Program Structure and Object-Oriented Programming
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  Preview Objective-C Tutorial (PDF Version)Objective-C Objective-C About the Tutorial Objective-C is a general-purpose, object-oriented programming language that adds Smalltalk-style messaging to the C programming language. This is the main programming language used by Apple for the OS X and iOS operating systems and their respective APIs, Cocoa and Cocoa Touch. This reference will take you through simple and practical approach while learning Objective-C Programming language. Audience This reference has been prepared for the beginners to help them understand basic to advanced concepts related to Objective-C Programming languages. Prerequisites Before you start doing practice with various types of examples given in this reference, I'm making an assumption that you are already aware about what is a computer program, and what is a computer programming language? Copyright & Disclaimer © Copyright 2015 by Tutorials Point (I) Pvt. Ltd. All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book can retain a copy for future reference but commercial use of this data is not allowed. Distribution or republishing any content or a part of the content of this e-book in any manner is also not allowed without written consent of the publisher. We strive to update the contents of our website and tutorials as timely and as precisely as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our website or its contents including this tutorial. If you discover any errors on our website or in this tutorial, please notify us at [email protected] ii Objective-C Table of Contents About the Tutorial ..................................................................................................................................
- 
												  PHP Programming Cookbook IPHP Programming Cookbook i PHP Programming Cookbook PHP Programming Cookbook ii Contents 1 PHP Tutorial for Beginners 1 1.1 Introduction......................................................1 1.1.1 Where is PHP used?.............................................1 1.1.2 Why PHP?..................................................2 1.2 XAMPP Setup....................................................3 1.3 PHP Language Basics.................................................5 1.3.1 Escaping to PHP...............................................5 1.3.2 Commenting PHP..............................................5 1.3.3 Hello World..................................................6 1.3.4 Variables in PHP...............................................6 1.3.5 Conditional Statements in PHP........................................7 1.3.6 Loops in PHP.................................................8 1.4 PHP Arrays...................................................... 10 1.5 PHP Functions.................................................... 12 1.6 Connecting to a Database............................................... 14 1.6.1 Connecting to MySQL Databases...................................... 14 1.6.2 Connecting to MySQLi Databases (Procedurial).............................. 14 1.6.3 Connecting to MySQLi databases (Object-Oriented)............................ 15 1.6.4 Connecting to PDO Databases........................................ 15 1.7 PHP Form Handling................................................. 15 1.8 PHP Include & Require Statements.........................................
- 
												  Object-Oriented Programming Basics with JavaObject-Oriented Programming Object-Oriented Programming Basics With Java In his keynote address to the 11th World Computer Congress in 1989, renowned computer scientist Donald Knuth said that one of the most important lessons he had learned from his years of experience is that software is hard to write! Computer scientists have struggled for decades to design new languages and techniques for writing software. Unfortunately, experience has shown that writing large systems is virtually impossible. Small programs seem to be no problem, but scaling to large systems with large programming teams can result in $100M projects that never work and are thrown out. The only solution seems to lie in writing small software units that communicate via well-defined interfaces and protocols like computer chips. The units must be small enough that one developer can understand them entirely and, perhaps most importantly, the units must be protected from interference by other units so that programmers can code the units in isolation. The object-oriented paradigm fits these guidelines as designers represent complete concepts or real world entities as objects with approved interfaces for use by other objects. Like the outer membrane of a biological cell, the interface hides the internal implementation of the object, thus, isolating the code from interference by other objects. For many tasks, object-oriented programming has proven to be a very successful paradigm. Interestingly, the first object-oriented language (called Simula, which had even more features than C++) was designed in the 1960's, but object-oriented programming has only come into fashion in the 1990's.
- 
												  The Machine That Builds Itself: How the Strengths of Lisp FamilyKhomtchouk et al. OPINION NOTE The Machine that Builds Itself: How the Strengths of Lisp Family Languages Facilitate Building Complex and Flexible Bioinformatic Models Bohdan B. Khomtchouk1*, Edmund Weitz2 and Claes Wahlestedt1 *Correspondence: [email protected] Abstract 1Center for Therapeutic Innovation and Department of We address the need for expanding the presence of the Lisp family of Psychiatry and Behavioral programming languages in bioinformatics and computational biology research. Sciences, University of Miami Languages of this family, like Common Lisp, Scheme, or Clojure, facilitate the Miller School of Medicine, 1120 NW 14th ST, Miami, FL, USA creation of powerful and flexible software models that are required for complex 33136 and rapidly evolving domains like biology. We will point out several important key Full list of author information is features that distinguish languages of the Lisp family from other programming available at the end of the article languages and we will explain how these features can aid researchers in becoming more productive and creating better code. We will also show how these features make these languages ideal tools for artificial intelligence and machine learning applications. We will specifically stress the advantages of domain-specific languages (DSL): languages which are specialized to a particular area and thus not only facilitate easier research problem formulation, but also aid in the establishment of standards and best programming practices as applied to the specific research field at hand. DSLs are particularly easy to build in Common Lisp, the most comprehensive Lisp dialect, which is commonly referred to as the “programmable programming language.” We are convinced that Lisp grants programmers unprecedented power to build increasingly sophisticated artificial intelligence systems that may ultimately transform machine learning and AI research in bioinformatics and computational biology.
- 
												  On Goto Statement in BasicOn Goto Statement In Basic James spores his coeditor arrest lowse, but ribbony Clarence never perambulating so defenselessly. orFingered ferniest and after sold grapy Barry Jimmy sublime countermarches his microclimates so thwart? envelop snigs opinionatively. Is Skylar mismatched Download On Goto Statement In Basic pdf. Download On Goto Statement In Basic doc. Well before withthe statement recursion, basic, and look understandable like as labe not, usage i learned of. Normal to that precedence include support that the content goto basic;is a goto. back Provided them up by statementthe adjectives basic, novel the anddim knowsstatement exactly with be the in below. basic doesMany not and supported the active for on the goto vba. in theSkip evil the comes error asfrom on movesthe specified to go toworkbook go with thename _versionname_ to see the value home does page. not Activeprovided on byone this is withinsurvey? different Outline if ofa trailingbasic withinspace theor responding value if by thisto. Repaired page? Print in favor statement of code along so we with need recursion: to go with many the methods product. becomeThought of goto is startthousands running of intothe code?more readable Slightly moreand in instances vb. Definitely that runnot onprovided basic program, by a more goto explicit that construct,exponentiation, basic i moreinterpreter about? jump Stay to thatadd youthe workbookwhen goto name. basic commandPrediction gotoor go used, on statement we were basicnot, same moves page to the returns slightly isresults a boolean specific in toworkbook the trademarks name to of. the Day date is of.another Exactly if you what forgot you runa stack on in overflow basic does but misusingnot complete it will code isgenerally the window.
- 
												  7. Control Flow First?Copyright (C) R.A. van Engelen, FSU Department of Computer Science, 2000-2004 Ordering Program Execution: What is Done 7. Control Flow First? Overview Categories for specifying ordering in programming languages: Expressions 1. Sequencing: the execution of statements and evaluation of Evaluation order expressions is usually in the order in which they appear in a Assignments program text Structured and unstructured flow constructs 2. Selection (or alternation): a run-time condition determines the Goto's choice among two or more statements or expressions Sequencing 3. Iteration: a statement is repeated a number of times or until a Selection run-time condition is met Iteration and iterators 4. Procedural abstraction: subroutines encapsulate collections of Recursion statements and subroutine calls can be treated as single Nondeterminacy statements 5. Recursion: subroutines which call themselves directly or indirectly to solve a problem, where the problem is typically defined in terms of simpler versions of itself 6. Concurrency: two or more program fragments executed in parallel, either on separate processors or interleaved on a single processor Note: Study Chapter 6 of the textbook except Section 7. Nondeterminacy: the execution order among alternative 6.6.2. constructs is deliberately left unspecified, indicating that any alternative will lead to a correct result Expression Syntax Expression Evaluation Ordering: Precedence An expression consists of and Associativity An atomic object, e.g. number or variable The use of infix, prefix, and postfix notation leads to ambiguity An operator applied to a collection of operands (or as to what is an operand of what arguments) which are expressions Fortran example: a+b*c**d**e/f Common syntactic forms for operators: The choice among alternative evaluation orders depends on Function call notation, e.g.
- 
												  Structured Programming - Retrospect and Prospect Harlan DUniversity of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange The aH rlan D. Mills Collection Science Alliance 11-1986 Structured Programming - Retrospect and Prospect Harlan D. Mills Follow this and additional works at: http://trace.tennessee.edu/utk_harlan Part of the Software Engineering Commons Recommended Citation Mills, Harlan D., "Structured Programming - Retrospect and Prospect" (1986). The Harlan D. Mills Collection. http://trace.tennessee.edu/utk_harlan/20 This Article is brought to you for free and open access by the Science Alliance at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in The aH rlan D. Mills Collection by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. mJNDAMNTL9JNNEPTS IN SOFTWARE ENGINEERING Structured Programming. Retrospect and Prospect Harlan D. Mills, IBM Corp. Stnuctured program- 2 ' dsger W. Dijkstra's 1969 "Struc- mon wisdom that no sizable program Ste red .tured Programming" articlel could be error-free. After, many sizable ming haxs changed ho w precipitated a decade of intense programs have run a year or more with no programs are written focus on programming techniques that has errors detected. since its introduction fundamentally alteredhumanexpectations and achievements in software devel- Impact of structured programming. two decades ago. opment. These expectations and achievements are However, it still has a Before this decade of intense focus, pro- not universal because of the inertia of lot of potentialfor gramming was regarded as a private, industrial practices. But they are well- lot of fo puzzle-solving activity ofwriting computer enough established to herald fundamental more change.
- 
												  Preview Fortran Tutorial (PDF Version)Fortran i Fortran About the Tutorial Fortran was originally developed by a team at IBM in 1957 for scientific calculations. Later developments made it into a high level programming language. In this tutorial, we will learn the basic concepts of Fortran and its programming code. Audience This tutorial is designed for the readers who wish to learn the basics of Fortran. Prerequisites This tutorial is designed for beginners. A general awareness of computer programming languages is the only prerequisite to make the most of this tutorial. Copyright & Disclaimer Copyright 2017 by Tutorials Point (I) Pvt. Ltd. All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any contents or a part of contents of this e-book in any manner without written consent of the publisher. We strive to update the contents of our website and tutorials as timely and as precisely as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our website or its contents including this tutorial. If you discover any errors on our website or in this tutorial, please notify us at [email protected] i Fortran Table of Contents About the Tutorial ····································································································································i Audience ··················································································································································i
- 
												  Gnu Smalltalk Library Reference Version 3.2.5 24 November 2017gnu Smalltalk Library Reference Version 3.2.5 24 November 2017 by Paolo Bonzini Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled \GNU Free Documentation License". 1 3 1 Base classes 1.1 Tree Classes documented in this manual are boldfaced. Autoload Object Behavior ClassDescription Class Metaclass BlockClosure Boolean False True CObject CAggregate CArray CPtr CString CCallable CCallbackDescriptor CFunctionDescriptor CCompound CStruct CUnion CScalar CChar CDouble CFloat CInt CLong CLongDouble CLongLong CShort CSmalltalk CUChar CByte CBoolean CUInt CULong CULongLong CUShort ContextPart 4 GNU Smalltalk Library Reference BlockContext MethodContext Continuation CType CPtrCType CArrayCType CScalarCType CStringCType Delay Directory DLD DumperProxy AlternativeObjectProxy NullProxy VersionableObjectProxy PluggableProxy SingletonProxy DynamicVariable Exception Error ArithmeticError ZeroDivide MessageNotUnderstood SystemExceptions.InvalidValue SystemExceptions.EmptyCollection SystemExceptions.InvalidArgument SystemExceptions.AlreadyDefined SystemExceptions.ArgumentOutOfRange SystemExceptions.IndexOutOfRange SystemExceptions.InvalidSize SystemExceptions.NotFound SystemExceptions.PackageNotAvailable SystemExceptions.InvalidProcessState SystemExceptions.InvalidState
- 
												  Edsger W. Dijkstra: a CommemorationEdsger W. Dijkstra: a Commemoration Krzysztof R. Apt1 and Tony Hoare2 (editors) 1 CWI, Amsterdam, The Netherlands and MIMUW, University of Warsaw, Poland 2 Department of Computer Science and Technology, University of Cambridge and Microsoft Research Ltd, Cambridge, UK Abstract This article is a multiauthored portrait of Edsger Wybe Dijkstra that consists of testimo- nials written by several friends, colleagues, and students of his. It provides unique insights into his personality, working style and habits, and his influence on other computer scientists, as a researcher, teacher, and mentor. Contents Preface 3 Tony Hoare 4 Donald Knuth 9 Christian Lengauer 11 K. Mani Chandy 13 Eric C.R. Hehner 15 Mark Scheevel 17 Krzysztof R. Apt 18 arXiv:2104.03392v1 [cs.GL] 7 Apr 2021 Niklaus Wirth 20 Lex Bijlsma 23 Manfred Broy 24 David Gries 26 Ted Herman 28 Alain J. Martin 29 J Strother Moore 31 Vladimir Lifschitz 33 Wim H. Hesselink 34 1 Hamilton Richards 36 Ken Calvert 38 David Naumann 40 David Turner 42 J.R. Rao 44 Jayadev Misra 47 Rajeev Joshi 50 Maarten van Emden 52 Two Tuesday Afternoon Clubs 54 2 Preface Edsger Dijkstra was perhaps the best known, and certainly the most discussed, computer scientist of the seventies and eighties. We both knew Dijkstra |though each of us in different ways| and we both were aware that his influence on computer science was not limited to his pioneering software projects and research articles. He interacted with his colleagues by way of numerous discussions, extensive letter correspondence, and hundreds of so-called EWD reports that he used to send to a select group of researchers.
- 
												  Comparative Studies of Programming Languages; Course Lecture NotesComparative Studies of Programming Languages, COMP6411 Lecture Notes, Revision 1.9 Joey Paquet Serguei A. Mokhov (Eds.) August 5, 2010 arXiv:1007.2123v6 [cs.PL] 4 Aug 2010 2 Preface Lecture notes for the Comparative Studies of Programming Languages course, COMP6411, taught at the Department of Computer Science and Software Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal, QC, Canada. These notes include a compiled book of primarily related articles from the Wikipedia, the Free Encyclopedia [24], as well as Comparative Programming Languages book [7] and other resources, including our own. The original notes were compiled by Dr. Paquet [14] 3 4 Contents 1 Brief History and Genealogy of Programming Languages 7 1.1 Introduction . 7 1.1.1 Subreferences . 7 1.2 History . 7 1.2.1 Pre-computer era . 7 1.2.2 Subreferences . 8 1.2.3 Early computer era . 8 1.2.4 Subreferences . 8 1.2.5 Modern/Structured programming languages . 9 1.3 References . 19 2 Programming Paradigms 21 2.1 Introduction . 21 2.2 History . 21 2.2.1 Low-level: binary, assembly . 21 2.2.2 Procedural programming . 22 2.2.3 Object-oriented programming . 23 2.2.4 Declarative programming . 27 3 Program Evaluation 33 3.1 Program analysis and translation phases . 33 3.1.1 Front end . 33 3.1.2 Back end . 34 3.2 Compilation vs. interpretation . 34 3.2.1 Compilation . 34 3.2.2 Interpretation . 36 3.2.3 Subreferences . 37 3.3 Type System . 38 3.3.1 Type checking . 38 3.4 Memory management .
- 
												  Graceful Language Extensions and InterfacesGraceful Language Extensions and Interfaces by Michael Homer A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy Victoria University of Wellington 2014 Abstract Grace is a programming language under development aimed at ed- ucation. Grace is object-oriented, imperative, and block-structured, and intended for use in first- and second-year object-oriented programming courses. We present a number of language features we have designed for Grace and implemented in our self-hosted compiler. We describe the design of a pattern-matching system with object-oriented structure and minimal extension to the language. We give a design for an object-based module system, which we use to build dialects, a means of extending and restricting the language available to the programmer, and of implementing domain-specific languages. We show a visual programming interface that melds visual editing (à la Scratch) with textual editing, and that uses our dialect system, and we give the results of a user experiment we performed to evaluate the usability of our interface. ii ii Acknowledgments The author wishes to acknowledge: • James Noble and David Pearce, his supervisors; • Andrew P. Black and Kim B. Bruce, the other designers of Grace; • Timothy Jones, a coauthor on a paper forming part of this thesis and contributor to Minigrace; • Amy Ruskin, Richard Yannow, and Jameson McCowan, coauthors on other papers; • Daniel Gibbs, Jan Larres, Scott Weston, Bart Jacobs, Charlie Paucard, and Alex Sandilands, other contributors to Minigrace; • Gilad Bracha, Matthias Felleisen, and the other (anonymous) review- ers of papers forming part of this thesis; • the participants in his user study; • David Streader, John Grundy, and Laurence Tratt, examiners of the thesis; • and Alexandra Donnison, Amy Chard, Juanri Barnard, Roma Kla- paukh, and Timothy Jones, for providing feedback on drafts of this thesis.