Theorem, Postulate and Corollary List CHAPTER 2 REASONING and PROOF

Total Page:16

File Type:pdf, Size:1020Kb

Theorem, Postulate and Corollary List CHAPTER 2 REASONING and PROOF Theorem, Postulate and Corollary List CHAPTER 2 REASONING AND PROOF Postulates 2.1 – 2.7 Theorem 2.1 Midpoint Theorem Postulate 2.8 Ruler Postulate Postulate 2.9 Segment Addition Postulate Theorem 2.2 Segment Congruence 1 Postulate 2.10 Protractor Postulate Postulate 2.11 Angle Addition Postulate Theorems 2.3 and 2.4 Supplement and Complement Theorems Theorem 2.5 2 Theorems 2.6 and 2.7 Theorem 2.8 Vertical Angle Theorem Theorems 2.9 – 2.13 Right Angle Theorems CHAPTER 3 PARALLEL AND PERPENDICULAR LINES Postulate 3.1 Corresponding Angles Postulate 3 Theorem 3.1 – 3.3 Parallel Lines and Angle Pairs Theorem 3.4 Perpendicular Transversal Theorem Postulate 3.2 and 3.3 Parallel and Perpendicular Lines Postulate 3.4 4 Postulate 3.5 Parallel Postulate Theorems 3.5 – 3.8 Proving Lines Parallel Theorem 3.9 CHAPTER 4 CONGRUENT TRIANGLES Theorem 4.1 Angle Sum Theorem 5 Theorem 4.2 Third Angle Theorem Theorem 4.3 Exterior Angle Theorem Corollaries 4.1 and 4.2 Theorem 4.4 Properties of Triangle Congruence 6 Postulate 4.1 Side-Side-Side Congruence (SSS) Postulate 4.2 Side-Angle-Side Congruence (SAS) Postulate 4.3 Angle-Side-Angle Congruence (ASA) Theorem 4.5 Angle-Angle-Side Congruence (AAS) 7 Theorem 4.6-4.8 and Postulate 4.4 Right Triangle Congruence Theorem 4.9 Isosceles Triangle Theorem Theorem 4.10 8 Corollaries 4.3 and 4.4 CHAPTER 5 RELATIONSHIPS IN TRIANGLES Theorem 5.1 and 5.2 Points on Perpendicular Bisectors Theorem 5.3 Theorems 5.4 and 5.5 Points on Angle Bisectors 9 Theorem 5.6 Incenter Theorem Theorem 5.7 Centroid Theorem Theorem 5.8 Exterior Angle Inequality Theorem Theorem 5.9 Theorem 5.10 10 Theorem 5.11 Triangle Inequality Theorem Theorem 5.12 Corollary 5.1 Theorem 5.13 SAS Inequality/Hinge Theorem Theorem 5.14 SSS Inequality 11 CHAPTER 6 QUADRILATERALS Theorem 6.1 Interior Angle Sum Theorem Theorem 6.2 Exterior Angle Sum Theorem Theorems 6.3 - 6.6 12 Theorem 6.7 Theorem 6.8 Theorems 6.9 – 6.12 Proving Parallelograms 13 Theorem 6.13 Theorem 6.14 Theorems 6.15 – 6.17 Rhombus Theorem 6.18 and 6.19 Isosceles Trapezoid 14 Theorem 6.20 CHAPTER 7 Proportions and similarity Postulate 7.1 Angle-Angle (AA) Similarity Theorem 7.1 and 7.2 Theorem 7.3 15 Theorem 7.4 Triangle Proportionality Theorem Theorem 7.5 Converse of the Triangle Proportionality Theorem Theorem 7.6 Triangle Midsegment Theorem Corollaries 7.1 and 7.2 16 Theorem 7.7 Proportional Perimeters Theorem Theorem 7.8 – 7.10 Special Segments of Similar Triangles Theorem 7.11 Angle Bisector Theorem 17 CHAPTER 8 RIGHT TRIANGLES AND TRIGONOMETRY Theorem 8.1 Theorem 8.2 Theorem 8.3 Theorem 8.4 Pythagorean Theorem Theorem 8.5 Converse of the Pythagorean Theorem 18 Theorem 8.6 Theorem 8.7 Theorem 8.8 Law of Sines Theorem 8.9 Law of Cosines 19 CHAPTER 9 TRANSFORMATIONS Theorem 9.1 and Corollary 9.1 Theorem 9.2 Theorem 9.3 CHAPTER 10 CIRCLES Theorem 10.1 Postulate 10.1 Arc Addition Postulate 20 Theorem 10.2 Theorem 10.3 Theorem 10.4 Theorem 10.5 Inscribed Angle Theorem 21 Theorem 10.6 Theorem 10.7 Theorem 10.8 Theorem 10.9 Theorem 10.10 Theorem 10.11 22 Theorem 10.12 Theorem 10.13 Theorem 10.14 23 Theorem 10.15 Theorem 10.16 Theorem 10.17 CHAPTER 11 AREA OF POLYGONS AND CIRCLES Postulate 11.1 Postulate 11.2 24 CHAPTER 13 VOLUME Theorem 13.1 25 .
Recommended publications
  • Geometry Notes G.2 Parallel Lines, Transversals, Angles Mrs. Grieser Name: Date
    Geometry Notes G.2 Parallel Lines, Transversals, Angles Mrs. Grieser Name: ________________________________________ Date: ______________ Block: ________ Identifying Pairs of Lines and Angles Lines that intersect are coplanar Lines that do not intersect o are parallel (coplanar) OR o are skew (not coplanar) In the figure, name: o intersecting lines:___________ o parallel lines:_______________ o skew lines:________________ o parallel planes:_____________ Example: Think of each segment in the figure as part of a line. Find: Line(s) parallel to CD and containing point A _________ Line(s) skew to and containing point A _________ Line(s) perpendicular to and containing point A _________ Plane(s) parallel to plane EFG and containing point A _________ Parallel and Perpendicular Lines If two lines are in the same plane, then they are either parallel or intersect a point. There exist how many lines through a point not on a line? __________ Only __________ of them is parallel to the line. Parallel Postulate If there is a line and a point not on a line, then there is exactly one line through the point parallel to the given line. Perpendicular Postulate If there is a line and a point not on a line, then there is exactly one line through the point parallel to the given line. Angles and Transversals Interior angles are on the INSIDE of the two lines Exterior angles are on the OUTSIDE of the two lines Alternate angles are on EITHER SIDE of the transversal Consecutive angles are on the SAME SIDE of the transversal Corresponding angles are in the same position on each of the two lines Alternate interior angles lie on either side of the transversal inside the two lines Alternate exterior angles lie on either side of the transversal outside the two lines Consecutive interior angles lie on the same side of the transversal inside the two lines (same side interior) Geometry Notes G.2 Parallel Lines, Transversals, Angles Mrs.
    [Show full text]
  • Proofs with Perpendicular Lines
    3.4 Proofs with Perpendicular Lines EEssentialssential QQuestionuestion What conjectures can you make about perpendicular lines? Writing Conjectures Work with a partner. Fold a piece of paper D in half twice. Label points on the two creases, as shown. a. Write a conjecture about AB— and CD — . Justify your conjecture. b. Write a conjecture about AO— and OB — . AOB Justify your conjecture. C Exploring a Segment Bisector Work with a partner. Fold and crease a piece A of paper, as shown. Label the ends of the crease as A and B. a. Fold the paper again so that point A coincides with point B. Crease the paper on that fold. b. Unfold the paper and examine the four angles formed by the two creases. What can you conclude about the four angles? B Writing a Conjecture CONSTRUCTING Work with a partner. VIABLE a. Draw AB — , as shown. A ARGUMENTS b. Draw an arc with center A on each To be prof cient in math, side of AB — . Using the same compass you need to make setting, draw an arc with center B conjectures and build a on each side of AB— . Label the C O D logical progression of intersections of the arcs C and D. statements to explore the c. Draw CD — . Label its intersection truth of your conjectures. — with AB as O. Write a conjecture B about the resulting diagram. Justify your conjecture. CCommunicateommunicate YourYour AnswerAnswer 4. What conjectures can you make about perpendicular lines? 5. In Exploration 3, f nd AO and OB when AB = 4 units.
    [Show full text]
  • 6.5 the Recursion Theorem
    6.5. THE RECURSION THEOREM 417 6.5 The Recursion Theorem The recursion Theorem, due to Kleene, is a fundamental result in recursion theory. Theorem 6.5.1 (Recursion Theorem, Version 1 )Letϕ0,ϕ1,... be any ac- ceptable indexing of the partial recursive functions. For every total recursive function f, there is some n such that ϕn = ϕf(n). The recursion Theorem can be strengthened as follows. Theorem 6.5.2 (Recursion Theorem, Version 2 )Letϕ0,ϕ1,... be any ac- ceptable indexing of the partial recursive functions. There is a total recursive function h such that for all x ∈ N,ifϕx is total, then ϕϕx(h(x)) = ϕh(x). 418 CHAPTER 6. ELEMENTARY RECURSIVE FUNCTION THEORY A third version of the recursion Theorem is given below. Theorem 6.5.3 (Recursion Theorem, Version 3 ) For all n ≥ 1, there is a total recursive function h of n +1 arguments, such that for all x ∈ N,ifϕx is a total recursive function of n +1arguments, then ϕϕx(h(x,x1,...,xn),x1,...,xn) = ϕh(x,x1,...,xn), for all x1,...,xn ∈ N. As a first application of the recursion theorem, we can show that there is an index n such that ϕn is the constant function with output n. Loosely speaking, ϕn prints its own name. Let f be the recursive function such that f(x, y)=x for all x, y ∈ N. 6.5. THE RECURSION THEOREM 419 By the s-m-n Theorem, there is a recursive function g such that ϕg(x)(y)=f(x, y)=x for all x, y ∈ N.
    [Show full text]
  • April 22 7.1 Recursion Theorem
    CSE 431 Theory of Computation Spring 2014 Lecture 7: April 22 Lecturer: James R. Lee Scribe: Eric Lei Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor. An interesting question about Turing machines is whether they can reproduce themselves. A Turing machine cannot be be defined in terms of itself, but can it still somehow print its own source code? The answer to this question is yes, as we will see in the recursion theorem. Afterward we will see some applications of this result. 7.1 Recursion Theorem Our end goal is to have a Turing machine that prints its own source code and operates on it. Last lecture we proved the existence of a Turing machine called SELF that ignores its input and prints its source code. We construct a similar proof for the recursion theorem. We will also need the following lemma proved last lecture. ∗ ∗ Lemma 7.1 There exists a computable function q :Σ ! Σ such that q(w) = hPwi, where Pw is a Turing machine that prints w and hats. Theorem 7.2 (Recursion theorem) Let T be a Turing machine that computes a function t :Σ∗ × Σ∗ ! Σ∗. There exists a Turing machine R that computes a function r :Σ∗ ! Σ∗, where for every w, r(w) = t(hRi; w): The theorem says that for an arbitrary computable function t, there is a Turing machine R that computes t on hRi and some input. Proof: We construct a Turing Machine R in three parts, A, B, and T , where T is given by the statement of the theorem.
    [Show full text]
  • Intuitionism on Gödel's First Incompleteness Theorem
    The Yale Undergraduate Research Journal Volume 2 Issue 1 Spring 2021 Article 31 2021 Incomplete? Or Indefinite? Intuitionism on Gödel’s First Incompleteness Theorem Quinn Crawford Yale University Follow this and additional works at: https://elischolar.library.yale.edu/yurj Part of the Mathematics Commons, and the Philosophy Commons Recommended Citation Crawford, Quinn (2021) "Incomplete? Or Indefinite? Intuitionism on Gödel’s First Incompleteness Theorem," The Yale Undergraduate Research Journal: Vol. 2 : Iss. 1 , Article 31. Available at: https://elischolar.library.yale.edu/yurj/vol2/iss1/31 This Article is brought to you for free and open access by EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in The Yale Undergraduate Research Journal by an authorized editor of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. Incomplete? Or Indefinite? Intuitionism on Gödel’s First Incompleteness Theorem Cover Page Footnote Written for Professor Sun-Joo Shin’s course PHIL 437: Philosophy of Mathematics. This article is available in The Yale Undergraduate Research Journal: https://elischolar.library.yale.edu/yurj/vol2/iss1/ 31 Crawford: Intuitionism on Gödel’s First Incompleteness Theorem Crawford | Philosophy Incomplete? Or Indefinite? Intuitionism on Gödel’s First Incompleteness Theorem By Quinn Crawford1 1Department of Philosophy, Yale University ABSTRACT This paper analyzes two natural-looking arguments that seek to leverage Gödel’s first incompleteness theo- rem for and against intuitionism, concluding in both cases that the argument is unsound because it equivo- cates on the meaning of “proof,” which differs between formalism and intuitionism.
    [Show full text]
  • Theorems and Postulates
    Theorems and Postulates JJJG Given AB and a number r between 0 and 180, there Postulate 1-A is exactly one JrayJJG with endpoint A , extending on Protractor Postulate either side of AB , such that the measure of the angle formed is r . ∠A is a right angle if mA∠ is 90. Definition of Right, Acute ∠A is an acute angle if mA∠ is less than 90. and Obtuse Angles ∠A is an obtuse angle if mA∠ is greater than 90 and less than 180. Postulate 1-B If R is in the interior of ∠PQS , then mPQRmRQSmPQS∠ +∠ =∠ . Angle Addition If mP∠+∠=∠QRmRQSmPQS, then R is in the interior of ∠PQS. Vertical angles are congruent. The sum of the measures of the angles in a linear pair is 180˚. The sum of the measures of complementary angles is 90˚. Two points on a line can be paired with real numbers so that, given Postulate 2-A any two points R and S on the line, R corresponds to zero, and S Ruler corresponds to a positive number. Point R could be paired with 0, and S could be paired with 10. R S -2 -1 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9 10 Postulate 2-B If N is between M and P, then MN + NP = MP. Segment Addition Conversely, if MN + NP = MP, then N is between M and P. Theorem 2-A In a right triangle, the sum of the squares of the measures Pythagorean of the legs equals the square of the measure of the Theorem hypotenuse.
    [Show full text]
  • Chapter 1 Logic and Set Theory
    Chapter 1 Logic and Set Theory To criticize mathematics for its abstraction is to miss the point entirely. Abstraction is what makes mathematics work. If you concentrate too closely on too limited an application of a mathematical idea, you rob the mathematician of his most important tools: analogy, generality, and simplicity. – Ian Stewart Does God play dice? The mathematics of chaos In mathematics, a proof is a demonstration that, assuming certain axioms, some statement is necessarily true. That is, a proof is a logical argument, not an empir- ical one. One must demonstrate that a proposition is true in all cases before it is considered a theorem of mathematics. An unproven proposition for which there is some sort of empirical evidence is known as a conjecture. Mathematical logic is the framework upon which rigorous proofs are built. It is the study of the principles and criteria of valid inference and demonstrations. Logicians have analyzed set theory in great details, formulating a collection of axioms that affords a broad enough and strong enough foundation to mathematical reasoning. The standard form of axiomatic set theory is denoted ZFC and it consists of the Zermelo-Fraenkel (ZF) axioms combined with the axiom of choice (C). Each of the axioms included in this theory expresses a property of sets that is widely accepted by mathematicians. It is unfortunately true that careless use of set theory can lead to contradictions. Avoiding such contradictions was one of the original motivations for the axiomatization of set theory. 1 2 CHAPTER 1. LOGIC AND SET THEORY A rigorous analysis of set theory belongs to the foundations of mathematics and mathematical logic.
    [Show full text]
  • Parallel Lines and Transversals
    5.5 Parallel Lines and Transversals How can you use STATES properties of parallel lines to solve real-life problems? STANDARDS MA.8.G.2.2 1 ACTIVITY: A Property of Parallel Lines Work with a partner. ● Talk about what it means for two lines 12 1 cm 56789 to be parallel. Decide on a strategy for 1234 drawing two parallel lines. 01 91 8 9 9 9 9 10 11 12 13 10 10 10 10 ● Use your strategy to carefully draw 7 67 two lines that are parallel. 14 15 5 16 17 18 19 20 3421 22 23 2 24 25 26 1 ● Now, draw a third line 27 28 in. parallel that intersects the two 29 30 lines parallel lines. This line is called a transversal. 2 1 3 4 6 ● The two parallel lines and 5 7 8 the transversal form eight angles. Which of these angles have equal measures? transversal Explain your reasoning. 2 ACTIVITY: Creating Parallel Lines Work with a partner. a. If you were building the house in the photograph, how could you make sure that the studs are parallel to each other? b. Identify sets of parallel lines and transversals in the Studs photograph. 212 Chapter 5 Angles and Similarity 3 ACTIVITY: Indirect Measurement Work with a partner. F a. Use the fact that two rays from the Sun are parallel to explain why △ABC and △DEF are similar. b. Explain how to use similar triangles to fi nd the height of the fl agpole. x ft Sun’s ray C Sun’s ray 5 ft AB3 ft DE36 ft 4.
    [Show full text]
  • Triangles and Transversals Triangles
    Triangles and Transversals Triangles A three-sided polygon. Symbol → ▵ You name it ▵ ABC. Total Angle Sum of a Triangle The interior angles of a triangle add up to 180 degrees. Symbol = Acute Triangle A triangle that contains only angles that are less than 90 degrees. Obtuse Triangle A triangle with one angle greater than 90 degrees (an obtuse angle). Right Triangle A triangle with one right angle (90 degrees). Vertex The common endpoint of two or more rays or line segments. Complementary Angles Two angles whose measures have a sum of 90 degrees. Supplementary Angles Two angles whose measures have a sum of 180 degrees. Perpendicular Lines Lines that intersect to form a right angle (90 degrees). Symbol = Parallel Lines Lines that never intersect. Arrows are used to indicate lines are parallel. Symbol = || Transversal Lines A line that cuts across two or more (usually parallel) lines. Intersect The point where two lines meet or cross. Vertical Angles Angles opposite one another at the intersection of two lines. Vertical angles have the same angle measurements. Interior Angles An angle inside a shape. Exterior Angles Angles outside of a shape. Alternate Interior Angles The pairs of angles on opposite sides of the transversal but inside the two lines. Alternate Exterior Angles Each pair of these angles are outside the lines, and on opposite sides of the transversal. Corresponding Angles The angles in matching corners. Reflexive Angles An angle whose measure is greater than 180 degrees and less that 360 degrees. Straight Angles An angle that measures exactly 180 degrees. Adjacent Angles Angles with common side and common vertex without overlapping.
    [Show full text]
  • Theorem Proving in Classical Logic
    MEng Individual Project Imperial College London Department of Computing Theorem Proving in Classical Logic Supervisor: Dr. Steffen van Bakel Author: David Davies Second Marker: Dr. Nicolas Wu June 16, 2021 Abstract It is well known that functional programming and logic are deeply intertwined. This has led to many systems capable of expressing both propositional and first order logic, that also operate as well-typed programs. What currently ties popular theorem provers together is their basis in intuitionistic logic, where one cannot prove the law of the excluded middle, ‘A A’ – that any proposition is either true or false. In classical logic this notion is provable, and the_: corresponding programs turn out to be those with control operators. In this report, we explore and expand upon the research about calculi that correspond with classical logic; and the problems that occur for those relating to first order logic. To see how these calculi behave in practice, we develop and implement functional languages for propositional and first order logic, expressing classical calculi in the setting of a theorem prover, much like Agda and Coq. In the first order language, users are able to define inductive data and record types; importantly, they are able to write computable programs that have a correspondence with classical propositions. Acknowledgements I would like to thank Steffen van Bakel, my supervisor, for his support throughout this project and helping find a topic of study based on my interests, for which I am incredibly grateful. His insight and advice have been invaluable. I would also like to thank my second marker, Nicolas Wu, for introducing me to the world of dependent types, and suggesting useful resources that have aided me greatly during this report.
    [Show full text]
  • Read Book Advanced Euclidean Geometry Ebook
    ADVANCED EUCLIDEAN GEOMETRY PDF, EPUB, EBOOK Roger A. Johnson | 336 pages | 30 Nov 2007 | Dover Publications Inc. | 9780486462370 | English | New York, United States Advanced Euclidean Geometry PDF Book As P approaches nearer to A , r passes through all values from one to zero; as P passes through A , and moves toward B, r becomes zero and then passes through all negative values, becoming —1 at the mid-point of AB. Uh-oh, it looks like your Internet Explorer is out of date. In Elements Angle bisector theorem Exterior angle theorem Euclidean algorithm Euclid's theorem Geometric mean theorem Greek geometric algebra Hinge theorem Inscribed angle theorem Intercept theorem Pons asinorum Pythagorean theorem Thales's theorem Theorem of the gnomon. It might also be so named because of the geometrical figure's resemblance to a steep bridge that only a sure-footed donkey could cross. Calculus Real analysis Complex analysis Differential equations Functional analysis Harmonic analysis. This article needs attention from an expert in mathematics. Facebook Twitter. On any line there is one and only one point at infinity. This may be formulated and proved algebraically:. When we have occasion to deal with a geometric quantity that may be regarded as measurable in either of two directions, it is often convenient to regard measurements in one of these directions as positive, the other as negative. Logical questions thus become completely independent of empirical or psychological questions For example, proposition I. This volume serves as an extension of high school-level studies of geometry and algebra, and He was formerly professor of mathematics education and dean of the School of Education at The City College of the City University of New York, where he spent the previous 40 years.
    [Show full text]
  • Understand the Principles and Properties of Axiomatic (Synthetic
    Michael Bonomi Understand the principles and properties of axiomatic (synthetic) geometries (0016) Euclidean Geometry: To understand this part of the CST I decided to start off with the geometry we know the most and that is Euclidean: − Euclidean geometry is a geometry that is based on axioms and postulates − Axioms are accepted assumptions without proofs − In Euclidean geometry there are 5 axioms which the rest of geometry is based on − Everybody had no problems with them except for the 5 axiom the parallel postulate − This axiom was that there is only one unique line through a point that is parallel to another line − Most of the geometry can be proven without the parallel postulate − If you do not assume this postulate, then you can only prove that the angle measurements of right triangle are ≤ 180° Hyperbolic Geometry: − We will look at the Poincare model − This model consists of points on the interior of a circle with a radius of one − The lines consist of arcs and intersect our circle at 90° − Angles are defined by angles between the tangent lines drawn between the curves at the point of intersection − If two lines do not intersect within the circle, then they are parallel − Two points on a line in hyperbolic geometry is a line segment − The angle measure of a triangle in hyperbolic geometry < 180° Projective Geometry: − This is the geometry that deals with projecting images from one plane to another this can be like projecting a shadow − This picture shows the basics of Projective geometry − The geometry does not preserve length
    [Show full text]