Cost Effective Precise Positioning with GNSS

Total Page:16

File Type:pdf, Size:1020Kb

Cost Effective Precise Positioning with GNSS FIG REPORT FIG PUBLICATION NO 74 Cost Effective Precise Positioning with GNSS FIG Commission 5 INTERNATIONAL FEDERATION OF SURVEYORS (FIG) Cost Effective Precise Positioning with GNSS FIG Commission 5 Editors: Dr. Leonid A. Lipatnikov, Russia Dr. Stanislav O. Shevchuk, Russia INTERNATIONAL FEDERATION OF SURVEYORS (FIG) Copyright © The International Federation of Surveyors (FIG), March 2019. All rights reserved. International Federation of Surveyors (FIG) Kalvebod Brygge 31–33 DK-1780 Copenhagen V DENMARK Tel. + 45 38 86 10 81 E-mail: [email protected] www.fig.net Published in English ISSN 2311-8423 (pdf) ISBN 978-87-92853-87-5 (pdf) Published by International Federation of Surveyors (FIG) Front cover image: GNSS constellation (rendered with free JSatTrak software using NORAD orbit data and NASA’s Visible Earth image), GNSS antenna on rod centered above a coin (© L.A. Lipatnikov). Back cover image: IGS Tracking Network (© IGS). Editors: Dr. Leonid A. Lipatnikov, Russia and Dr. Stanislav O. Shevchuk, Russia Layout: Lagarto CONTENTS FOREWORD ..............................................................................................................................................5 LIST OF ABBREVIATIONS...................................................................................................................7 1 INTRODUCTION .............................................................................................................................9 2 DEFINING COST-EFFECTIVENESS .......................................................................................11 3 PRECISE POSITIONING METHODS .....................................................................................13 3.1 Methods ................................................................................................................................13 3.2 Relative Positioning with Phase Measurements ......................................................13 3.3 Precise Point Positioning ..................................................................................................14 3.4 Combination of Methods .................................................................................................17 3.5 Post-processing ..................................................................................................................18 3.6 Real-time High-precision Positioning ..........................................................................18 3.7 General Remarks ................................................................................................................19 4 GNSS USER EQUIPMENT AND ITS COST ..........................................................................21 4.1 High Precision GNSS Hardware ......................................................................................21 4.2 Technical Aspects of Reducing Costs ...........................................................................22 4.2.1 Modular Design ......................................................................................................22 4.2.2 Optional Functionality ..........................................................................................24 4.2.3 Open Programming Interface ............................................................................24 4.2.4 Software Defined Radio........................................................................................25 4.2.5 Low-cost GNSS Equipment .................................................................................26 4.2.6 High Precision Positioning with Smartphone ..............................................29 4.3 Market-related Factors Defining Cost ..........................................................................30 4.3.1 Market Trends and Forecasts ..............................................................................30 4.3.2 Effects of Production Scale ..................................................................................32 4.3.3 Demand Elasticity as the Key Factor ................................................................32 5 CORS NETWORKS AND CORRECTION SERVICES ........................................................34 5.1 CORS Networks ...................................................................................................................34 5.2 Correction Services .............................................................................................................35 5.3 Satellite Based Augmentation Systems (SBAS) .......................................................37 5.4 Precision-oriented Satellite Based Correction Systems .........................................38 5.5 Cost-effective Solutions for GNSS Infrastructure ....................................................40 6 GNSS SOFTWARE ........................................................................................................................42 7 FREE ONLINE POST-PROCESSING SERVICES ................................................................46 7.1 Overview ................................................................................................................................46 7.2 Static Tests .............................................................................................................................48 7.3 Kinematic Tests.....................................................................................................................50 8 COST-EFFECTIVE SOLUTIONS BY APPLICATION ........................................................53 8.1 Surveying ..............................................................................................................................53 8.2 Automated Guidance .......................................................................................................54 8.2.1 Road Vehicles ...........................................................................................................54 8.2.2 Industrial Machines ................................................................................................55 8.2.3 Unmanned Aerial Vehicles ...................................................................................55 8.3 High Accuracy Location Based Services .....................................................................56 9 CONCLUSION .................................................................................................................................58 AKNOWLEDGEMENTS ......................................................................................................................59 APPENDIX A – ADDITIONAL INFORMATION AND RESOURCES ..................................60 APPENDIX B – GLOBAL AND REGIONAL REFERENCE STATION NETWORKS ........62 APPENDIX С – IGS PRODUCTS ......................................................................................................68 REFERENCES ..........................................................................................................................................72 ABOUT THE AUTHORS ......................................................................................................................82 FOREWORD Most surveyors today are aware that data acquisition, management, analysis, presen- tation and controlling systems are becoming more elaborate and automated. On the other side the results to be provided need to be produced with less cost, so in a cost- effective way. The International Federation of Surveyors (FIG) Commission 5 – Positioning and Meas- urement, has been and remains an essential part of the surveying community. During the past three decades, Global Navigation Satellite Systems (GNSS) have and continue to play an increasingly important role in the profession. FIG enhances this develop- ment by facilitating GNSS sessions at their conferences, encouraging GNSS research and education, and cooperating with sister organisations such as the International As- sociation of Geodesy (IAG) in the respective domain. Additionally FIG Commission 5 reacts on these developments by establishing Working Groups that deal with GNSS measurement techniques (WG 5.4), the use of GNSS for 3D and vertical reference sys- tems (WG 5.2 and WG 5.3), data fusion in multi sensor systems (WG 5.5) as well as for cost-effective positioning and measurements (WG 5.6). This Technical Report deals with “Cost Effective Precise Positioning with GNSS” thus focusing on GNSS as well as cost-effectiveness. There is a strong focus on precise po- sitioning and how to reach “geodetic performance” at the least possible cost. As Chair of FIG Commission 5 – Positioning and Measurement, I thank Dr. Leonid A. Lipatnikov, Siberian State University of Geosystems and Technology, Russia and Dr. Stanislav O. Shevchuk, Aerogeophysical surveys CJSC, Russia for their efforts in compiling and cre- ating this very detailed and impressive report. Volker Schwieger Chair FIG Commission 5, 2015–2018 March, 2019 5 FIG REPORT FIG PUBLICATION NO 49 Cost Effective GNSS Positioning Techniques FIG REPORT FIG PUBLICATION NO 49 FIG Commission 5 Publication Cost Effective GNSS Positioning Techniques INTERNATIONAL FEDERATION OF SURVEYORS (FIG) FIG Commission 5 Publication 2nd Edition INTERNATIONAL FEDERATION OF SURVEYORS (FIG) The present study is a follow-on to the FIG Report No. 49 Cost-effective GNSS positioning techniques edited by Dr. Neil D. Weston and Prof. Dr. Volker Schwieger initially in 2010. The second updated and enhanced edition of that report by the same editors was pub- lished in 2014. That publication
Recommended publications
  • Robotic Forest Harvesting Process Using GNSS
    RNI: DELENG/2005/15153 No: DL(E)-01/5079/17-19 Publication: 15th of every month Licensed to post without pre-payment U(E) 28/2017-19 Posting: 19th/20th of every month at NDPSO Rs.150 ISSN 0973-2136 Volume XV, Issue 5, May 2019 THE MONTHLY MAGAZINE ON POSITIONING, NAVIGATION AND BEYOND Robotic forest harvesting process using GNSS Soil moisture retrieval using NavIC-GPS-SBAS receiver Rethinking asset management. At 172 megapixels per full-spherical image, the UltraCam Panther Reality Capture System lets you capture your production plant in more detail, with superior sharpness and in higher fidelity than ever before. ULTRACAM PANTHER KEY FEATURES Indoor and outdoor Multitude of use Easy to deploy, mapping even cases through operate and without GPS modular design maintain Discover more on www.vexcel-imaging.com i50 GNSS RTK Brings speed and accuracy in Rethinking one easy-to-use GNSS solution asset management. At 172 megapixels per full-spherical image, the UltraCam Panther Reality Capture System lets you capture your production plant in more detail, with superior sharpness and in higher fidelity than ever before. ULTRACAM PANTHER KEY FEATURES Full GNSS technology Extended connectivity GPS+Glonass+Beidou+Galileo Internal UHF and 4G modems for robust data quality for optimized field operations Indoor and outdoor Multitude of use Easy to deploy, mapping even cases through operate and Preset work modes Rugged and compact without GPS modular design maintain Select configurations in a few Industrial design to withstand seconds for higher productivity
    [Show full text]
  • Gnss and Avionics Simulation for Rohde & Schwarz Signal Generators
    GNSS AND AVIONICS SIMULATION FOR ROHDE & SCHWARZ SIGNAL GENERATORS Specifications R&S®SMBV100B Vector Signal Generator R&S®SMW200A Vector Signal Generator Data Sheet Version 11.00 Version 11.00, February 2021 CONTENTS Definitions ....................................................................................................................................................................... 4 Overview .......................................................................................................................................................................... 5 Abbreviations ..................................................................................................................................................................................... 6 GNSS testing with the R&S®SMW200A ............................................................................................................................................. 6 Minimum instrument configuration for GNSS testing .......................................................................................................................... 7 Minimum instrument configuration for avionics testing ....................................................................................................................... 7 Global navigation satellite systems (GNSS) ................................................................................................................. 8 Addressed GNSS applications ..........................................................................................................................................................
    [Show full text]
  • Antennas for High-Precision GNSS Applications
    Antennas for High-Precision GNSS Applications Roshni Prasad Associate Engineer – RF & Connectivity Abracon, LLC Antennas for High-Precision GNSS Applications | Abracon LLC Abstract: The increasing interest in high-precision GNSS/GPS services has led to the development of novel antenna solutions to service various end-customer applications in markets such as agriculture, recreation, surveying & mapping, and timing. Multi-band receivers and antennas are required to derive a higher-precision rate on positioning. However, using dedicated antennas for widely separated multi- band support may introduce several challenges in the design, including increased occupancy in board space and coupling. This application note reviews how these challenges are addressed by employing a single multi-band antenna. The discussion primarily focuses on Abracon’s internal and external antenna solutions that can cover multiple GPS and/or GNSS bands as a single entity for precision positioning applications. Index Introduction to GNSS Antennas for Multi-band GNSS Receivers Types of Antennas for Multi-Band GNSS Receivers Integrating Antennas in GNSS Applications Key Factors in Determining Antenna Performance Advantages of Using Multi-band GNSS Conclusion References Page | 2 5101 Hidden Creek Ln Spicewood TX 78669 | 512.371.6159 | www.abracon.com Antennas for High-Precision GNSS Applications | Abracon LLC 1. Introduction to GNSS What is GNSS? Why is GNSS needed? What are the available constellations? Global Navigation Satellite System (GNSS) is a satellite-based navigation and positioning system that offers a prediction of coordinates in space, with respect to velocity and time, to assist in the navigation and positioning of receiver systems. The service is supported by various global constellations, including GPS (U.S.), GLONASS (Russia), Galileo (Europe), and regional constellations such as BeiDou (China), QZSS (Japan) and IRNSS (India).
    [Show full text]
  • Leica Viva Series White Paper Beidou Integration
    New Systems, New Signals Providing BeiDou Integration Technical literature December 2013 P. Fairhurst, X. Luo, J. Aponte, B. Richter, Leica Geosystems AG Switzerland Heerbrugg, Schweiz 2 | Technical literature New Systems, New Signals, New Positions – Providing BeiDou Integration Abstract In December 2012, the China Satellite Navigation Leica Geosystems is a world leader in GNSS Office (CSNO) released the official Signal-in-Space positioning and in utilizing innovative methods Interface Control Document (ICD; ICD-BeiDou, for providing high precision GNSS solutions. With 2012) and announced the system operability over new GNSS such as BeiDou and other signals and the Asia-Pacific region. regional systems providing a significant increase in satellite availability, new methods are required to The ICD release prompted Leica Geosystems to fully realize the potential benefits of these additi- release software to fully support the BeiDou cons- onal GNSS constellations. tellation in the Leica Viva GNSS technologies: However, before the potential of these new sys- n Leica SmartTrack tems can be fully realized, we must first under- n Leica SmartCheck stand what advantages they can provide when n Leica xRTK being used in a high precision GNSS solution. Leica Geosystems’ previous leading-edge work on These technologies form the basis of Leica Geo- GLONASS observation interoperability showed that systems GNSS RTK performance. Leica SmartTrack there are many challenges involved with incorpora- technology guarantees the most accurate signal ting new GNSS constellation into a position soluti- tracking. It is future proof and ensures compa- on, and careful evaluation needs to be carried out tibility with all GNSS systems today and tomor- to understand the behaviour and characteristics of row.
    [Show full text]
  • (GNSS) Based Augmentation System Low Latitude Threat Model
    Effects Of Southern Hemisphere Ionospheric Activity On Global Navigation Satellite Systems (GNSS) Based Augmentation System Low Latitude Threat Model December 2014 Submitted to: Servicos de Defesa e Technologia de Processos (SDTP) And The U.S. Trade and Development Agency 1000 Wilson Boulevard, Suite 1600, Arlington, VA 22209-3901 Submitted by Mirus Technology LLC Prepared by the Mirus Technology, LLC (with Contributions from FAA, Stanford University, INPE, ICEA, Boston College, NAVTEC, and KAIST) Principal Investigator: Dr. Navin Mathur Executive Summary Ground-based Augmentation System (GBAS) augments the Global Positioning System (GPS) by increasing the accuracy to an appropriately equipped user. In addition to enhancing the accuracy of GPS derived accuracy, a GBAS provides the necessary integrity of accuracy (to a level defined by International Civil Aviation Organization, ICAO) required for a system that supports landing of an aircraft at an airport where GBAS is available. In addition, a GBAS system is designed to ensure the process of integrity and required continuity of GBAS operations and associated operational availability. The integrity of GBAS is threatened by several internal or external factors that can be broadly classified into three categories namely; Space Vehicle (SV) induced errors, environmental induced errors, and internally generated errors. Over the last decade, the US Federal Aviation Administration (FAA) has systematically defined, classified, characterized, and addressed each of the error sources in those categories that apply within CONUS. These efforts culminated in approval of several GBAS Category-I approaches within CONUS at various locations (such as Newark, Houston, etc.). Through the process of GBAS development for CONUS, the aviation and scientific communities realized that the Ionosphere is one of the key contributors to GBAS integrity threat.
    [Show full text]
  • ABAS), Satellite-Based Augmentation System (SBAS), Or Ground-Based Augmentation System (GBAS
    Current Status and Future Navigation Requirements for Mexico City New Airport New Mexico City Airport in figures: • 120 million passengers per year; • 1.2 million tons of shipping cargo per year; • 4,430 Ha. (6 times bigger tan the current airport); • 6 runways operating simultaneously; • 1st airport outside Europe with a neutral carbon footprint; • Largest airport in Latin America; • 11.3 billion USD investment (aprox.); • Operational in 2020 (expected). “State-of-the-art navigation systems are as important –or more- than having world class civil engineering and a stunning arquitecture” Air Navigation Systems: A. In-land deployed systems - Are the most common, based on ground stations emitting radiofrequency signals received by on-board equipments to calculate flight position. B. Satellite navigation systems – First stablished by U.S. in 1959 called TRANSIT (by the time Russia developed TSIKADA); in 1967 was open to civil navigation; 1973 GPS was developed by U.S., then GLONASS, then GALILEO. C. Inertial navigation systems – Autonomous navigation systems based on inertial forces, providing constant information on the position of the flight and parameters of speed and direction (e.g. when flying above the ocean and there are no ground segments to provide support). Requirements for performance of Navigation Systems: According to the International Civil Aviation Organization (ICAO) there are four main requirements: • The accuracy means the level of concordance between the estimated position of an aircraft and its real position. • The availability is the portion of time during which the system complies with the performance requirements under certain conditions. • The integrity is the function of a system that warns the users in an opportune way when the system should not be used.
    [Show full text]
  • GNSS Applications for Agricultural Practices by Guy Blanchard Ikokou, University of Cape Town
    Application technical GNSS applications for agricultural practices by Guy Blanchard Ikokou, University of Cape Town Global positioning systems are relatively new technologies when it comes to applications in agriculture. Applications in tractor guidance, variable rate supply of chemical inputs and field monitoring of crop yield were recently tested using GPS. This article studies the basic concepts of GPS as they apply to agricultural production and provides a detailed analysis of the recent developments in this area with a focus on functionality and efficiency. ver the past 30 years satellites are maintained within 24 information worldwide and provides agricultural machinery has circular orbital planes inclined 55° with support to military, civil and commercial Oreached high technical respect to the equator plane [1]. The applications. standards in order to improve system currently provides two user A total of 24 GLONASS satellites are agriculture production. Precision services: (i) the Standard Positioning actually operational with the latest agriculture or satellite agriculture is a Service (SPS), open to civil users is satellite placed into space on 26 April highly effective farming management available for civil applications such as 2013 with an inclination of 64,8° method that focuses on intra-field agricultural practice and farming, and and an altitude of 19 100 km [3]. variation in order to optimise (ii) the Precision Positioning Service, The system broadcasts two types of agriculture returns while conserving restricted to authorised users such navigation signals: (i) the standard environmental resources. It relies on as the United States military and accuracy signal mainly available to civil new technologies such as the Global their allies.
    [Show full text]
  • High-Precision GNSS: Methods, Open Problems and Geoscience Applications”
    remote sensing Editorial Editorial for the Special Issue: “High-Precision GNSS: Methods, Open Problems and Geoscience Applications” Xingxing Li 1,*, Jacek Paziewski 2 and Mattia Crespi 3 1 School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Road, Wuhan 430079, China 2 The Faculty of Geodesy, Geospatial and Civil Engineering Institute of Geodesy, University of Warmia and Mazury in Olsztyn (UWM), 10-719 Olsztyn, Poland; [email protected] 3 Geodesy and Geomatics Division—DICEA, Sapienza University of Rome, 00184 Rome, Italy; [email protected] * Correspondence: [email protected] Received: 17 April 2020; Accepted: 18 April 2020; Published: 18 May 2020 Keywords: GNSS; GPS; GLONASS; Galileo; BDS; precise point positioning; relative positioning; orbit determination; ionosphere sounding; troposphere sounding; geoscience applications; high-rate positioning; GNSS for geodynamics In the past two decades, the high-precision Global Positioning System (GPS) has significantly increased the range of geoscience applications and their precision. Currently, it is one of two fully operational Global Navigation Satellite Systems (GNSS), and two more are in the implementation stage. The new European Galileo and Chinese BeiDou Navigation Satellite System (BDS) already provide usable signals, and both GPS and GLONASS are currently undergoing significant modernization, which adds more capacity, more signals, better accuracy, and interoperability, etc. Meanwhile, there has been significant technological development in GNSS equipment (in some cases, even at low-cost), which is now able to collect measurements at much higher rates (up to 100 Hz), thus presenting new possibilities. On the one hand, the new developments in GNSS offer a broad range of new applications for solid and fluid Earth investigations, in both post-processing and real-time; on the other, this results in new problems and challenges in data processing that increase the need for GNSS research.
    [Show full text]
  • Multi-GNSS Working Group Technical Report 2018
    Multi-GNSS Working Group Technical Report 2018 P. Steigenberger1, O. Montenbruck1 1 Deutsches Zentrum für Luft- und Raumfahrt (DLR) German Space Operations Center (GSOC) Münchener Straße 20 82234 Weßling, Germany E-mail: [email protected] 1 Introduction The Multi-GNSS Working Group (MGWG) is coordinating the activities of the Multi- GNSS Pilot Project (MGEX). MGEX is providing multi-GNSS products focusing on the global systems Galileo and BeiDou as well as the regional QZSS and IRNSS (NavIC). A few changes of membership of the MGWG occurred during the reporting period: Lars Prange succeeded Rolf Dach as representative of CODE • Shuli Song joined the MGWG representing SHAO • Sebastian Strasser of TU Graz joined the working group • Ahmed ElMowafy, Heinz Habrich, and Rene Warnant left the working group • 2 GNSS Evolution The numerous 2018 satellite launches of the four global systems GPS, GLONASS, Galileo, and BeiDou as well as the regional IRNSS are listed in Table1. Altogether 16 BeiDou-3 medium Earth orbit (MEO) satellites and one BeiDou-3 geostationary Earth orbit (GEO) satellite have been launched. The Interface Control Document (ICD) for the BeiDou open service signal B3I transmitted by BeiDou-2 and BeiDou-3 satellites has been published in February 2018 (CSNO, 2018). Based on a constellation of 18 BeiDou-3 MEO satellites, global services were declared on 27 December 2018. The Galileo quadruple launch in July 2018 completed the nominal Galileo constella- tion paving the road for full operational capability with now 26 satellites in orbit. Two 191 Multi–GNSS Working Group Table 1: GNSS satellite launches in 2018.
    [Show full text]
  • Applications of the Beidou Navigation Satellite System (December 2018)
    © China Satellite Navigation Office 2018 Applications of the BeiDou Navigation Satellite System (December 2018) China Satellite Navigation Office © China Satellite Navigation Office 2018 © China Satellite Navigation Office 2018 Preface The BeiDou Navigation Satellite System (hereinafter referred to as the BDS) has been independently constructed and operated by China with an eye to the needs of the country’s national security and economic and social development. As a space infrastructure of national significance, the BDS provides all-time, all-weather and high-accuracy positioning, navigation and timing services to global users. In the late 20th century, China started to explore a path to develop a navigation satellite system suitable for its national conditions, and gradually formulated a three-step strategy of development: to complete the construction of the BDS-1 and provide services to the whole country by the end of 2000; to complete the BDS-2 construction and provide services to the Asia-Pacific region by the end of 2012; and to complete the BDS-3 construction and reach world-class standards around 2020. China has started its third step of construction, putting in place the basic system of BDS-3 at the end of 2018 and providing navigation services the world over. “BDS is developed by China, and dedicated to the world”. To benefit the world with reliable services from China, the BDS follows the basic principles of “independence, openness, compatibility and gradualness”. The BDS is one of the four key GNSS suppliers recognized by the United Nations International Committee on Global Navigation Satellite Systems (ICG), and a major achievement of China in the past four decades since the country’s reform and opening up.
    [Show full text]
  • Global Navigation Satellite Systems and Their Applications Dr
    ISSN (Print): 2279-0063 International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) ISSN (Online): 2279-0071 International Journal of Software and Web Sciences (IJSWS) www.iasir.net Global Navigation Satellite Systems and Their Applications Dr. G. Manoj Someswar1, T. P. Surya Chandra Rao2, Dhanunjaya Rao. Chigurukota3 1Principal and Professor, Department of CSE, AUCET, Vikarabad, A.P. 2Associate Professor in Department of CSE 3Associate Professor in Nasimhareddy Engineering Collge ABSTRACT: Global Navigation Satellite System (GNSS) plays a significant role in high precision navigation, positioning, timing, and scientific questions related to precise positioning. Ofcourse in the widest sense, this is a highly precise, continuous, all-weather and a real-time technique. This Research Article is devoted to presenting recent results and developments in GNSS theory, system, signal, receiver, method and errors sources such as multipath effects and atmospheric delays. To make it more elaborative, this varied GNSS applications are demonstrated and evaluated in hybrid positioning, multi- sensor integration, height system, Network Real Time Kinematic (NRTK), wheeled robots, status and engineering surveying. This research paper provides a good reference for GNSS designers, engineers, and scientists as well as the user market. I. USE AND APPLICATIONS OF GLOBAL NAVIGATION SATELLITE SYSTEMS In the year 2001, pursuant to the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE-III), the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) established the Action Team on Global Navigation Satellite Systems (GNSS) under the leadership of the United States and Italy and with the voluntary participation of 38 Member States and 15 organizations.
    [Show full text]
  • GNSS Applications Affected by Space Weather
    The International Space Weather Initiative School Space Weather and Global Navigation Satellite Systems Baku, Azerbaijan 8 – 12 October, 2018 GNSS Applications Affected by Space Weather Presented by: Prof Renato FILJAR, PhD FRIN The ISWI School Space Weather and GNSS Baku, Azerbaijan, 2018 GNSS Applications Affected by Space Weather Credits: NASA The ISWI School Space Weather and GNSS Baku, Azerbaijan, 2018 GNSS Applications Affected by Space Weather . The Halloween 2003 space weather storm . October/November 2003 The ISWI School Space Weather and GNSS Baku, Azerbaijan, 2018 GNSS Applications Affected by Space Weather The ISWI School Space Weather and GNSS Baku, Azerbaijan, 2018 GNSS Applications Affected by Space Weather The ISWI School Space Weather and GNSS Baku, Azerbaijan, 2018 GNSS Applications Affected by Space Weather Credits: NASA The ISWI School Space Weather and GNSS Baku, Azerbaijan, 2018 GNSS Applications Affected by Space Weather . Introduction . Quality of GNSS applications are intrinsically binded to GNSS positioning performance . GNSS positioning performance as a key quality indicator for GNSS-based applications sustainable development and operations . Quest of space weather impact on GNSS positioning performance . Space weather – GNSS positioning performance coupling model (Filić and Filjar, 2018) The ISWI School Space Weather and GNSS Baku, Azerbaijan, 2018 GNSS Applications Affected by Space Weather . What is a GNSS application? . A system or a service that utilises core GNSS Positioning, Navigation, and Timing (PNT) service (i. e. provision of position and positioning error estimates, velocity data and precise time) . Navigation and non-navigation (telecommunications, financial industry, passive remote sensing of environment based on GNSS signal reception etc.) . Critical (requires high-performance) and non-critical .
    [Show full text]