Planetary System Disruption by Galactic Perturbations to Wide Binary Stars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Predicting Exoplanet Observability in Time, Contrast, Separation, and Polarization, in Scattered Light
A&A 578, A59 (2015) Astronomy DOI: 10.1051/0004-6361/201424202 & c ESO 2015 Astrophysics Predicting exoplanet observability in time, contrast, separation, and polarization, in scattered light Guillaume Schworer1;2 and Peter G. Tuthill2 1 LESIA, Observatoire de Paris, CNRS/UMR 8109, UPMC, Université Paris Diderot, 5 place J. Janssen, 92195 Meudon, France e-mail: [email protected] 2 Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006, Australia Received 14 May 2014 / Accepted 14 March 2015 ABSTRACT Context. Polarimetry is one of the keys to enhanced direct imaging of exoplanets. Not only does it deliver a differential observable pro- viding extra contrast, but when coupled with spectroscopy, it also reveals valuable information on the exoplanetary atmospheric com- position. Nevertheless, angular separation and contrast ratio to the host-star make for extremely challenging observation. Producing detailed predictions for exactly how the expected signals should appear is of critical importance for the designs and observational strategies of tomorrow’s telescopes. Aims. We aim at accurately determining the magnitudes and evolution of the main observational signatures for imaging an exoplanet: separation, contrast ratio to the host-star and polarization as a function of the orbital geometry and the reflectance parameters of the exoplanet. Methods. These parameters were used to construct a polarized-reflectance model based on the input of orbital parameters and two albedo values. The model is able to calculate a variety of observational predictions for exoplanets at any orbital time. Results. The inter-dependency of the three main observational criteria – angular separation, contrast ratio, polarization – result in a complex time-evolution of the system. -
University of California Santa Cruz
UNIVERSITY OF CALIFORNIA SANTA CRUZ BENEATH THE SURFACE OF GIANT PLANETS: EVOLUTION, STRUCTURE, AND COMPOSITION A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ASTRONOMY AND ASTROPHYSICS by Neil L Kelly Miller March 2013 The Dissertation of Neil L Kelly Miller is approved: Jonathan Fortney, Chair Professor D. Lin Professor P. Garaud Professor P. Bodenheimer Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright c by Neil L Kelly Miller 2013 Table of Contents List of Figures v List of Tables xii Abstract xiii Dedication xv Acknowledgments xvi 1 Introduction 1 1.1 TheSolarSystemGiantPlanets . 3 1.2 FromIndividualSystemstoSamples . 4 1.3 Physical Processes in the Evolution of Giant Planets . ........ 8 2 Coupled Thermal and Tidal Evolution of Giant Expolanets 14 2.1 Abstract.................................... 14 2.2 Introduction.................................. 15 2.3 Model:Introduction ............................. 21 2.4 Model:Implementation ........................... 23 2.5 GeneralExamples .............................. 29 2.6 Results..................................... 37 2.6.1 SpecificSystems ........................... 37 2.6.2 SummaryforSuite .......................... 47 ′ 2.6.3 High Qs cases............................. 56 2.7 Discussion&Conclusions . 59 3 Applications of Giant Planet Thermal Evolution Model 74 3.1 Introduction.................................. 74 3.2 CoRoT-2b: Young Planet With Potentially Tidally Inflated Radius . 75 3.3 CoRoT-7b: Potential Evaporative Mass Loss Scenario . ....... 78 3.3.1 EvaporativeMassLossModel. 80 iii 3.3.2 PlanetEvolution ........................... 82 3.4 Kepler11 ................................... 82 3.4.1 Formation and Compositions of Kepler 11 Planets . 82 4 Measuring the Heavy Element Composition of Giant Exoplanets with Lower Irradiation 86 4.1 Abstract.................................... 86 4.2 Introduction.................................. 87 4.3 ModelandMethod............................. -
EMBEDDED CLUSTERS in the LARGE MAGELLANIC CLOUD by Krista Romita Grocholski August 2017 Chair: Elizabeth A
EMBEDDED CLUSTERS IN THE LARGE MAGELLANIC CLOUD By KRISTA ROMITA GROCHOLSKI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2017 c 2017 Krista Romita Grocholski To- Aaron, Allegra, Mom, and Dad. All is possible with you at my side. Thank you. ACKNOWLEDGMENTS First, I would like to acknowledge the University of Florida Astronomy Department for providing me with the opportunity to complete my dissertation. I would like to thank Dr. Elizabeth Lada for taking me on as her graduate student, and for giving me the opportunity and freedom to become a confident, independent researcher. I would also like to thank Drs. Ata Sarajadini, Anthony Gonzalez, and Alessandro Forte for serving on my committee. I would like to give special thanks to Dr. Maria-Rosa Cioni; without your generous collaboration this dissertation project would not be possible. Drs. Margaret Meixner and Lynn Carlson deserve considerable credit for getting me started, not only in astronomy research, but in the wonderful field of star formation in the Large Magellanic Cloud. I will always be grateful for your support and friendship over the years. I would also like to acknowledge Dr. Igor Mikolic-Torreira for giving me the opportunity to apply my research skills beyond the realm of academia. Your guidance and enthusiastic support opened doors to me that changed the nature of my career. I cannot thank you enough. To my fellow UF Astronomy graduate students, the community you have created is something I am proud to have been a part of. -
Explore the Universe Observing Certificate Second Edition
RASC Observing Committee Explore the Universe Observing Certificate Second Edition Explore the Universe Observing Certificate Welcome to the Explore the Universe Observing Certificate Program. This program is designed to provide the observer with a well-rounded introduction to the night sky visible from North America. Using this observing program is an excellent way to gain knowledge and experience in astronomy. Experienced observers find that a planned observing session results in a more satisfying and interesting experience. This program will help introduce you to amateur astronomy and prepare you for other more challenging certificate programs such as the Messier and Finest NGC. The program covers the full range of astronomical objects. Here is a summary: Observing Objective Requirement Available Constellations and Bright Stars 12 24 The Moon 16 32 Solar System 5 10 Deep Sky Objects 12 24 Double Stars 10 20 Total 55 110 In each category a choice of objects is provided so that you can begin the certificate at any time of the year. In order to receive your certificate you need to observe a total of 55 of the 110 objects available. Here is a summary of some of the abbreviations used in this program Instrument V – Visual (unaided eye) B – Binocular T – Telescope V/B - Visual/Binocular B/T - Binocular/Telescope Season Season when the object can be best seen in the evening sky between dusk. and midnight. Objects may also be seen in other seasons. Description Brief description of the target object, its common name and other details. Cons Constellation where object can be found (if applicable) BOG Ref Refers to corresponding references in the RASC’s The Beginner’s Observing Guide highlighting this object. -
Transit Timing Analysis of the Hot Jupiters WASP-43B and WASP-46B and the Super Earth Gj1214b
Transit timing analysis of the hot Jupiters WASP-43b and WASP-46b and the super Earth GJ1214b Mathias Polfliet Promotors: Michaël Gillon, Maarten Baes 1 Abstract Transit timing analysis is proving to be a promising method to detect new planetary partners in systems which already have known transiting planets, particularly in the orbital resonances of the system. In these resonances we might be able to detect Earth-mass objects well below the current detection and even theoretical (due to stellar variability) thresholds of the radial velocity method. We present four new transits for WASP-46b, four new transits for WASP-43b and eight new transits for GJ1214b observed with the robotic telescope TRAPPIST located at ESO La Silla Observatory, Chile. Modelling the data was done using several Markov Chain Monte Carlo (MCMC) simulations of the new transits with old data and a collection of transit timings for GJ1214b from published papers. For the hot Jupiters this lead to a general increase in accuracy for the physical parameters of the system (for the mass and period we found: 2.034±0.052 MJup and 0.81347460±0.00000048 days and 2.03±0.13 MJup and 1.4303723±0.0000011 days for WASP-43b and WASP-46b respectively). For GJ1214b this was not the case given the limited photometric precision of TRAPPIST. The additional timings however allowed us to constrain the period to 1.580404695±0.000000084 days and the RMS of the TTVs to 16 seconds. We investigated given systems for Transit Timing Variations (TTVs) and variations in the other transit parameters and found no significant (3sv) deviations. -
NASA's Goddard Space Flight Center Laboratory for High Energy
1 NASA’s Goddard Space Flight Center Laboratory for High Energy Astrophysics Greenbelt, Maryland 20771 @S0002-7537~99!00301-7# This report covers the period from July 1, 1997 to June 30, Toshiaki Takeshima, Jane Turner, Ken Watanabe, Laura 1998. Whitlock, and Tahir Yaqoob. This Laboratory’s scientific research is directed toward The following investigators are University of Maryland experimental and theoretical research in the areas of X-ray, Scientists: Drs. Keith Arnaud, Manuel Bautista, Wan Chen, gamma-ray, and cosmic-ray astrophysics. The range of inter- Fred Finkbeiner, Keith Gendreau, Una Hwang, Michael Loe- ests of the scientists includes the Sun and the solar system, wenstein, Greg Madejski, F. Scott Porter, Ian Richardson, stellar objects, binary systems, neutron stars, black holes, the Caleb Scharf, Michael Stark, and Azita Valinia. interstellar medium, normal and active galaxies, galaxy clus- Visiting scientists from other institutions: Drs. Vadim ters, cosmic-ray particles, and the extragalactic background Arefiev ~IKI!, Hilary Cane ~U. Tasmania!, Peter Gonthier radiation. Scientists and engineers in the Laboratory also ~Hope College!, Thomas Hams ~U. Seigen!, Donald Kniffen serve the scientific community, including project support ~Hampden-Sydney College!, Benzion Kozlovsky ~U. Tel such as acting as project scientists and providing technical Aviv!, Richard Kroeger ~NRL!, Hideyo Kunieda ~Nagoya assistance to various space missions. Also at any one time, U.!, Eugene Loh ~U. Utah!, Masaki Mori ~Miyagi U.!, Rob- there are typically between twelve and eighteen graduate stu- ert Nemiroff ~Mich. Tech. U.!, Hagai Netzer ~U. Tel Aviv!, dents involved in Ph.D. research work in this Laboratory. Yasushi Ogasaka ~JSPS!, Lev Titarchuk ~George Mason U.!, Currently these are graduate students from Catholic U., Stan- Alan Tylka ~NRL!, Robert Warwick ~U. -
The Observer's Handbook for 1912
T he O bservers H andbook FOR 1912 PUBLISHED BY THE ROYAL ASTRONOMICAL SOCIETY OF CANADA E d i t e d b y C. A, CHANT FOURTH YEAR OF PUBLICATION TORONTO 198 C o l l e g e St r e e t Pr in t e d fo r t h e So c ie t y 1912 T he Observers Handbook for 1912 PUBLISHED BY THE ROYAL ASTRONOMICAL SOCIETY OF CANADA TORONTO 198 C o l l e g e St r e e t Pr in t e d fo r t h e S o c ie t y 1912 PREFACE Some changes have been made in the Handbook this year which, it is believed, will commend themselves to observers. In previous issues the times of sunrise and sunset have been given for a small number of selected places in the standard time of each place. On account of the arbitrary correction which must be made to the mean time of any place in order to get its standard time, the tables given for a particualar place are of little use any where else, In order to remedy this the times of sunrise and sunset have been calculated for places on five different latitudes covering the populous part of Canada, (pages 10 to 21), while the way to use these tables at a large number of towns and cities is explained on pages 8 and 9. The other chief change is in the addition of fuller star maps near the end. These are on a large enough scale to locate a star or planet or comet when its right ascension and declination are given. -
Arxiv:2010.13762V1 [Astro-Ph.EP] 26 Oct 2020
Draft version October 27, 2020 Typeset using LATEX default style in AASTeX63 A Framework for Relative Biosignature Yields from Future Direct Imaging Missions Noah W. Tuchow 1 and Jason T. Wright 1 1Department of Astronomy & Astrophysics and Center for Exoplanets and Habitable Worlds and Penn State Extraterrestrial Intelligence Center 525 Davey Laboratory The Pennsylvania State University University Park, PA, 16802, USA ABSTRACT Future exoplanet direct imaging missions, such as HabEx and LUVOIR, will select target stars to maximize the number of Earth-like exoplanets that can have their atmospheric compositions charac- terized. Because one of these missions' aims is to detect biosignatures, they should also consider the expected biosignature yield of planets around these stars. In this work, we develop a method of computing relative biosignature yields among potential target stars, given a model of habitability and biosignature genesis, and using a star's habitability history. As an illustration and first application of this method, we use MESA stellar models to calculate the time evolution of the habitable zone, and examine three simple models for biosignature genesis to calculate the relative biosignature yield for different stars. We find that the relative merits of K stars versus F stars depend sensitively on model choice. In particular, use of the present-day habitable zone as a proxy for biosignature detectability favors young, luminous stars lacking the potential for long-term habitability. Biosignature yields are also sensitive to whether life can arise on Cold Start exoplanets that enter the habitable zone after formation, an open question deserving of more attention. Using the case study of biosignature yields calculated for θ Cygni and 55 Cancri, we find that robust mission design and target selection for HabEx and LUVOIR depends on: choosing a specific model of biosignature appearance with time; the terrestrial planet occurrence rate as a function of orbital separation; precise knowledge of stellar properties; and accurate stellar evolutionary histories. -
10. Scientific Programme 10.1
10. SCIENTIFIC PROGRAMME 10.1. OVERVIEW (a) Invited Discourses Plenary Hall B 18:00-19:30 ID1 “The Zoo of Galaxies” Karen Masters, University of Portsmouth, UK Monday, 20 August ID2 “Supernovae, the Accelerating Cosmos, and Dark Energy” Brian Schmidt, ANU, Australia Wednesday, 22 August ID3 “The Herschel View of Star Formation” Philippe André, CEA Saclay, France Wednesday, 29 August ID4 “Past, Present and Future of Chinese Astronomy” Cheng Fang, Nanjing University, China Nanjing Thursday, 30 August (b) Plenary Symposium Review Talks Plenary Hall B (B) 8:30-10:00 Or Rooms 309A+B (3) IAUS 288 Astrophysics from Antarctica John Storey (3) Mon. 20 IAUS 289 The Cosmic Distance Scale: Past, Present and Future Wendy Freedman (3) Mon. 27 IAUS 290 Probing General Relativity using Accreting Black Holes Andy Fabian (B) Wed. 22 IAUS 291 Pulsars are Cool – seriously Scott Ransom (3) Thu. 23 Magnetars: neutron stars with magnetic storms Nanda Rea (3) Thu. 23 Probing Gravitation with Pulsars Michael Kremer (3) Thu. 23 IAUS 292 From Gas to Stars over Cosmic Time Mordacai-Mark Mac Low (B) Tue. 21 IAUS 293 The Kepler Mission: NASA’s ExoEarth Census Natalie Batalha (3) Tue. 28 IAUS 294 The Origin and Evolution of Cosmic Magnetism Bryan Gaensler (B) Wed. 29 IAUS 295 Black Holes in Galaxies John Kormendy (B) Thu. 30 (c) Symposia - Week 1 IAUS 288 Astrophysics from Antartica IAUS 290 Accretion on all scales IAUS 291 Neutron Stars and Pulsars IAUS 292 Molecular gas, Dust, and Star Formation in Galaxies (d) Symposia –Week 2 IAUS 289 Advancing the Physics of Cosmic -
In the Heart of the Orion Nebula 2 April 2009
In the heart of the Orion Nebula 2 April 2009 technique allows astronomers to combine the light from several telescopes, forming a huge virtual telescope with a resolving power corresponding to that of a single telescope with 200 m diameter. The Very Large Telescope Interferometer (VLTI) now offers this revolutionary technique to European astronomers and allows them to directly reconstruct images from the interferometric infrared data. A team of European astronomers utilized the VLTI and its near-infrared beam-combination instrument AMBER to demonstrate the imaging capabilities of this unique facility and to study the intriguing Zooming in the centre of the Orion star-forming region massive young star Theta1 Ori C in unprecedented with the four bright Trapezium stars (Theta 1 Ori A-D). detail. The dominant star is Theta 1 Ori C, which was imaged with unprecedented resolution with the VLT Theta 1 Ori C is the dominant and most luminous interferometer (lower right). Image: MPIfR/Stefan Kraus, star in the Orion star-forming region. Located at a ESO and NASA/Chris O'Dell distance of only about 1300 light years, it is the nearest region where massive stars are born and provides a unique laboratory to study the formation process of high-mass stars in detail. The intense (PhysOrg.com) -- A team of astronomers, led by radiation of Theta 1 Ori C is ionizing the whole Stefan Kraus and Gerd Weigelt from the Max- Orion nebula. With its strong wind, the star also Planck-Institute for Radio Astronomy (MPIfR) in shapes the famous Orion proplyds, young stars still Bonn, used ESO's Very Large telescope surrounded by their protoplanetary dust disks. -
Instrumental Methods for Professional and Amateur
Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, Francois Colas, Alain Klotz, Christophe Pellier, Jean-Marc Petit, Philippe Rousselot, et al. To cite this version: Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, et al.. Instru- mental Methods for Professional and Amateur Collaborations in Planetary Astronomy. Experimental Astronomy, Springer Link, 2014, 38 (1-2), pp.91-191. 10.1007/s10686-014-9379-0. hal-00833466 HAL Id: hal-00833466 https://hal.archives-ouvertes.fr/hal-00833466 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy O. Mousis, R. Hueso, J.-P. Beaulieu, S. Bouley, B. Carry, F. Colas, A. Klotz, C. Pellier, J.-M. Petit, P. Rousselot, M. Ali-Dib, W. Beisker, M. Birlan, C. Buil, A. Delsanti, E. Frappa, H. B. Hammel, A.-C. Levasseur-Regourd, G. S. Orton, A. Sanchez-Lavega,´ A. Santerne, P. Tanga, J. Vaubaillon, B. Zanda, D. Baratoux, T. Bohm,¨ V. Boudon, A. Bouquet, L. Buzzi, J.-L. Dauvergne, A. -
What's in This Issue?
A JPL Image of surface of Mars, and JPL Ingenuity Helicioptor illustration. July 11th at 4:00 PM, a family barbeque at HRPO!!! This is in lieu of our regular monthly meeting.) (Monthly meetings are on 2nd Mondays at Highland Road Park Observatory) This is a pot-luck. Club will provide briskett and beverages, others will contribute as the spirit moves. What's In This Issue? President’s Message Member Meeting Minutes Business Meeting Minutes Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night SubReddit and Discord BRAS Member Astrophotos ARTICLE: Astrophotography with your Smart Phone Observing Notes: Canes Venatici – The Hunting Dogs Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society BRAS YouTube Channel Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 23 July 2021 President’s Message Hey everybody, happy fourth of July. I hope ya’ll’ve remembered your favorite coping mechanism for dealing with the long hot summers we have down here in the bayou state, or, at the very least, are making peace with the short nights that keep us from enjoying both a good night’s sleep and a productive observing/imaging session (as if we ever could get a long enough break from the rain for that to happen anyway). At any rate, we figured now would be as good a time as any to get the gang back together for a good old fashioned potluck style barbecue: to that end, we’ve moved the July meeting to the Sunday, 11 July at 4PM at HRPO.