The result of the 8-year analysis From IceCube The 2019 TeV Particle Astrophysics conference Sydney, Australia 12/5th/2019

Spencer N. Axani [email protected] On Behalf of the IceCube Collaboration

Special thanks to: Carlos Argüelles, Janet Conrad, Ben Jones, Marjon Moulai 1

MCνStandard update Model neutrino oscillations

The νStandard Model includes three massive neutrinos. The neutrino flavor states are known superpositions of the mass states:

Flavor states UPNMS Mass states ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ν e Ue1 Ue2 Ue3 ν ⎜ ⎟ ⎜ ⎟ ⎜ 1 ⎟ U U U ⎜ ν µ ⎟ = ⎜ µ1 µ2 µ3 ⎟ ⎜ ν 2 ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ U U U ⎟ ν ⎝ ντ ⎠ ⎝ τ 1 τ 2 τ 3 ⎠ ⎝ 3 ⎠

They are connected through the unitary PMNS mixing matrix: UPNMS = U(θ13,θ23,θ12, δcp, Δm212, Δm232 )

The three active neutrino model is well established experimentally, albeit for a set of important anomalous measurements.

Spencer N. Axani 2 MCSummary update of anomalous measurements

Anomalous measurements found in νe-appearance and νe-disappearance.

Oscillation Anomalous Sub-set of null Class Channel signals (>2σ) results

νe - appearance Short Baseline LSND (ν) NOMAD P(νμ→νe) Experiments MiniBooNE (ν, ν) KARMEN

GALLEX (ν) KARMEN νe - disappearance Reactor/Sources SAGE (ν) Daya Bay P(νe→νe) {Global Reactors (ν)} Bugey-3

IceCube νμ - disappearance Long/Short Baseline MiNOS None P(νμ→νμ) Experiments DeepCore, SK CDHS, CCFR

Spencer N. Axani 3 MCA favored update explanation for the anomalous measurements is the "3+1 sterile neutrino model"

This includes the three active neutrinos and a new state that does not interact via the weak force.

Flavor states U3+1 Mass states ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ν e Ue1 Ue2 Ue3 Ue4 ν ⎜ ⎟ ⎜ ⎟ ⎜ 1 ⎟ U U U U ⎜ ν µ ⎟ ⎜ µ1 µ2 µ3 µ4 ⎟ ⎜ ν 2 ⎟ ⎜ ⎟ = ⎜ ⎟ ⎜ ⎟ U U U U ν ⎜ ντ ⎟ ⎜ τ 1 τ 2 τ 3 τ 4 ⎟ ⎜ 3 ⎟ ⎜ ⎟ ⎜ U U U U ⎟ ⎜ ν ⎟ ⎝ ν s ⎠ ⎝ s1 s2 s3 s4 ⎠ ⎝ 4 ⎠

U3+1 = U(UPNMS, θ14, θ24, θ34, δ14, δ24, Δm241 )

Spencer N. Axani 4 MCA favored update explanation for the anomalous measurements is the "3+1 sterile neutrino model"

This includes the three active neutrinos and a new state that does not interact via the weak force.

Flavor states U3+1 Mass states UPNMS ⎛ ⎞ ⎛ U U U U ⎞ ⎛ ⎞ ν e e1 e2 e3 e4 ν1 2 2 ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ |Ue4 | = sin (θ14 ) ⎜ ν ⎟ ⎜ U U U U ⎟ ν 2 2 2 µ µ1 µ2 µ3 µ4 ⎜ 2 ⎟ |U | = sin (θ )⋅cos (θ ) ⎜ ⎟ = ⎜ ⎟ ⎜ ⎟ µ4 24 14 U U U U ν 2 2 2 2 ⎜ ντ ⎟ ⎜ τ 1 τ 2 τ 3 τ 4 ⎟ ⎜ 3 ⎟ |Uτ 4 | = sin (θ34 )⋅cos (θ24 )⋅cos (θ14 ) ⎜ ⎟ ⎜ U U U U ⎟ ⎜ ν ⎟ ⎝ ν s ⎠ ⎝ s1 s2 s3 s4 ⎠ ⎝ 4 ⎠ Unitary constraints

Spencer N. Axani 5 Global fits to the 3+1 model prefer the eV-scale sterile neutrino model with a mixing amplitude of ~0.1

Nuclear Physics B 908 (2016): 336-353. arXiv:1906.00045v3 Nuclear Physics B 908 (2016): 354-365.

99%Cl

90%Cl Global best fit point

99%Cl

95%Cl 2016 90%Cl 2016 2019

Different 3+1 sterile neutrino global fits are reaching similar conclusions.

Spencer N. Axani 6 MC update The IceCube Neutrino Observatory

IceCube Lab

• The first-ever gigaton • Probe neutrino energies from 10GeV to 10PeV • Can distinguish between νμ and νe interactions • Capable at performing a νμ-disappearance search at TeV energies

Spencer N. Axani 7 The IceCube Neutrino Observatory

The Digital Optical Model (DOM)

K40 decay Thermionic (10Hz) emission (~500Hz)

Scattered Direct photon Photon

Absorbed Photon

Spencer N. Axani 8 MCCommon update neutrino event topologies in IceCube

IceCube observes the Cherenkov emission of τ µ/ν νe/ν secondary particles passing through the ice.

Spencer N. Axani 9 MCNeutrino update event topologies in IceCube

• Angular reconstruction ✓ • Energy reconstruction • High statistics ✓

/ντ We'll use a high-purity, high statistics set of /νµ νe atmospheric CCνμ events.

Spencer N. Axani 10

Neutrino oscillations in the presence of matter

Earth: p+, n, e-

- + - CC with e NC with p , n, e Neutrino Detector

Oscillations NC with p+, n, e- Oscillations Oscillations

Presence of matter modifies neutrino oscillations Leads to enhanced oscillations responsible for the MSW effect and parametric resonance.

Spencer N. Axani 12 MCAtmospheric update muon neutrino disappearance through the Earth

High energy neutrinos are attenuated going through the Earth. IceCube uses this to measure mutli-TeV neutrino cross sections. (Nature 551 (2017) 596-600) 105 100 105 100 ⌫µ ⌫µ

80 80 Opacity e↵ect Opacity e↵ect 104 104 60 60 [GeV] [GeV]

true ⌫ 40 true ⌫ 40 E E 103 103 Disappearance [%] Disappearance [%] 20 20 Standard Model oscillations Standard Model oscillations Inner/Outer core boundary Core/Mantle boundary Inner/Outer core boundary Core/Mantle boundary 102 0 102 0 1.00 0.75 0.50 0.25 0.00 1.00 0.75 0.50 0.25 0.00 true true cos(✓z ) cos(✓z ) Standard model neutrino oscillations can be observed at low energies. IceCube has the most stringent measurement of atmospheric parameters using natural sources. (Phys. Rev. Lett. 120, 071801 (2018)) Spencer N. Axani 13 MCIntroducing update a sterile neutrino state Atmospheric muon neutrino disappearance with the a sterile neutrino state at the global best fit point [Δm241 = 1.3eV2 and sin(2θ24)2 = 0.07]. 105 100 105 100 ⌫µ ⌫µ

80 80

104 104 60 60 [GeV] [GeV] Matter enhanced resonance true ⌫ 40 true ⌫ 40 E E 103 103 Disappearance [%] Disappearance [%] Fast oscillations 20 Fast oscillations 20

102 0 102 0 1.00 0.75 0.50 0.25 0.00 1.00 0.75 0.50 0.25 0.00 true true cos(✓z ) cos(✓z )

Matter enhanced resonance observable at TeV-energies

Spencer N. Axani 14 Expected signal shapes in IceCube

Reconstruct the outgoing muon from the CCνμ interaction. Global best fit point shape, compared to the null hypothesis, shown in terms of reconstructed IceCube quantities. 4 10 IceCube Preliminary 100 4 Previous 1-year high energy sterile neutrino search by IceCube: Phys. Rev. Lett. 117, 071801 (2016) Matter enhanced 10

resonance 2 This] updated analysis includes: 2 ๏ a new event selection: [eV [GeV] 0 - statistical1 improvement by a factor of two. 2 41 - improved νμ event purity (>99.9%) ๏ eight years of data, corresponding to 305,891 proxy µ

m candidate events or 15x the statistics of the E 2 previous analysis 3 10 ๏ updated0.1 Monte Carlo simulation ๏ improved systematic treatment

4 Expected Signal Shape [%] ๏ updated detector calibration [Δm241 = 1.3eV2 and sin(2θ24)2 = 0.07] 0.01 1.00 0.75 0.50 0.25 0.00 0.01 0.1 1 reco 2 cos(✓z ) sin (2✓24)

Spencer N. Axani 15 The full set of 18 applicable systematic uncertainties

Each systematic uncertainty is described in terms of how it affects the reconstructed energy and cos(θz). They are all continuous with a prior defined by an independent measurement (table below).

Detector Systematics: Systematic Central Value Prior Width (1σ) Range • DOM efficiency (6-spline support points) DOM efficiency 0.97 +/-10% 0.93 to 1.03 new • BulkIce (Snowstorm) IceGradient0 0 +/-1.0 NA IceGradient1 0 +/-1.0 NA • HoleIce (5-spline support points) Forward Hole Ice -1.0 +/-5 -5.0 to 3.0 Atmospheric Neutrino Flux Systematics: Normalization 1.0 +/-0.4 NA • Atmospheric density Atm. Density 0 +/-1.0 NA CR spectral slope 0 +/-0.02 NA • Cosmic ray spectral shift Δγconv. Barr: WM 0 +/-0.40 -0.5 to 0.5 new • Hadronic interactions (Barr parametrization) Barr: WP 0 +/-0.40 -0.5 to 0.5 • Normalization Barr: YM 0 +/-0.30 -0.5 to 0.5 Astrophysical Flux Systematics: Barr: YP 0 +/-0.30 -0.5 to 0.5 new • Normalization, Φastro Barr: ZM 0 +/-0.12 -0.2 to 0.5 Barr: ZP 0 +/-0.12 -0.2 to 0.5 new • Change in spectral index, Δγastro Φastro 0.787 ~+/-0.36 NA Cross Section Systematics: Δγastro 0.0 ~+/-0.36 NA new • νμ - nucleon cross section νμ σ 1.0 +/- 0.03 0.5 to 1.5 new • νμbar - nucleon cross section νμbar σ 1.0 +/- 0.075 0.5 to 1.5 σKA 0.0 +/- 1.0 NA new • σKA - kaon energy loss

Spencer N. Axani 16 MCA favored update explanation for the anomalous measurements is the "3+1 sterile neutrino model"

This includes the three active neutrinos and a new state that does not interact via the weak force.

Flavor states U3+1 Mass states UPNMS ⎛ ⎞ ⎛ U U U U ⎞ ⎛ ⎞ ν e e1 e2 e3 e4 ν1 2 2 ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ |Ue4 | = sin (θ14 ) ⎜ ν ⎟ ⎜ U U U U ⎟ ν 2 2 2 µ µ1 µ2 µ3 µ4 ⎜ 2 ⎟ |U | = sin (θ )⋅cos (θ ) ⎜ ⎟ = ⎜ ⎟ ⎜ ⎟ µ4 24 14 U U U U ν 2 2 2 2 ⎜ ντ ⎟ ⎜ τ 1 τ 2 τ 3 τ 4 ⎟ ⎜ 3 ⎟ |Uτ 4 | = sin (θ34 )⋅cos (θ24 )⋅cos (θ14 ) ⎜ ⎟ ⎜ U U U U ⎟ ⎜ ν ⎟ ⎝ ν s ⎠ ⎝ s1 s2 s3 s4 ⎠ ⎝ 4 ⎠ Unitary constraints

Spencer N. Axani 17 MCA favored update explanation for the anomalous measurements is the "3+1 sterile neutrino model"

This includes the three active neutrinos and a new state that does not interact via the weak force.

Flavor states U3+1 Mass states νμ-track analysis: no UPNMS sensitivity ⎛ ⎞ ⎛ U U U U ⎞ ⎛ ⎞ ν e e1 e2 e3 e4 ν1 2 2 ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ |Ue4 | = sin (θ14 ) ⎜ ν ⎟ ⎜ U U U U ⎟ ν 2 2 2 µ µ1 µ2 µ3 µ4 ⎜ 2 ⎟ |U | = sin (θ )⋅cos (θ ) ⎜ ⎟ = ⎜ ⎟ ⎜ ⎟ µ4 24 14 ν U U U U ν 2 2 2 2 ⎜ τ ⎟ ⎜ τ 1 τ 2 τ 3 τ 4 ⎟ ⎜ 3 ⎟ |U | = sin (θ )⋅cos (θ )⋅cos (θ ) ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ τ 4 34 24 14 ν s Us1 Us2 Us3 Us4 ν 4 ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ Setting θ34 = 0 provides a Unitary constraints conservative limit

Spencer N. Axani 18 MCA favored update explanation for the anomalous measurements is the "3+1 sterile neutrino model"

This includes the three active neutrinos and a new state that does not interact via the weak force.

Flavor states U3+1 Mass states νμ-track analysis: no UPNMS sensitivity ⎛ ⎞ ⎛ U U U U ⎞ ⎛ ⎞ ν e e1 e2 e3 e4 ν1 2 2 ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ |Ue4 | = sin (θ14 ) ⎜ ν ⎟ ⎜ U U U U ⎟ ν 2 2 2 µ µ1 µ2 µ3 µ4 ⎜ 2 ⎟ |U | = sin (θ )⋅cos (θ ) ⎜ ⎟ = ⎜ ⎟ ⎜ ⎟ µ4 24 14 ν U U U U ν 2 2 2 2 ⎜ τ ⎟ ⎜ τ 1 τ 2 τ 3 τ 4 ⎟ ⎜ 3 ⎟ |U | = sin (θ )⋅cos (θ )⋅cos (θ ) ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ τ 4 34 24 14 ν s Us1 Us2 Us3 Us4 ν 4 ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ Setting θ34 = 0 provides a Unitary constraints conservative limit High-energy analysis: no sensitivity

Assumptions: 1. δcp = δ14 = δ24 = 0 2. m3 > m2 > m1

Spencer N. Axani 19 MCA favored update explanation for the anomalous measurements is the "3+1 sterile neutrino model"

This includes the three active neutrinos and a new state that does not interact via the weak force.

Flavor states U3+1 Mass states νμ-track analysis: no UPNMS sensitivity ⎛ ⎞ ⎛ U U U U ⎞ ⎛ ⎞ ν e e1 e2 e3 e4 ν1 2 2 ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ |Ue4 | = sin (θ14 ) ⎜ ν ⎟ ⎜ U U U U ⎟ ν 2 2 2 µ µ1 µ2 µ3 µ4 ⎜ 2 ⎟ |U | = sin (θ )⋅cos (θ ) ⎜ ⎟ = ⎜ ⎟ ⎜ ⎟ µ4 24 14 ν U U U U ν 2 2 2 2 ⎜ τ ⎟ ⎜ τ 1 τ 2 τ 3 τ 4 ⎟ ⎜ 3 ⎟ |U | = sin (θ )⋅cos (θ )⋅cos (θ ) ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ τ 4 34 24 14 ν s Us1 Us2 Us3 Us4 ν 4 ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ Setting θ34 = 0 provides a Unitary constraints conservative limit High-energy analysis: no sensitivity

Assumptions: Parameters of interest: 1. δcp = δ14 = δ24 = 0 Δm241, sin(2θ24)2 2. m3 > m2 > m1

Spencer N. Axani 20 The Result

Spencer N. Axani 21 The Result

100 10 90% C.L. 9 95% C.L. 99% C.L. 8 10 7 ] 2 6 [eV 1 5 2 41

4 -2 LLH m 3 0.1 2 1 IceCube Preliminary 0.01 0 0.001 0.01 0.1 1 2 sin (2✓24)

Spencer N. Axani 22 The Result

100 10 Best fit location ( ) found at: 90% C.L. 9 95% C.L. 2 +3.53 2 Δm41 = 4.47−2.08 eV 99% C.L. 8 2 +0.10 10 sin (2θ ) = 0.10 24 −0.07 7 ] 2 6

[eV Closed 90% CL contour, 1 5 shown relative to the 2 41

4 -2 LLH best fit location. m 3 0.1 2 Consistent with Null hypothesis with a 1 IceCube Preliminary p-value of 8% 0.01 0 0.001 0.01 0.1 1 2 sin (2✓24)

Spencer N. Axani 23 The result of fitting each season independently

Analysis I – IC86.2011 Analysis I – IC86.2013 Analysis I – IC86.2015 Analysis I – IC86.2017 100 10 100 10 100 10 100 10 2011 9 2013 9 2015 9 2017 9 8 8 8 8 10 10 10 10 7 7 7 7 ] ] ] ] 2 6 2 6 2 6 2 6 [eV [eV [eV [eV 1 IceCubePreliminary 5 1 IceCubePreliminary 5 1 IceCubePreliminary 5 1 IceCubePreliminary 5 2 41 2 41 2 41 2 41

4 -2 LLH 4 -2 LLH 4 -2 LLH 4 -2 LLH m m m m 3 3 3 3 0.1 0.1 0.1 0.1 90% C.L. 2 90% C.L. 2 90% C.L. 2 90% C.L. 2 95% C.L. 1 95% C.L. 1 95% C.L. 1 95% C.L. 1 99% C.L. 99% C.L. 99% C.L. 99% C.L. 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0.1 1 0.01 0.1 1 0.01 0.1 1 0.01 0.1 1 2 2 2 2 sin (2✓24) sin (2✓24) sin (2✓24) sin (2✓24) Analysis I – IC86.2012 Analysis I – IC86.2014 Analysis I – IC86.2016 Analysis I – IC86.2018 100 10 100 10 100 10 100 10 2012 9 2014 9 2016 9 2018 9 8 8 8 8 10 10 10 10 7 7 7 7 ] ] ] ] 2 6 2 6 2 6 2 6 [eV [eV [eV [eV IceCubePreliminary IceCubePreliminary IceCubePreliminary 1 5 1 5 1 5 1 IceCubePreliminary 5 2 41 2 41 2 41 2 41

4 -2 LLH 4 -2 LLH 4 -2 LLH 4 -2 LLH m m m m 3 3 3 3 0.1 0.1 0.1 0.1 90% C.L. 2 90% C.L. 2 90% C.L. 2 90% C.L. 2 95% C.L. 1 95% C.L. 1 95% C.L. 1 95% C.L. 1 99% C.L. 99% C.L. 99% C.L. 99% C.L. 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0.1 1 0.01 0.1 1 0.01 0.1 1 0.01 0.1 1 2 2 2 2 sin (2✓24) sin (2✓24) sin (2✓24) sin (2✓24) Consistent results found throughout each season

Spencer N. Axani 24 Result in the context of global fits

100 100 IceCube Preliminary IceCube Preliminary

10 10 ] ] 2 2

[eV 1 [eV 1 2 41 2 41 m m

0.1 90% C.L. 0.1 1 C.L. 99% C.L. 2 C.L. Diaz et al (90%, 99%) 2 C.L. Collin et al (90%, 99%) Giunti (1,2,3) 0.01 0.01 0.01 0.1 1 0.01 0.1 1 2 2 sin (2✓24) sin (2✓24)

The result presented in context of the global allowed regions from three different analyses.

Spencer N. Axani 25 Conclusion

We have explored important parameter space within the picture of 3+1 models.

The results are expected to have a notable effect on the solutions found by global fits to 3+1 models, because the explored parameters space overlaps with allowed regions.

This motivates future work in the ongoing sterile neutrino search program.

In conclusion: 2 2 2 We find a best fit at ∆m 41 = 4.47eV and sin (�24) = 0.10, consistent with the null hypothesis with a p-value of 8%.

On Behalf of the IceCube Collaboration Thanks for your attention! Spencer N. Axani 27 Event distribution 7.6 years livetime 305,891 events observed 4 4

10 4 4 9 8 8 10 17 12 12 11 19 20 19 34 24 32 27 36 46 42 76 9 13 13 15 11 17 16 28 21 29 39 43 34 34 42 49 52 76 90 98 13 24 22 28 39 32 31 41 46 52 51 52 73 73 88 87 99 146 150 163 3 29 30 35 45 45 64 69 82 76 85 80

109 113 112 130 138 187 186 228 273 10 47 64 70 81 104 103 129 111 136 141 150 176 175 198 211 240 282 309 345 423 90 86 109 149 190 180 227 220 212 254 260 297 310 349 385 449 470 555 611 718

[GeV] 2 189 195 238 265 327 321 369 359 412 482 535 567 561 642 686 737 850 939

1045 1164 10 349 432 455 474 606 616 647 722 771 829 930 978 1031 1124 1206 1278 1426 1576 1735 1860 proxy µ 532 725 829 911 E 1015 1107 1206 1306 1309 1429 1533 1667 1738 1842 2008 2126 2246 2528 2761 2992 Number of Events 911 1 103 1251 1496 1594 1845 1956 2075 2166 2232 2423 2447 2615 2815 3027 3175 3237 3533 3731 4253 4259 10 1464 2102 2406 2520 2737 2719 2856 2976 3166 3467 3599 3723 3838 4166 4296 4403 4649 4807 5412 5356 2096 2769 2838 2728 2676 2725 2836 2918 3100 3239 3286 3668 3810 3834 4067 4140 4319 4442 4705 4598 IceCube Preliminary 2336 2386 1986 1753 1648 1589 1613 1594 1665 1660 1830 1960 2050 2055 2236 2191 2298 2201 2197 2021 100 1.0 0.8 0.6 0.4 0.2 0.0 reco cos(✓z )

Spencer N. Axani 28 Result in context of expect best fit points and sensitivity

Analysis I 100 30 100 Brazil Bands 99% C.L. IceCube Preliminary Median Sensitivity 27 Result 24 68% (trials) 10 95% (trials) 21 10 ] 2 ] 18 2 [eV 1 15 [eV 2 41 2 41 1 12 m m 9 0.1 N Realizations 6 0.1 3 0.01 0 IceCube Preliminary 0.01 0.1 1 0.01 0.1 1 2 2 sin (2✓24) sin (2✓24) The distribution of 2000 best fit points calculated The 99% CL result (black) superimposed onto from pseudo-experiments (blue), along with the the 99% CL Brazil Bands, calculated from best fit point of the analysis at the star. 2,000 pseudo-experiments.

Spencer N. Axani 29 Comparing result to world data

World limits at 90% World limits at 99% 100 100 IceCube Preliminary 8y IceCube 90% CL MiniBooNE-SciBooNE Super-Kamiokande 10 10 DeepCore MINOS

] ] CDHS 2 2 CCFR [eV 1 [eV 1 2 41 2 41 8y IceCube 90% CL

m CDHS m MiniBooNE-SciBooNE 0.1 Super-Kamiokande 0.1 CCFR MINOS DeepCore IceCube Preliminary 0.01 0.01 0.01 0.1 1 0.01 0.1 1 2 2 sin (2✓24) sin (2✓24)

Spencer N. Axani 30 Comparison to previous IceCube results

100 IceCube Preliminary

10 ] 2

[eV 1 2 41 m 0.1 8 y IC86 1 y IC86 1 y IC59 3 y DeepCore 0.01 0.001 0.01 0.1 1 2 sin (2✓24)

Spencer N. Axani 31 Signal and background predictions

101 101 0 ⌫µ (Conv.) : 1208.867 µHz Atm. Muons : 0.101 µHz 0 ⌫µ (Conv.) : 1208.867 µHz Atm. Muons : 0.101 µHz 10 ⌫µ (Astro.) : 9.589 µHz ⌫⌧ (Conv.) : 0.097 µHz 10 ⌫µ (Astro.) : 9.589 µHz ⌫⌧ (Conv.) : 0.097 µHz ] 1 ⌫µ (Prompt.) : 1.668 µHz ⌫e (Conv.) : 0.003 µHz ] 1 ⌫µ (Prompt.) : 1.668 µHz ⌫e (Conv.) : 0.003 µHz 1 10 1 10 2 2 10 10 3 3 10 10 4 4 10 10 5 5 10 10 6 6 Rate [mHz bin 10 Rate [mHz10 bin 7 7 10 10 8 IceCube Preliminary 8 IceCube Preliminary 10 10 103 104 1.0 0.8 0.6 0.4 0.2 0.0 proxy reco Eµ [GeV] cos(✓z )

Spencer N. Axani 32 Description of atmospheric neutrino flux uncertainties

Having implemented the full set of continuous nuisance Cosmic ray energy parameters, we can test the impact of model-specific hypotheses. spectrum and normalization We find that our modeling of the uncertainties covers the available models (QGSJET-02, Sibyll2.3C, Polygonato, Global Spline Fit (GSF), HillasGaisser, Zatespkin Sokolskaya).

Seasonal variations on atmospheric SIBYLL2.3c + HillasGaisser2012 H3a QGSJET + GSF 100 ASIMOV (2DOF) 100 ASIMOV (2DOF) Meson production uncertainties 0.25 C.L. 0.25 C.L. 0.50 C.L. 2.00 0.50 C.L. 2.00 1.00 C.L. 1.00 C.L. Kaon interaction cross section 1.75 1.75 10 10 with air

] 1.50 ] 1.50 2 2 Earth density profile, 1.25 1.25 [eV 1 [eV 1 transitions zones 2 41 1.00 2 41 1.00

Central -2 LLH -2 LLH Inject non-central

m model m Neutrino-nucleon cross 0.75 null-hypothesis 0.75 0.1 0.1 section 0.50 0.50 0.25 0.25 IceCube simulation IceCube simulation 0.01 0.00 0.01 0.00 0.01 0.1 1 0.01 0.1 1 2 2 sin (2✓24) sin (2✓24)

Example: Inject a different hadronic shower (QGSJET) and cosmic ray model (GSF), assess impact using full set of nuisance parameters.

Spencer N. Axani 33 MCExample update systematic: DOM efficiency

The term DOM efficiency is used internally to describe the absolute photon detection efficiency of the full detector. Anything that changes the number of photons observed, created, or destroyed ties into this systematic.

6 identical MC sets with different DOM efficiencies. DOM efficiencies Implemented via splines.

104 DOM Eciency (Shape) 2.3 2.2 1.8 1.7 1.6 1.9 2.0 1.6 1.5 1.8 2.0 1.6 1.0 0.9 1.0 0.5 0.4 0.7 1.0 1.1

1.8 1.5 1.2 1.3 1.9 1.6 1.3 1.4 1.5 1.8 1.8 1.6 1.4 1.4 1.5 1.6 1.5 1.2 0.9 0.8 4 1.7 1.1 1.5 1.8 1.7 1.4 1.1 1.0 1.4 1.7 1.3 1.1 1.5 1.9 1.6 1.4 1.1 1.1 1.5 1.5

1.3 1.5 1.8 1.4 1.0 1.2 1.5 1.6 1.8 1.8 1.5 1.4 1.2 1.4 1.7 1.6 1.6 1.4 1.2 1.2 2 2.2 1.8 1.7 1.7 1.7 1.8 1.9 1.7 1.6 1.7 1.7 1.8 1.9 1.5 1.3 1.2 1.2 1.2 1.0 1.1 1.6 1.8 1.9 2.0 2.0 1.9 1.5 1.4 1.5 1.6 1.6 1.4 1.6 1.8 1.6 1.4 1.5 1.7 1.7 1.5 [GeV] 1.6 2.0 2.0 2.1 2.0 2.1 2.1 2.1 2.1 2.1 2.0 1.9 1.8 1.6 1.5 1.8 1.9 1.5 1.5 1.7 0 1.6 2.2 2.4 2.4 2.2 2.2 2.2 2.2 2.2 2.1 2.1 2.0 2.1 2.1 2.0 1.9 1.8 1.8 1.8 1.9 proxy µ 2.0 2.4 2.4 2.3 2.2 2.3 2.2 2.2 2.2 2.4 2.2 2.2 2.1 2.0 2.1 2.1 2.0 2.0 1.7 1.9 E -Nominal)/Nominal [%]

2.0 2.2 2.1 2.0 2.0 1.9 1.9 1.9 2.0 2.0 2.0 1.9 1.8 1.9 1.8 1.8 1.9 1.8 1.7 1.9 2 103 1.3 1.3 0.9 0.8 0.6 0.4 0.4 0.7 0.7 0.6 0.7 0.6 0.7 0.8 0.7 0.7 0.8 0.7 0.6 0.8 (+1%)

-0.1 -1.0 -1.2 -1.4 -1.7 -1.9 -2.0 -2.0 -2.0 -2.0 -2.1 -2.1 -2.1 -1.9 -1.9 -1.9 -1.9 -1.9 -2.0 -1.9 4 (DE

-2.3 -3.6 -4.0 -4.3 -4.6 -4.9 -5.0 -5.3 -5.5 -5.5 -5.7 -5.6 -5.7 IceCube-5.8 -5.6 -5.4 simulation-5.4 -5.2 -5.1 -5.0 1.0 0.8 0.6 0.4 0.2 0.0 reco cos(✓z )

Spencer N. Axani 34