; ϕj , φj, j = 1...d) consisting of scalars taken from . We call p ∗ ∗ a parameter array whenever: (PA1) θi 6= θj, θi 6= θj if i 6= j, (0 ≤ i, j ≤ d); (PA2) i−1 θh−θd−h ∗ ∗ ϕi 6= 0, φi 6= 0 (1 ≤ i ≤ d); (PA3) ϕi = φ1 + (θ − θ )(θi−1 − θ ) h=0 θ0−θd i 0 d i−1 θh−θd−h ∗ ∗ (1 ≤ i ≤ d); (PA4) φi = ϕ1 + (Pθ − θ )(θd−i+1 − θ0) (1 ≤ i ≤ d); h=0 θ0−θd i 0 −1 ∗ ∗ ∗ ∗ −1 (PA5) (θi−2 − θi+1)(θi−1 − θi) P, (θi−2 − θi+1)(θi−1 − θi ) are equal and independent of i for 2 ≤ i ≤ d − 1. In [13] we showed the parameter arrays are in bijection with the isomorphism classes of Leonard systems. Using this bijection we obtain the following two characterizations of parameter arrays. Assume p satisfies PA1, PA2. Let ∗ ∗ A, B, A ,B denote the matrices in Matd+1(K) which have entries Aii = θi, Bii = θd−i, ∗ ∗ ∗ ∗ ∗ ∗ Aii = θi , Bii = θi (0 ≤ i ≤ d), Ai,i−1 = 1, Bi,i−1 = 1, Ai−1,i = ϕi, Bi−1,i = φi (1 ≤ i ≤ d), and all other entries 0. We show the following are equivalent: (i) p satisfies −1 PA3–PA5; (ii) there exists an invertible G ∈ Matd+1(K) such that G AG = B and G−1A∗G = B∗; (iii) for 0 ≤ i ≤ d the polynomial i ∗ ∗ ∗ ∗ ∗ ∗ (λ − θ0)(λ − θ1) · · · (λ − θn−1)(θi − θ0)(θi − θ1) · · · (θi − θn−1) ϕ1ϕ2 · · · ϕ nX=0 n is a scalar multiple of the polynomial i ∗ ∗ ∗ ∗ ∗ ∗ (λ − θd)(λ − θd−1) · · · (λ − θd−n+1)(θ − θ )(θ − θ ) · · · (θ − θ ) i 0 i 1 i n−1 .
    [Show full text]
  • 21. Orthonormal Bases
    21. Orthonormal Bases The canonical/standard basis 011 001 001 B C B C B C B0C B1C B0C e1 = B.C ; e2 = B.C ; : : : ; en = B.C B.C B.C B.C @.A @.A @.A 0 0 1 has many useful properties. • Each of the standard basis vectors has unit length: q p T jjeijj = ei ei = ei ei = 1: • The standard basis vectors are orthogonal (in other words, at right angles or perpendicular). T ei ej = ei ej = 0 when i 6= j This is summarized by ( 1 i = j eT e = δ = ; i j ij 0 i 6= j where δij is the Kronecker delta. Notice that the Kronecker delta gives the entries of the identity matrix. Given column vectors v and w, we have seen that the dot product v w is the same as the matrix multiplication vT w. This is the inner product on n T R . We can also form the outer product vw , which gives a square matrix. 1 The outer product on the standard basis vectors is interesting. Set T Π1 = e1e1 011 B C B0C = B.C 1 0 ::: 0 B.C @.A 0 01 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 0 . T Πn = enen 001 B C B0C = B.C 0 0 ::: 1 B.C @.A 1 00 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 1 In short, Πi is the diagonal square matrix with a 1 in the ith diagonal position and zeros everywhere else.
    [Show full text]
  • Self-Interlacing Polynomials Ii: Matrices with Self-Interlacing Spectrum
    SELF-INTERLACING POLYNOMIALS II: MATRICES WITH SELF-INTERLACING SPECTRUM MIKHAIL TYAGLOV Abstract. An n × n matrix is said to have a self-interlacing spectrum if its eigenvalues λk, k = 1; : : : ; n, are distributed as follows n−1 λ1 > −λ2 > λ3 > ··· > (−1) λn > 0: A method for constructing sign definite matrices with self-interlacing spectra from totally nonnegative ones is presented. We apply this method to bidiagonal and tridiagonal matrices. In particular, we generalize a result by O. Holtz on the spectrum of real symmetric anti-bidiagonal matrices with positive nonzero entries. 1. Introduction In [5] there were introduced the so-called self-interlacing polynomials. A polynomial p(z) is called self- interlacing if all its roots are real, semple and interlacing the roots of the polynomial p(−z). It is easy to see that if λk, k = 1; : : : ; n, are the roots of a self-interlacing polynomial, then the are distributed as follows n−1 (1.1) λ1 > −λ2 > λ3 > ··· > (−1) λn > 0; or n (1.2) − λ1 > λ2 > −λ3 > ··· > (−1) λn > 0: The polynomials whose roots are distributed as in (1.1) (resp. in (1.2)) are called self-interlacing of kind I (resp. of kind II). It is clear that a polynomial p(z) is self-interlacing of kind I if, and only if, the polynomial p(−z) is self-interlacing of kind II. Thus, it is enough to study self-interlacing of kind I, since all the results for self-interlacing of kind II will be obtained automatically. Definition 1.1. An n × n matrix is said to possess a self-interlacing spectrum if its eigenvalues λk, k = 1; : : : ; n, are real, simple, are distributed as in (1.1).
    [Show full text]
  • Partitioned (Or Block) Matrices This Version: 29 Nov 2018
    Partitioned (or Block) Matrices This version: 29 Nov 2018 Intermediate Econometrics / Forecasting Class Notes Instructor: Anthony Tay It is frequently convenient to partition matrices into smaller sub-matrices. e.g. 2 3 2 1 3 2 3 2 1 3 4 1 1 0 7 4 1 1 0 7 A B (2×2) (2×3) 3 1 1 0 0 = 3 1 1 0 0 = C I 1 3 0 1 0 1 3 0 1 0 (3×2) (3×3) 2 0 0 0 1 2 0 0 0 1 The same matrix can be partitioned in several different ways. For instance, we can write the previous matrix as 2 3 2 1 3 2 3 2 1 3 4 1 1 0 7 4 1 1 0 7 a b0 (1×1) (1×4) 3 1 1 0 0 = 3 1 1 0 0 = c D 1 3 0 1 0 1 3 0 1 0 (4×1) (4×4) 2 0 0 0 1 2 0 0 0 1 One reason partitioning is useful is that we can do matrix addition and multiplication with blocks, as though the blocks are elements, as long as the blocks are conformable for the operations. For instance: A B D E A + D B + E (2×2) (2×3) (2×2) (2×3) (2×2) (2×3) + = C I C F 2C I + F (3×2) (3×3) (3×2) (3×3) (3×2) (3×3) A B d E Ad + BF AE + BG (2×2) (2×3) (2×1) (2×3) (2×1) (2×3) = C I F G Cd + F CE + G (3×2) (3×3) (3×1) (3×3) (3×1) (3×3) | {z } | {z } | {z } (5×5) (5×4) (5×4) 1 Intermediate Econometrics / Forecasting 2 Examples (1) Let 1 2 1 1 2 1 c 1 4 2 3 4 2 3 h i A = = = a a a and c = c 1 2 3 2 3 0 1 3 0 1 c 0 1 3 0 1 3 3 c1 h i then Ac = a1 a2 a3 c2 = c1a1 + c2a2 + c3a3 c3 The product Ac produces a linear combination of the columns of A.
    [Show full text]
  • The Invertible Matrix Theorem
    The Invertible Matrix Theorem Ryan C. Daileda Trinity University Linear Algebra Daileda The Invertible Matrix Theorem Introduction It is important to recognize when a square matrix is invertible. We can now characterize invertibility in terms of every one of the concepts we have now encountered. We will continue to develop criteria for invertibility, adding them to our list as we go. The invertibility of a matrix is also related to the invertibility of linear transformations, which we discuss below. Daileda The Invertible Matrix Theorem Theorem 1 (The Invertible Matrix Theorem) For a square (n × n) matrix A, TFAE: a. A is invertible. b. A has a pivot in each row/column. RREF c. A −−−→ I. d. The equation Ax = 0 only has the solution x = 0. e. The columns of A are linearly independent. f. Null A = {0}. g. A has a left inverse (BA = In for some B). h. The transformation x 7→ Ax is one to one. i. The equation Ax = b has a (unique) solution for any b. j. Col A = Rn. k. A has a right inverse (AC = In for some C). l. The transformation x 7→ Ax is onto. m. AT is invertible. Daileda The Invertible Matrix Theorem Inverse Transforms Definition A linear transformation T : Rn → Rn (also called an endomorphism of Rn) is called invertible iff it is both one-to-one and onto. If [T ] is the standard matrix for T , then we know T is given by x 7→ [T ]x. The Invertible Matrix Theorem tells us that this transformation is invertible iff [T ] is invertible.
    [Show full text]
  • Handout 9 More Matrix Properties; the Transpose
    Handout 9 More matrix properties; the transpose Square matrix properties These properties only apply to a square matrix, i.e. n £ n. ² The leading diagonal is the diagonal line consisting of the entries a11, a22, a33, . ann. ² A diagonal matrix has zeros everywhere except the leading diagonal. ² The identity matrix I has zeros o® the leading diagonal, and 1 for each entry on the diagonal. It is a special case of a diagonal matrix, and A I = I A = A for any n £ n matrix A. ² An upper triangular matrix has all its non-zero entries on or above the leading diagonal. ² A lower triangular matrix has all its non-zero entries on or below the leading diagonal. ² A symmetric matrix has the same entries below and above the diagonal: aij = aji for any values of i and j between 1 and n. ² An antisymmetric or skew-symmetric matrix has the opposite entries below and above the diagonal: aij = ¡aji for any values of i and j between 1 and n. This automatically means the digaonal entries must all be zero. Transpose To transpose a matrix, we reect it across the line given by the leading diagonal a11, a22 etc. In general the result is a di®erent shape to the original matrix: a11 a21 a11 a12 a13 > > A = A = 0 a12 a22 1 [A ]ij = A : µ a21 a22 a23 ¶ ji a13 a23 @ A > ² If A is m £ n then A is n £ m. > ² The transpose of a symmetric matrix is itself: A = A (recalling that only square matrices can be symmetric).
    [Show full text]
  • Accurate Singular Values of Bidiagonal Matrices
    d d Accurate Singular Values of Bidiagonal Matrices (Appeared in the SIAM J. Sci. Stat. Comput., v. 11, n. 5, pp. 873-912, 1990) James Demmel W. Kahan Courant Institute Computer Science Division 251 Mercer Str. University of California New York, NY 10012 Berkeley, CA 94720 Abstract Computing the singular values of a bidiagonal matrix is the ®nal phase of the standard algo- rithm for the singular value decomposition of a general matrix. We present a new algorithm which computes all the singular values of a bidiagonal matrix to high relative accuracy indepen- dent of their magnitudes. In contrast, the standard algorithm for bidiagonal matrices may com- pute sm all singular values with no relative accuracy at all. Numerical experiments show that the new algorithm is comparable in speed to the standard algorithm, and frequently faster. Keywords: singular value decomposition, bidiagonal matrix, QR iteration AMS(MOS) subject classi®cations: 65F20, 65G05, 65F35 1. Introduction The standard algorithm for computing the singular value decomposition (SVD ) of a gen- eral real matrix A has two phases [7]: = T 1) Compute orthogonal matrices P 11and Q such that B PAQ 11is in bidiagonal form, i.e. has nonzero entries only on its diagonal and ®rst superdiagonal. Σ= T 2) Compute orthogonal matrices P 22and Q such that PBQ 22is diagonal and nonnega- σ Σ tive. The diagonal entries i of are the singular values of A. We will take them to be σ≥σ = sorted in decreasing order: ii+112. The columns of Q QQ are the right singular vec- = tors,andthecolumnsofP PP12are the left singular vectors.
    [Show full text]
  • Stirling Matrix Via Pascal Matrix
    LinearAlgebraanditsApplications329(2001)49–59 www.elsevier.com/locate/laa StirlingmatrixviaPascalmatrix Gi-SangCheon a,∗,Jin-SooKim b aDepartmentofMathematics,DaejinUniversity,Pocheon487-711,SouthKorea bDepartmentofMathematics,SungkyunkwanUniversity,Suwon440-746,SouthKorea Received11May2000;accepted17November2000 SubmittedbyR.A.Brualdi Abstract ThePascal-typematricesobtainedfromtheStirlingnumbersofthefirstkinds(n,k)and ofthesecondkindS(n,k)arestudied,respectively.Itisshownthatthesematricescanbe factorizedbythePascalmatrices.AlsotheLDU-factorizationofaVandermondematrixof theformVn(x,x+1,...,x+n−1)foranyrealnumberxisobtained.Furthermore,some well-knowncombinatorialidentitiesareobtainedfromthematrixrepresentationoftheStirling numbers,andthesematricesaregeneralizedinoneortwovariables.©2001ElsevierScience Inc.Allrightsreserved. AMSclassification:05A19;05A10 Keywords:Pascalmatrix;Stirlingnumber;Stirlingmatrix 1.Introduction Forintegersnandkwithnk0,theStirlingnumbersofthefirstkinds(n,k) andofthesecondkindS(n,k)canbedefinedasthecoefficientsinthefollowing expansionofavariablex(see[3,pp.271–279]): n n−k k [x]n = (−1) s(n,k)x k=0 and ∗ Correspondingauthor. E-mailaddresses:[email protected](G.-S.Cheon),[email protected](J.-S.Kim). 0024-3795/01/$-seefrontmatter2001ElsevierScienceInc.Allrightsreserved. PII:S0024-3795(01)00234-8 50 G.-S. Cheon, J.-S. Kim / Linear Algebra and its Applications 329 (2001) 49–59 n n x = S(n,k)[x]k, (1.1) k=0 where x(x − 1) ···(x − n + 1) if n 1, [x] = (1.2) n 1ifn = 0. It is known that for an n, k 0, the s(n,k), S(n,k) and [n]k satisfy the following Pascal-type recurrence relations: s(n,k) = s(n − 1,k− 1) + (n − 1)s(n − 1,k), S(n,k) = S(n − 1,k− 1) + kS(n − 1,k), (1.3) [n]k =[n − 1]k + k[n − 1]k−1, where s(n,0) = s(0,k)= S(n,0) = S(0,k)=[0]k = 0ands(0, 0) = S(0, 0) = 1, and moreover the S(n,k) satisfies the following formula known as ‘vertical’ recur- rence relation: n− 1 n − 1 S(n,k) = S(l,k − 1).
    [Show full text]
  • Triangular Factorization
    Chapter 1 Triangular Factorization This chapter deals with the factorization of arbitrary matrices into products of triangular matrices. Since the solution of a linear n n system can be easily obtained once the matrix is factored into the product× of triangular matrices, we will concentrate on the factorization of square matrices. Specifically, we will show that an arbitrary n n matrix A has the factorization P A = LU where P is an n n permutation matrix,× L is an n n unit lower triangular matrix, and U is an n ×n upper triangular matrix. In connection× with this factorization we will discuss pivoting,× i.e., row interchange, strategies. We will also explore circumstances for which A may be factored in the forms A = LU or A = LLT . Our results for a square system will be given for a matrix with real elements but can easily be generalized for complex matrices. The corresponding results for a general m n matrix will be accumulated in Section 1.4. In the general case an arbitrary m× n matrix A has the factorization P A = LU where P is an m m permutation× matrix, L is an m m unit lower triangular matrix, and U is an×m n matrix having row echelon structure.× × 1.1 Permutation matrices and Gauss transformations We begin by defining permutation matrices and examining the effect of premulti- plying or postmultiplying a given matrix by such matrices. We then define Gauss transformations and show how they can be used to introduce zeros into a vector. Definition 1.1 An m m permutation matrix is a matrix whose columns con- sist of a rearrangement of× the m unit vectors e(j), j = 1,...,m, in RI m, i.e., a rearrangement of the columns (or rows) of the m m identity matrix.
    [Show full text]
  • Math 54. Selected Solutions for Week 8 Section 6.1 (Page 282) 22. Let U = U1 U2 U3 . Explain Why U · U ≥ 0. Wh
    Math 54. Selected Solutions for Week 8 Section 6.1 (Page 282) 2 3 u1 22. Let ~u = 4 u2 5 . Explain why ~u · ~u ≥ 0 . When is ~u · ~u = 0 ? u3 2 2 2 We have ~u · ~u = u1 + u2 + u3 , which is ≥ 0 because it is a sum of squares (all of which are ≥ 0 ). It is zero if and only if ~u = ~0 . Indeed, if ~u = ~0 then ~u · ~u = 0 , as 2 can be seen directly from the formula. Conversely, if ~u · ~u = 0 then all the terms ui must be zero, so each ui must be zero. This implies ~u = ~0 . 2 5 3 26. Let ~u = 4 −6 5 , and let W be the set of all ~x in R3 such that ~u · ~x = 0 . What 7 theorem in Chapter 4 can be used to show that W is a subspace of R3 ? Describe W in geometric language. The condition ~u · ~x = 0 is equivalent to ~x 2 Nul ~uT , and this is a subspace of R3 by Theorem 2 on page 187. Geometrically, it is the plane perpendicular to ~u and passing through the origin. 30. Let W be a subspace of Rn , and let W ? be the set of all vectors orthogonal to W . Show that W ? is a subspace of Rn using the following steps. (a). Take ~z 2 W ? , and let ~u represent any element of W . Then ~z · ~u = 0 . Take any scalar c and show that c~z is orthogonal to ~u . (Since ~u was an arbitrary element of W , this will show that c~z is in W ? .) ? (b).
    [Show full text]
  • Pascal Matrices Alan Edelman and Gilbert Strang Department of Mathematics, Massachusetts Institute of Technology [email protected] and [email protected]
    Pascal Matrices Alan Edelman and Gilbert Strang Department of Mathematics, Massachusetts Institute of Technology [email protected] and [email protected] Every polynomial of degree n has n roots; every continuous function on [0, 1] attains its maximum; every real symmetric matrix has a complete set of orthonormal eigenvectors. “General theorems” are a big part of the mathematics we know. We can hardly resist the urge to generalize further! Remove hypotheses, make the theorem tighter and more difficult, include more functions, move into Hilbert space,. It’s in our nature. The other extreme in mathematics might be called the “particular case”. One specific function or group or matrix becomes special. It obeys the general rules, like everyone else. At the same time it has some little twist that connects familiar objects in a neat way. This paper is about an extremely particular case. The familiar object is Pascal’s triangle. The little twist begins by putting that triangle of binomial coefficients into a matrix. Three different matrices—symmetric, lower triangular, and upper triangular—can hold Pascal’s triangle in a convenient way. Truncation produces n by n matrices Sn and Ln and Un—the pattern is visible for n = 4: 1 1 1 1 1 1 1 1 1 1 2 3 4 1 1 1 2 3 S4 = L4 = U4 = . 1 3 6 10 1 2 1 1 3 1 4 10 20 1 3 3 1 1 We mention first a very specific fact: The determinant of every Sn is 1. (If we emphasized det Ln = 1 and det Un = 1, you would write to the Editor.
    [Show full text]